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Introduction

@ Overview of MLS approximation

@ Derive matrix-free meshfree approximation method for scattered
data approximation based on MLS and approximate
approximation —  approximate MLS

@ Link (A)MLS and RBF methods
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Scattered Data Fitting
Multivariate Kernel Interpolation

Use data-dependent linear function space
N
Prx)=> ¢o(x,x;), XcR
j=1

Here ¢ : RS x R® — R is strictly positive definite (reproducing) kernel
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Scattered Data Fitting
Multivariate Kernel Interpolation

Use data-dependent linear function space
N
Prx)=> ¢o(x,x;), XcR
j=1

Here ¢ : RS x R® — R is strictly positive definite (reproducing) kernel

To find ¢; solve interpolation equations
Pf(Xi):f(X/), i:1,...,N
Leads to linear system with matrix

A,‘j:q)(X,',Xj), i,j:1,...,N
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Matrix-free Methods
Matrix-free Methods

Kernel interpolation leads to linear system Ac = f with matrix
A,'/':d)(X,',Xj), i,j:1,...,N

Goal: Avoid solution of linear systems
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Matrix-free Methods
Matrix-free Methods

Kernel interpolation leads to linear system Ac = f with matrix
A,'j:d)(X,',Xj), i,j:1,...,N

Goal: Avoid solution of linear systems

Use cardinal functions in span{®(-, x1),..., (-, xn)}
U*(X,',Xj):5,'j, i,j,...,N

Then
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Matrix-free Methods
Matrix-free Methods

Kernel interpolation leads to linear system Ac = f with matrix
A,'/':d)(X,',Xj), i,j:1,...,N

Goal: Avoid solution of linear systems

Use cardinal functions in span{®(-, x1),...,®(-, Xn)}
U*(X,',Xj):5,'j, i,j,...,N

Then
N

Pr(x) = f(xp)u(x,X;), X €R
j=1
Problem: Cardinal functions difficult/expensive to find
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Cardinal Functions

Figure: Cardinal functions centered at an interior point: Gaussian
interpolation with ¢ = 5, 81 uniformly spaced points (left), multiquadric with
e =5, 81 Halton points (right).
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MLS (Backus-Gilbert Formulation)

Assume

with generating functions W (-, x;)
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MLS (Backus-Gilbert Formulation)

Assume

with generating functions W (-, x;)

Find W(x, x;) pointwise by solving a linearly constrained quadratic
optimization problem.
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MLS (Backus-Gilbert Formulation)

Assume

with generating functions W (-, x;)

Find W(x, x;) pointwise by solving a linearly constrained quadratic
optimization problem.

First discussed in [Bos & Salkauskas (1989)]
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MLS (Backus-Gilbert Formulation)

Assume

with generating functions W (-, x;)

Find W(x, x;) pointwise by solving a linearly constrained quadratic
optimization problem.

First discussed in [Bos & Salkauskas (1989)]

Contributions by [Allasia & Giolito (1997), Farwig (1986),

Farwig (1987), Farwig (1991), Levin (1998), Wendland (2001)] and
many others
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MLS Approximation

Pick positive weight functions w(-, x;) and minimize

1 i w2 (x x-)i1
2 & T w(x, x;)

for fixed evaluation point x, where

1

2V (0QX)W(x),

Q(x) = diag (W

and W = [W(-, xq),...,V(-, xn)]"
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MLS Approximation

Pick positive weight functions w(-, x;) and minimize

N
i—1 P

for fixed evaluation point x, where

Q(X):diag(w ! . 1 >, (1)

(X3X1)7' 7W(X,XN)

and W = [W(',X-I )a 900g w('va)]T
subject to polynomial reproduction (discrete moment conditions)

N
> p(xi—x)¥(x,x;) =p(0), forallpeny <= AX)¥(x)=p(0)

i=1
where Aji(x) = pj(x; — x),j=1,....m= (%%, i=1,...,N
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MLS Approximation Lagrange Multipliers

Using Lagrange multipliers A(x) = [A(X), ..., Am(X)]T we minimize

1

SV (0)Q()W(x) — AT(x) [AX)W(x) — p(0)]
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MLS Approximation Lagrange Multipliers

Using Lagrange multipliers A(x) = [A(X), ..., Am(X)]T we minimize

1

SV (0)Q()W(x) — AT(x) [AX)W(x) — p(0)]

This leads to the system

% 118
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MLS Approximation Lagrange Multipliers

Using Lagrange multipliers A(x) = [A(x), ..., Am(X)]T we minimize

%"’T(X)Q(X)"’(X) —AT(x) [A(X)¥(x) - p(0)]

This leads to the system

ERNEY

with solution

Ax) = (ANQ0AT(x)  p(0)
w(x) = Q' (x)AT(x)A(x)
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MLS Approximation Gram Matrix

If we use a Gram system, the \((x) are the solution of
G(x)A(x) = p(0)

with Gram matrix

N
Gik(X) =D pi(xi — X)px(X; — X)w(X, X;)
P

(")

and p=[ps,...,pm", m
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MLS Approximation Gram Matrix

If we use a Gram system, the \((x) are the solution of
G(x)A(x) = p(0)

with Gram matrix

N
Gik(X) =D pi(xi — X)px(X; — X)w(X, X;)
P

ande[p1,...,pm]T, m:(dj)'_s)

(Small) linear system for each x
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If we use a Gram system, the \((x) are the solution of
G(x)A(x) = p(0)

with Gram matrix
N
X) =Y pi(xi — X)pk(xi — X)w(x, X))
i—1

andp=[ps,....om", m= (%)
(Small) linear system for each x

Following either approach we have componentwise

m

VX, x)=w xx,z ()pi(xi —x), i=1,...,N
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Shepard’s Method

Example (d = 0)
For any positive weight w

N

w(x, X;)
P = f(x)) —————2—
/(x) 1_21 () S e 2

=:V(x,X;)

partition of unity

Has approximation order O(h) if w(-, x;) has support size p; o< h

Does not interpolate — only approximates data
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Shepard’s Method

Example (d = 0)
For any positive weight w

N

w(x, X;)
P = f(x)) —————2—
/(x) 1_21 () S e 2

=:V(x,X;)

partition of unity

Has approximation order O(h) if w(-, x;) has support size p; o< h

Does not interpolate — only approximates data

Also known as kernel method or local polynomial regression

fasshauer@iit.edu Lecture Il Dolomites 2008



MLS Approximation in MATLAB Example

Example
Test function

S
fs(x)=4° [[ xa(1 —xa), X =(x1,....%) €[0,1]°
d=1
Use compactly supported weights

w(x;, ) = (1 = ellx = xil|)3 (4e]lx — xil| + 1)

so that evaluation matrix is sparse
Stationary approximation scheme: ¢ = N'/$
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MLS Approximation in MATLAB Shepard’s Method

Program (ShepardCS_sD.m)

1 s =2; N = 289; M = 500;

2 global rbf; rbf_definition; ep = nthroot (N, s);
3 [dsites, N] = CreatePoints(N,s,’h’);

4 ctrs = dsites;

5 epoints = CreatePoints(M,s,’r’);

6 f = testfunctionsD (dsites);

7 DM _eval = DistanceMatrixCSRBF (epoints,ctrs,ep);
8 EM = rbf(ep,DM_eval);

9 EM = spdiags(l./(EMxones(N,1)),0,M,M)~EM;
10 Pf = EMxf;
11 exact = testfunctionsD (epoints);
12 maxerr = norm(Pf-exact, inf)

13 rms_err = norm(Pf-exact) /sqgrt (M)

Remark
@ DistanceMatrixCSRBF returns a sparse matrix
@ —> rbf defined differently

v
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MLS Approximation in MATLAB Compactly Supported Functions

Compactly supported RBFs/weights

To get a sparse matrix from DistanceMatrixRBF We express
compactly supported functions in a shifted form ¢ = (1 — -) so that

p(1 —er) = p(er)

k ©3.k(r) P3.k(r) smoothness
0 (1-rp2 r2 co
1 (1—=n*(4r+1) rt (5 —4r) e
2 (1-r)8(35r2+18r+3) rb (56 —88r+35r2) c*

Table: Wendland functions ¢s x and ¢s x = ps k(1 —-)

Dolomites 2008
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C? Wendland function ¢3 1 in MATLAB

Instead of (full matrix version)
rbf = Q(e,r) max(l-exr,0).%4.x (d+exr+l);
we now write

rbf = Q@(e,r) r."4.x(5«spones (r)—4x*r);

Remark

@ We use spones since 5-4xr would have generated a full matrix
(with- many additional — and unwanted — ones).
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Distance Matrices for GSRBFs
Program (DistanceMatrixCSRBF .m)
1 function DM = DistanceMatrixCSRBF (dsites, ctrs,ep)

2 N = size(dsites,1l); M = size(ctrs,1);
% Build k-D tree for data sites
% For each ctr/dsite, find the dsites/ctrs
% in its support along with u-distance u=l-epx*r
3 supp = 1/ep; nzmax = 25%N; DM = spalloc(N,M,nzmax) ;
4 1f M > N % faster if more centers than data sites
5 [tmp, tmp, T] = kdtree(ctrs, []);
6 for i = 1:N
7 [pts,dist, idx]=kdrangequery (T,dsites (i, :), supp) ;
8 DM(1i,idx) = l-epxdist;
9 end
10 else
11 [tmp, tmp, T] = kdtree(dsites, []);
12 for 3 = 1:M
13 [pts,dist, idx]=kdrangequery (T,ctrs(j, :),supp);
14 DM (idx, j) = l-epxdist;
15 end
16 end

17 kdtree([],[],T);
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MLS Approximation in MATLAB Stationary Approximation (e = N1/S)
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MLS Approximation in MATLAB Stationary Approximation (e = N1/S)
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Approximation in MATLAB Convergence across different dimensions
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RBF — AMLS Summary
RBF Interpolation via MLS Approximation [zhang (2007)]
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Linking RBF Interpolation and MLS Approximation Approximate Approximation

In MLS approximation the generating functions satisfy discrete
moment conditions

N
> p(xi — x)¥(x,x;) = p(0), forallpeng
i=1
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Linking RBF Interpolation and MLS Approximation Approximate Approximation

In MLS approximation the generating functions satisfy discrete
moment conditions

N
> p(xi — x)¥(x,x;) = p(0), forallpeng
i=1

Now we impose continuous moment conditions. If ¢ is radial we want

[ IxIP(lxlhdx =dco for0 <k <d
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Linking RBF Interpolation and MLS Approximation Approximate Approximation

In MLS approximation the generating functions satisfy discrete
moment conditions

N
> p(xi — x)¥(x,x;) = p(0), forallpeng
i=1

Now we impose continuous moment conditions. If ¢ is radial we want

[ IxIP(lxlhdx =dco for0 <k <d

Remark

@ The concept of approximate approximations was first suggested
by Maz’ya in the early 1990s.

@ See the recent book [Maz’ya and Schmidt (2007)].
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Linking RBF Interpolation and MLS Approximation Approximate Approximation

If © satisfies the continuous moment conditions, then approximate
approximation guarantees that

1 U X — X;
010 = s Y- 1050 (| “
j=1

approximates the data with

If — Qfll.o = O(FP?T2) + (¢, D)

provided x; € R® are uniformly spaced and D > 1
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Linking RBF Interpolation and MLS Approximation Approximate Approximation

If © satisfies the continuous moment conditions, then approximate
approximation guarantees that

1 X — X;
010 = s Y- 1050 (| “
j=1

approximates the data with

If — Otllo = O(FPH*2) + e, D)
provided x; € R® are uniformly spaced and D > 1

Remark
® ¢(p, D) is called saturation error
@ It depends only on ¢ and the initial scale factor D
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Linking RBF Interpolation and MLS Approximation Approximate Approximation

If © satisfies the continuous moment conditions, then approximate
approximation guarantees that

1 X — X;
010 = s Y- 1050 (| “
j=1

approximates the data with

If — Otllo = O(FPH*2) + e, D)
provided x; € R® are uniformly spaced and D > 1

Remark
® ¢(p, D) is called saturation error
@ It depends only on ¢ and the initial scale factor D

@ By choosing an appropriate D, the saturation error may be pushed
down to the level of roundoff error.
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Saturated Gaussian Interpolation

Interpolate with

2

p(r)=e »7
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Summary so far

Data: {x;,f;},j=1,....N
RBF interpolation Approximate MLS approximation
Pr(x) = Z de)(X,Xj) Qr(x) = Z I;'CD(X, X/)
Pt(x;) = f; (interpolation) Q(x;) ~ f; (approximation)
¢ unknown ®(x, x;) unknown
o strictly positive definite | ® meets continuous moment conditions
solve (large) linear system no linear system to solve
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Summary so far

Data: {x;,fi},j=1,...,N
RBF interpolation Approximate MLS approximation
Pr(X) = gd(x, X)) Qs(x) =D (X, X;)
Pt(x;) = f; (interpolation) Q(x;) ~ f; (approximation)
¢ unknown ®(x, x;) unknown
o strictly positive definite | ® meets continuous moment conditions
solve (large) linear system no linear system to solve
Remark

We want to find basic (generating) functions that are both positive
definite and satisfy moment conditions.
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Linking RBF Interpolation and MLS Approximation Finding Good Generating Functions

Some not uncommon misconceptions

@ Everyone knows: interpolation matrix is non-singular if ® is strictly
positive definite
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Linking RBF Interpolation and MLS Approximation Finding Good Generating Functions

Some not uncommon misconceptions

@ Everyone knows: interpolation matrix is non-singular if ® is strictly
positive definite

@ The literature tells us
Theorem
o(|| - I[2) is strictly positive definite and radial on RS for all s

—

v Is completely monotone and not constant.
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Linking RBF Interpolation and MLS Approximation Finding Good Generating Functions

Some not uncommon misconceptions

@ Everyone knows: interpolation matrix is non-singular if ® is strictly
positive definite

@ The literature tells us
Theorem
o(|| - I[2) is strictly positive definite and radial on RS for all s

—

v Is completely monotone and not constant.

Definition
¢ is completely monotone if

(=1)*O(r) > 0, r>0,0=0,1,2,...
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Linking RBF Interpolation and MLS Approximation Finding Good Generating Functions

Some not uncommon misconceptions

@ Everyone knows: interpolation matrix is non-singular if ® is strictly
positive definite

@ The literature tells us
Theorem
o(|| - I[2) is strictly positive definite and radial on RS for all s

—

v Is completely monotone and not constant.

Definition
¢ is completely monotone if

(=1)*O(r) > 0, r>0,0=0,1,2,...

@ Consequence of this definition: ¢ is non-negative
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Linking RBF Interpolation and MLS Approximation Finding Good Generating Functions
All we really need is

Theorem

©(|| - 1) is strictly positive definite and radial on RS for some s
=

its (radial) Fourier transform is non-negative and not identically equal
to zero.
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Linking RBF Interpolation and MLS Approximation Finding Good Generating Functions
All we really need is

Theorem

©(|| - 1) is strictly positive definite and radial on RS for some s
=

its (radial) Fourier transform is non-negative and not identically equal
to zero.

Example

@ Those well-known non-negative functions (such as Gaussians,
inverse MQs)

@ Compactly supported RBFs of Wendland, Wu and Buhmann
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Linking RBF Interpolation and MLS Approximation Finding Good Generating Functions
All we really need is

Theorem

o(|l - ||?) is strictly positive definite and radial on RS for some s
=

its (radial) Fourier transform is non-negative and not identically equal
to zero.

Example

@ Those well-known non-negative functions (such as Gaussians,
inverse MQs)

@ Compactly supported RBFs of Wendland, Wu and Buhmann

@ But also

o oscillatory RBFs of [Fornberg et al. (2004)] (Poisson, Schoenberg)
e Laguerre-Gaussians and generalized IMQs (below)
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Generating Functions Laguerre-Gaussians

Definition (Laguerre-Gaussians)

o(t) = #e%f/z(t)
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Generating Functions Laguerre-Gaussians

Definition (Laguerre-Gaussians)

o(t) = #e’Lf/ 2(t)

Theorem ([Zhang (2007)])

®(x) = ¢ (||x]|?) is SPD and satisfies [s X*®(X)dX = Sa0,
0<laf <2d+1.
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Definition (Laguerre-Gaussians)

o(t) = #e’Lf/ 2(t)

Theorem ([Zhang (2007)])

®(x) = ¢ (||x]|?) is SPD and satisfies [s X*®(X)dX = Sa0,
0<laf <2d+1.

Examples: ®(x) = e~ I¥I” x table entry

sd]| 0 1 2
1 1 3 2 1 15
— | === e | ¢ [ [

| = | = (5 -?) | o= (- e+ i)
1 1 1

2 | 1| l(e-m) | I(s-amr+] ||x||)
T T T
1 1 5 2 1 35 7

3 | = | = (3 -1 | = (32 - 20 + i)

T ———



Generating Functions Laguerre-Gaussians

Figure: Laguerre-Gaussians with s = 1, d = 2 (left) and s = 2, d = 2 (right)
centered at the origin.
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Generating Functions Generalized Inverse Multiquadrics

Definition (Generalized Inverse Multiquadrics)

1 1 zd:(—1)f(2d+s—j—1)!(1 +ty

o(t) = =S/2 (1 + 1)29+s (d —j)IT(d +s/2 — )
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Generating Functions Generalized Inverse Multiquadrics

Definition (Generalized Inverse Multiquadrics)

1 1 zd:(—1)f(2d+s—j—1)!(1 +ty

o(t) = =S/2 (1 + 1)29+s (d —j)IT(d +s/2 — )

Theorem ([Zhang (2007)])

®(x) = ¢ (||x]|?) is SPD and satisfies [pq X*®(X)dX = 6,0,
0< |a] <2d+1.
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Generating Functions Generalized Inverse Multiquadrics

Definition (Generalized Inverse Multiquadrics)

R 1 L (Edts—j- )1+t
o) = 52 (75 eaes 2 (d— )T (d +s/2 —j)

Theorem ([Zhang (2007)])

®(x) = ¢ (||x]|?) is SPD and satisfies [pq X*®(X)dX = 6,0,
0< |a] <2d+1.

Examples: ¢(x)

s\d 0 1 2
1 11 1 (3-1x1) 1 (5= 10]x]1% + lIx]I*)
71+ x| ™ (14 || x]2)° w (1 + [1x]2)°
> 1 1 2 (2-|IxI%) 3 (3 —6|Ix|* +Ix]I*)
(X2 | T+ [x)* T (A ]x)»°
s |41 4 (5-83|x]?) | 8 (7—14lx|* +3|x]*)
4 x]2)° | 7 (1 +x|2)° | 7 (1 + |Ix12)’
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Generating Functions Generalized Inverse Multiquadrics

Figure: Generalized inverse MQ with s =1,d =2 (left) and s =2,d =2
(right) centered at the origin.
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Iterated AMLS Approximation The Final Link

Data: {x;,f;},j=1,....N
RBF interpolation Approximate MLS approximation
Pr(x) = Z CjCD(X,Xj) Qr(x) = Z 7;'CD(X, xj)
Pt(x;) = f; (interpolation) Q(x;) ~ f; (approximation)
¢; unknown ®(x, x;) unknown
o strictly positive definite | ® meets continuous moment conditions
solve (large) linear system no linear system to solve
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Iterated AMLS Approximation The Final Link

Data: {x;,f;},j=1,....N
RBF interpolation Approximate MLS approximation
X) =Y Go(x,x)) Qr(x) = > fid(x, x))
Pt(x;) = f; (interpolation) Q(x;) ~ f; (approximation)
¢; unknown ®(x, x;) unknown
o strictly positive definite | ® meets continuous moment conditions
solve (large) linear system no linear system to solve

Iterated approximate MLS approximation
o strictly positive definite and meets continuous moment conditions

0% (x Z fid(x, X;) (approximate MLS approximation)
Qm( x) =000+ {f — Q(O)(x,)} ®(x,x;) (residual update)

=> go(x, x/-) (RBF interpolation)

v
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The Final Link
Properties of RBF and MLS methods

@ RBFs can be applied without any restriction on the location of the
data sites

@ approximate MLS (AMLS) mainly applicable to uniformly spaced
data

Remark

Approximate approximation for scattered data is significantly more
complicated than in the case of uniform data (see, e.g.,

[Maz’ya and Schmidt (2007)]).
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U LU
Other properties of RBF and AMLS approximation

@ RBFs are known to yield the best approximation to given
(scattered) data with respect to the native space norm of the basic

function used.

@ With RBFs one needs to solve a (generally) large system of linear
equations which can also be ill-conditioned.

@ Using the AMLS method the solution is obtained via a simple sum
based directly on the given data. Thus, the AMLS method is a
quasi-interpolation approach.

@ The drawback associated with the simplicity of the AMLS method
is its lesser degree of accuracy.
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The Final Link
lterative Refinement

For solution of Ax = b in numerical linear algebra

@ Compute an approximate solution xo of Ax = b
@ Forn=1,2,...do
@ Compute the residual r, = b — Ax,_+

@ Solve Ae, =r,
© Update x, = x,_1 + e,

fasshauer@iit.edu Lecture Il Dolomites 2008



lterative Refinement for AMLS

@ Initialize r® = f

N
o¥(x) =3 r(x, x))
Jj=1

@ Forn=1,2,...do
@ Find the new residuals at the data points

N
YN A Vo, xp), i=1,
=1

@ Update the approximation

A (x) = Q" V(x) + 3 "o (x. x)

fasshauer@iit.edu Lecture Il

Dolomites 2008



Iterated AMLS Approximation Understanding the Iteration

Theorem
Part | (without acceleration)

n
ol =T (1- A f = 0T,
k=0

ie., {®(., xq),..., o0 (. xy)} provides new — approximately
cardinal — basis for span{®(-, X1),...,®(-, Xn)}-
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Iterated AMLS Approximation Understanding the Iteration

Theorem
Part | (without acceleration)

Q&n ¢TZ(/ f= o"Tf

ie., {®(., xq),..., o0 (. xy)} provides new — approximately

cardinal — basis for span{®(-, X1),...,®(-, Xn)}-
Part Il (with acceleration)

2M—1

> (- A

k=0

A _ 4T
Q;' =0
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Iterated AMLS Approximation Understanding the Iteration

Theorem
Part | (without acceleration)

n
o =TS (1- A f = 0Tf,
k=0

i.e., {N(., xq),..., 0" (., xn)} provides new — approximately
cardinal — basis for span{®(-, X1),..., (-, Xn)}.

Part Il (with acceleration)

2M—1

> (- A

k=0

ol — o7 f

Remark

Theorem can be formulated for any quasi-interpolation scheme
provided iteration converges (||| — A|| < 1) and limiting interpolant
exists (A non-singular).
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Iterated AMLS Approximation Understanding the Iteration

Proof of Part I.
By induction

N
o = o+ [1x) - & ()] @(.x)

j=1

v
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Iterated AMLS Approximation Understanding the Iteration

Proof of Part I.
By induction

& o+ ey~ o] o

N n
& ¢TZ(/_A)kf+Z F(x;) — ®7T(x) Y (1— AY | o(-, x))
k=0 j=1

k=0

v
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Iterated AMLS Approximation Understanding the Iteration

Proof of Part I.

By induction
o g+ 3" [f0g) - &P (x)] o, x)
j=1
n N n
2 0TS (=AY |fx) - 0T(x) D (1 - A f] (-, X;)
k=0 j=1 k=0

s |

= 'S (I-Aff+aT
k=0

I—Azn:(l—A)k]f

k=0

v

fasshauer@iit.edu Lecture Il

Dolomites 2008



Iterated AMLS Approximation Understanding the Iteration

Proof of Part I.

By induction
N
def
j=1
n N n
E oY (1A F+ > [f(x) - o7(x) > (1 - A f] & (-, X))
k=0 j=1 k=0
n
k=0 k=0
Simplify further
n
QM = o7 143 (1- A f
k=0
n+1
= 7|3 (I-Af|f=00Tf
k=0

v
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Proof of Part Il.

n
AsinPartl: Q" =0T (/- A f+oT
k=0

I—Azn:(l—A)k]f

k=0
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Proof of Part Il.

n
AsinPartl: Q" =0T (/- A f+oT
k=0

n
/-AZ(/-A)“] f
k=0
Replace &7 by &("7:
n
é$n+1) _ (DTZ(/_ A)k f+ o7
k=0

/—Azn:(l—A)k]f

k=0

v
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Proof of Part Il.

n
AsinPartl: Q" =0T (/- A f+oT
k=0

/_Azn:(/_A)k] f
k=0

Replace &7 by &("7:
n
é$n+1) _ ¢TZ(/_ A)k f+ o7
k=0

3>

/—AZ(/—A)k] f
k=0

2/—Ai(l—A)k] f
k=0

= d)Tzn:(l—A)k [QI—AZ(I—A)k
k=0 k=0

o7

f

v
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Proof of Part Il.

n

n
AsinPartl: Q™" =Ty (1- A f+ o7
k=0

Replace &7 by &("7:

1—A> (1 AYf
k=0

]f

n n
oY = TN (- A F o 1A (1- A f
k=0 k=0
n
= o7 ZIAZ(IA)"] f
k=0
n n
= 07> (I- A [QI—AZ(I—A)" f
k=0 k=0
2n+1
_ ¢T Z (/7 A)k f— ¢(2n+1)Tf _ Q$2n+1)
k=0
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Proof of Part Il.

n n
AsinPartl: Q™" =Ty (1- A f+ o7 I—AZ(I—A)"] f
k=0 k=0

Replace &7 by &("7:
n
'QV)((rH»'I) _ ¢TZ(I—A)kf+¢(n)T
k=0

3>

f

I-AY " (1- A
k=0

ZIAEH:(/A)"] f

k=0

= ¢Tzn:(/_A)k [2I—Azn:(l—A)k
k=0 k=0

2n+1

> (- A

k=0

o7

f

f— @@NTf_ gnth)

;
- g

We are done by observing that the upper limit of summation satisfies
én+1:2én+1,é0:O,i.e.,énzzn_1. D
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Understanding the Heration
What about convergence?

@ Necessary and sufficient condition for convergence: ||/ — Alj» < 1
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Understanding the Heration
What about convergence?

@ Necessary and sufficient condition for convergence: ||/ — Alj» < 1
@ Sufficient condition:

-----

Here A is specially scaled. For example, scaled s-dimensional
Gaussian,

53 2,2 /p2
r) = e € re/h
o(r) W
For proofs of both see [F. & Zhang (2007)].
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Jzsandl G 2 i
What about convergence?

@ Necessary and sufficient condition for convergence: ||/ — Alj» < 1
@ Sufficient condition:

-----

Here A is specially scaled. For example, scaled s-dimensional
Gaussian,

53 2,2 /1h2
p(r) = \/?e =r/h
For proofs of both see [F. & Zhang (2007)].
Remark
@ For convergence ¢ must be chosen quite small.
@ For such a choice the iteration will converge very slowly.
@ BUT, allows stable computation for small e
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Basic Version
Program (IAMLS_sD.m)
1 s =2; N =289; M= 500; maxn = 50;

global rbf; rbf_definition; D = 2%s;
[dsites, N] = CreatePoints(N,s,’h’);
ctrs = dsites;

epoints = CreatePoints(M,s,’'r’);

rhs = testfunctionsD (dsites);

h = 1/(nthroot(N,s)-1); ep = 1/ (sqrt (
DM_data = DistanceMatrix(dsites,ctrs);
9 1IM = rbf(ep,DM_data)/ (sqrt (pi*D)"s);
10 DM_eval =

11 EM = rbf (ep,DM_eval)/ (sqgrt (pi*D) "s);
12 Pf = EM+*rhs;

O J o U wN

D) xh);

DistanceMatrix (epoints,ctrs);

13 maxerr(l) = max(abs(Pf - exact));

14 rms_err (1) = norm(Pf-exact)/sqgrt (M);

15 for n=2:maxn

16 rhs = rhs - IMx*rhs;

17 Pf = Pf + EMxrhs;

18 maxerr (n) = max(abs(Pf - exact));

19 rms_err (n) = norm(Pf-exact)/sqrt (M) ;
20 end
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Iterated AMLS Approximation in MATLAB Basic Version

Figure: Convergence of iterated AMLS approximant for 1089 Halton points
(e = 16, left) and 289 Halton points (¢ = 1,right).
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Iterated AMLS Approximation in MATLAB Basic Version

Figure: Comparison for RBF interpolation (top) and IAMLS approximation
(bottom) for 1089 Halton points (¢ = 16, left, errors) and 289 Halton points
(e =1, right, fits).
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Franke-like test function

Figure: Accuracy and stability of RBF interpolant, AMLS approximant, and
iterated AMLS approximant for 1089 Halton data points in 2D.
@ ¢ “large” if € > 38 (spiky surfaces for both RBF and AMLS)
@ ¢ too large for convergence (maximum row sum > 2) if ¢ > 48
@ Rapid convergence for 38 < ¢ < 58 (spiky surface, but IAMLS
usually smoother)
@ “Good” interpolant (slow convergence of IAMLS) for 12 < ¢ < 38,
often contains “optimal” ¢
@ Small ¢ (¢ < 12 here), then IAMLS more stable and may overcome
ill-conditioning
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Iterated AMLS Approximation in MATLAB Vectorized Version

From the proof of Part I:

n
Q) — o [1+3 (1- A £
k=0
n
= o I+Z(I—A)k(l—A)}f

k=0
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Iterated AMLS Approximation in MATLAB Vectorized Version

From the proof of Part I:

Q(’H"” — ¢T f

f

n
I—|— Z (I . A)k+1
k=0

= ¢Tl+§5U—AfU—A4f

k=0

Therefore, with P(") = S7_ (I — A)¥, evaluation on the data sites
yields
Q™Y — A1+ PO (1- A)| £
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Iterated AMLS Approximation in MATLAB Vectorized Version

From the proof of Part I:

Q(n+1) — q)T f

f

n
| + Z (I _ A)k+1
k=0

= ¢Tl+§5U—AfU—A4f

k=0

Therefore, with P(") = S7_ (I — A)¥, evaluation on the data sites
yields

Q™Y — A1+ PO (1- A)| £

or
P — [ P (] — A)
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Iterated AMLS Approximation in MATLAB Vectorized Version

Program (IAMLSVectorized_sD.m)

1 s =2; N =289; M= 500, maxn = 50;
2 global rbf; rbf_definition; D = 2%s;
3 [dsites, N] = CreatePoints(N,s,’h’);

4 ctrs = dsites; respts = dsites;

5 epoints = CreatePoints(M,s,’'r’);

6 rhs = testfunctionsD (dsites);

7 h = 1/(nthroot(N,s)-1); ep = 1/ (sqgrt (D) xh);
8 DM _data = DistanceMatrix(dsites,ctrs);
9 IM = rbf(ep,DM_data)/ (sqrt (pi*D)"s);
10 DM_eval = DistanceMatrix (epoints,ctrs);
11 EM = rbf (ep,DM_eval)/ (sqrt (pi*D)"s);
12 P = eye(N);
13 for n—l.maxn
14 P = eye(N) + Px(eye(N)-IM);
15 Pf = EMxPx*rhs;
16 maxerr (n) = norm(Pf-exact, inf);
17 rms_err (n) = norm(Pf-exact) /sqrt (M) ;
18 end

v
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Iterated AMLS Approximation in MATLAB Vectorized and Accelerated Version

From the proof of Part Il:

n n
QN — @TS " (1- A (21— A (1- A | f
k=0 k=0
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Iterated AMLS Approximation in MATLAB Vectorized and Accelerated Version

From the proof of Part Il:

n
é$n+1):¢TZ(/—A)k f
k=0

n
21— A (1- A
k=0

Therefore, with P(") = S°7_ (1 — A)¥, evaluation on the data sites
yields

o™ = ap( (21— APO)] £
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Iterated AMLS Approximation in MATLAB Vectorized and Accelerated Version

From the proof of Part Il:

n

QM — oS (1- A

k=0

n
21— A (1- A
k=0

Therefore, with P(") = S°7_ (1 — A)¥, evaluation on the data sites
yields

~(n+1)

Q;  =ApP(D [2/ . AP(”)] f

or
p(n+1) — pln) [2/ - AP(")}

fasshauer@iit.edu Lecture Il Dolomites 2008



Iterated AMLS Approximation in MATLAB Vectorized and Accelerated Version

Program (IAMLSAccel_sD.m)

1l s =2; N=289; M= 500; maxn = 50;
2 global rbf; rbf_definition; D = 2xs;
3 [dsites, N] = CreatePoints(N,s,’h’);

4 ctrs = dsites;
5 epoints = CreatePoints(M,s,’r’);

6 rhs = testfunctionsD (dsites);

7 = 1/ (nthroot (N,s)-1); ep = 1/ (sqrt (D) «h);
8 DM_ dat = DistanceMatrix (dsites,ctrs);
9 IM f (ep,DM_data) / (sqgrt (pi*D) "s) ;
10 DM_ eval = DistanceMatrix (epoints,ctrs);
11 EM = rbf(ep,DM_eval)/ (sqrt (pi*D)"s);

(N

12 P = eye(N); AP = IM«P;

13 for n=l:maxn

14 P = Px (2*xeye (N)-AP);

15 AP = IM«*P;

16 Pf = EMxPxrhs;

17 maxerr (n) = norm(Pf-exact,inf);

18 rms_err (n) = norm(Pf-exact) /sqgrt (M) ;
19 end

o
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Iterated AMLS Approximation in MATLAB Vectorized and Accelerated Version

Figure: Errors after n iterations for 1089 Halton points (Gaussians with
e = 16). n accelerated iterations correspond to 2" — 1 iterations without
acceleration.
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Iterated AMLS Approximation in MATLAB Vectorized and Accelerated Version

@ A few iterations of accelerated iterated AMLS can be considered
as an efficient and numerically stable alternative to the RBF
interpolation approach.

@ While the initial iterate of the algorithm is an AMLS approximation
designed for uniformly spaced data, we can see how the algorithm
generates an equivalently nice solution even when the data sites
are irregularly distributed.

@ Convergence results for approximate approximation can be
transferred to the limiting RBF interpolation. This explains
saturation of stationary RBF interpolation.

@ Applications of iterated AMLS to

e preconditioning (next lecture)
e smoothing of noisy data (lecture 5)
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