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Radial Basis Function Interpolation Scattered Data Interpolation

Multivariate RBF Interpolation

Use data-dependent linear function space

Pf (x) =
N∑

j=1

cjΦ(x ,x j), x ∈ Rs

Here Φ : Rs × Rs → R is strictly positive definite (reproducing) kernel

To find cj solve interpolation equations

Pf (x i) = f (x i), i = 1, . . . ,N

Leads to linear system Ac = f with symmetric positive definite — often
ill-conditioned — system matrix

Aij = Φ(x i ,x j), i , j = 1, . . . ,N
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Radial Basis Function Interpolation Symmetric Positive Definite Systems

Consider the linear system
Ac = f

with N × N symmetric positive definite matrix A.

Standard textbook knowledge suggests:
1 Compute Cholesky factorization A = LLT .
2 Solve the lower triangular system Ly = f for y by forward

substitution.
3 Solve the upper triangular system LT c = y for c by back

substitution.

Problem: Doesn’t work well if A is ill-conditioned.
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Iterated IAMLS Preconditioning Left and Right Preconditioning

The Basic Idea

Let P be a preconditioning matrix so that

cond(PA)� cond(A) or cond(AP)� cond(A)

Change both sides (left preconditioning)

(PA)c = Pf ⇐⇒ c = (PA)−1Pf

Change only the left-hand-side (right preconditioning)

(AP)c̃ = f ⇐⇒ c̃ = (AP)−1f c̃ = P−1c

We will use this approach
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Iterated IAMLS Preconditioning RBF Preconditioning

How to find P
Previous work on RBF preconditioning:

Dyn and co-workers in the mid 1980s
[Dyn (1987), Dyn et al. (1986)]: discretize associated differential
operator (bi-Laplacian for TPSs)
more recent papers [Barba & Rossi (2008), Baxter (2002),
Beatson et al. (1999), Brown et al. (2005), Ling & Kansa (2005)]:
mostly with local approximate cardinal functions
better basis of the approximation space [Beatson et al. (2000)]: use
homogeneous kernel for TPSs

Our approach:
use global approximate cardinal functions ([Zhang (2007)])
(related to polynomial preconditioners, e.g.,
[Dubois et al. (1979), Ashby et al. (1992)])
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Iterated IAMLS Preconditioning Polynomial Preconditioning

On polynomial preconditioners

From [Benzi (2002)]:

Preconditioning as a means of reducing the condition number in order
to improve convergence of an iterative process seems to have been
first considered by [Cesari (1937)]. Cesari’s idea was to use a low
degree polynomial p(A) in A as a preconditioner for a Richardson-type
iteration applied to the preconditioned system p(A)Ax = p(A)b.

Polynomial preconditioners for Krylov subspace methods came into
vogue in the late 1970s with the advent of vector computers but they
are currently out of favor because of their limited effectiveness and
robustness, especially for nonsymmetric problems.

Conclusion reported in [Ashby et al. (1992)]: deg(p) = 2 “optimal”
We may be providing new insight via acceleration
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Iterated IAMLS Preconditioning Condition numbers for polynomial preconditioning

Condition number after 2n − 1 iterations
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Iterated IAMLS Preconditioning Iterated AMLS

Theorem
Part I (without acceleration)

Q(n)
f = ΦT

n∑
k=0

(I − A)k

︸ ︷︷ ︸
=P(n)

f =: Φ(n)T f ,

i.e., {Φ(n)(·,x1), . . . ,Φ(n)(·,xN)} provides new — approximately
cardinal — basis for span{Φ(·,x1), . . . ,Φ(·,xN)}.

Recursion for preconditioner

P(n+1) = I + P(n) (I − A) , P(0) = I.
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Iterated IAMLS Preconditioning The Preconditioning Algorithms

Right Preconditioning without Acceleration

Since A
n∑

k=0

(I − A)k → I, we take P(n) =
n∑

k=0

(I − A)k

1 P(0) = I
2 For n = 1,2,3, . . .

P(n) = I + P(n−1) (I − A)

3 Solve
(
AP(n)

)
c = f for c

Evaluation on {y1, . . . ,yM} ⊂ Rs:

Pf (y) =
(

BP(n)
)

c

with Bij = Φ(y i ,x j), i = 1, . . . ,M, j = 1, . . . ,N.
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Iterated IAMLS Preconditioning The Effect of Acceleration

Condition number after 2n − 1 iterations
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Iterated IAMLS Preconditioning The Effect of Acceleration

Theorem
Part II (with acceleration)

Q̃(n)
f = ΦT

[
2n−1∑
k=0

(I − A)k

]
︸ ︷︷ ︸

=P(n)

f =: Φ(n)T f ,

i.e., {Φ(n)(·,x1), . . . ,Φ(n)(·,xN)} provides new — approximately
cardinal — basis for span{Φ(·,x1), . . . ,Φ(·,xN)}.

Recursion for preconditioner

P(n+1) = P(n)
[
2I − AP(n)

]
, P(0) = I.
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Iterated IAMLS Preconditioning The Effect of Acceleration

Right Preconditioning with Acceleration

Now use P(n) =
2n−1∑
k=0

(I − A)k

1 P(0) = I, A(0)
P = A

2 For n = 1,2,3, . . .

P(n) = P(n−1)
(

2I − A(n−1)
P

)
, A(n)

P = AP(n)

3 Solve A(n)
P c = f for c

Evaluation on {y1, . . . ,yM} ⊂ Rs:

Pf (y) = BP(n)c

with Bij = Φ(y i ,x j), i = 1, . . . ,M, j = 1, . . . ,N.
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Numerical Experiments Iterated AMLS Preconditioning in MATLAB

Program (IAMLSPrecond_sD.m)
1 s = 2; N = 289; M = 500; maxn = 50;
2 global rbf; rbf_definition; D = 2*s;
3 [dsites, N] = CreatePoints(N,s,’h’);
4 ctrs = dsites;
5 epoints = CreatePoints(M,s,’r’);
6 rhs = testfunctionsD(dsites);
7 h = 1/(nthroot(N,s)-1); ep = 1/(sqrt(D)*h);
8 DM_data = DistanceMatrix(dsites,ctrs);
9 IM = rbf(ep,DM_data)/(sqrt(pi*D)^s);

10 DM_eval = DistanceMatrix(epoints,ctrs);
11 EM = rbf(ep,DM_eval)/(sqrt(pi*D)^s);
12 P = eye(N); AP = IM*P;
13 for n=1:maxn
14 P = P*(2*eye(N)-AP); AP = IM*P;
15 end
16 c = gmres(AP, rhs, [], 1e-10, 40); % or use pcg
17 Pf = (EM*P) * c;
18 exact = testfunctionsD(epoints);
19 maxerr = norm(Pf-exact,inf)
20 rms_err = norm(Pf-exact)/sqrt(M)
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Numerical Experiments Condition Numbers and GMRES Convergence

Comparison with [Beatson et al. (1999)]

Cond. No. 289 1089 4225
no pre pre no pre pre no pre pre

MQ BCM 1.506(8) 5.742(1) 2.154(9) 2.995(3) 3.734(10) 4.369(4)
TPS BCM 4.005(6) 3.330(0) 2.753(8) 1.411(2) 2.605(9) 2.025(3)
Gauss 8.796(9) 1.000(0) 6.849(10) 1.000(0) 7.632(10) 1.000(0)
IQ 1.186(8) 1.000(0) 4.284(8) 1.000(0) 1.082(9) 1.000(0)

No. 289 1089 4225
GMRES iter. no pre pre no pre pre no pre pre
MQ BCM 145 8 >150 15 >150 28
TPS BCM 103 5 145 6 >150 9
Gauss >150 2 >150 2 >150 2
IQ >150 2 >150 2 >150 2

2D Halton points, n = 40, εG = 6.4,12.8,25.6, εI = 3.2,6.4,12.8
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Numerical Experiments Condition Numbers and GMRES Convergence

Condition number drop

Laguerre-Gaussians (left, with ε = 3.2,4.8,6.4) and generalized IMQs
(right, with ε = 0.204,2.04,3.06) for d = 0,1,2 and N = 289 Halton
points
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Numerical Experiments Condition Numbers and GMRES Convergence

Eigenvalue distribution & GMRES convergence

Gaussian with ε = 5.95 and N = 289 Halton points
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Numerical Experiments Condition Numbers and GMRES Convergence

Summary of IAMLS Preconditioning

Current implementation too slow to be useful (matrix-matrix
product)
Preconditioning with accelerated iterated AMLS very effective for
“good” (i.e., reasonably conditioned) problems
Preconditioner does not perform well for “bad” problems
(cond(AP) can be made small, but P itself becomes
ill-conditioned, so that evaluation unreliable)
Automatic stopping criterion in [F. & Zhang (2008)]
Accelerated iterated AMLS (as well as SVD) may be used to
approximately solve “bad” problems or problems with noise
Generalized inverse MQs and Laguerre-Gaussians seem to
behave similarly
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Riley’s Algorithm for Ill-conditioned Linear Systems Riley’s Algorithm

Our Latest Approach — Riley’s Algorithm [Riley (1955)]

Instead of solving the ill-conditioned system

Ax = b

we regularize, i.e., let
C = A + µI

and solve
Cy = b.

Note: If A is symmetric positive definite, so is C.

This is well-known as Tikhonov regularization or ridge regression.

But this is not the end of Riley’s algorithm.
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Riley’s Algorithm for Ill-conditioned Linear Systems Riley’s Algorithm

Since A = C − µI we can derive

A−1 =
1
µ

∞∑
k=1

(
µC−1

)k
(1)

and therefore we get the solution to the original system as

x = A−1b

(1)
=

1
µ

∞∑
k=1

(
µC−1

)k
b

y=C−1b
=

∞∑
k=1

(
µC−1

)k−1
y

= y + µC−1y +
(
µC−1

)2
y + . . .︸ ︷︷ ︸

=µC−1[y+µC−1y+...]

So xk+1 = y + µC−1xk , k = 0,1,2, . . . , x0 = 0 (2)
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Riley’s Algorithm for Ill-conditioned Linear Systems Riley’s Algorithm

Alternative version of Riley’s Algorithm

From above
x = y + µC−1y +

(
µC−1

)2
y + . . .

So
xk+1 = xk +

(
µC−1

)k
y , k = 0,1,2, . . . , x0 = 0

Compute product iteratively:

x0 = 0
y0 = C−1b

yk+1 = µC−1yk−1

xk+1 = xk + yk , k = 0,1,2, . . .

This is our main version of Riley’s algorithm
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Riley’s Algorithm for Ill-conditioned Linear Systems Riley’s Algorithm

Riley’s Algorithm in MATLAB

function x = Riley(A,b,mu)
C = A + mu*eye(size(A));
L = chol(C,’lower’);
z = L\b;
y = L’\z;
x = y;
for k = 1:kend

z = mu*(L\y);
y = L’\z;
x = x + y;

end
end
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Riley’s Algorithm for Ill-conditioned Linear Systems Riley’s Algorithm

Another Interpretation of Riley’s Algorithm

Let C = A + µI as before. Then

Ax = b ⇐⇒ (C − µI)x = b.

Now split A and iterate

Cxk+1 = b + µxk , k = 0,1,2, . . . (3)

where x0 = 0.

This corresponds to

xk+1 = y + µC−1xk , k = 0,1,2, . . . , x0 = 0, y = C−1b

which is the same as (2).
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Riley’s Algorithm for Ill-conditioned Linear Systems Riley’s Algorithm

[Golub (1965)] showed this is equivalent to iterative improvement (see
[Kincaid and Cheney (2002)]):

Ce = b − Axk (4)
xk+1 = xk + e (5)

also with x0 = 0.

Verification of equivalence

Cxk+1
(5)
= Cxk + Ce
(4)
= Cxk + b − Axk

C=A+µI
= b + µIxk

(3)
= Cxk+1

Remark
[Neumaier (1998)] calls this method iterated Tikhonov regularization or
preconditioned Landweber iteration (but attributes it to [Riley (1955)]).
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Riley’s Algorithm for Ill-conditioned Linear Systems Riley’s Algorithm

Iterative Improvement Version of Riley’s Algorithm in
MATLAB

function x = Riley_Residuals(A,b,mu)
C = A + mu*eye(size(A));
L = chol(C,’lower’);
z = L\b;
x = L’\z;
for k=1:kend

z = L\(b - A*x);
x = x + L’\z;

end
end

fasshauer@iit.edu Lecture III Dolomites 2008



Riley’s Algorithm for Ill-conditioned Linear Systems Riley’s Algorithm

Major problem with Tikhonov regularization:
How should we choose µ?

Usual approach: cross validation or maximum likelihood

Practical suggestion in [Riley (1955)]: choose µ small, i.e.,

µ ≈ 10−p+α,

where p is desired precision, and α = 2 or 3.
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Riley’s Algorithm for Ill-conditioned Linear Systems Riley’s Algorithm

Convergence of the algorithm
The eigenvalues of µC−1 are 0 < µ

λi+µ
< 1, so the series

x =
∞∑

k=0

(
µC−1

)k
y

converges.

For µ� λmin we have fast convergence.
The matrix C is better conditioned than A since

cond(C) =
λmax + µ

λmin + µ
� cond(A) =

λmax

λmin

provided µ > λmin.
Summary:
µ needs to be

large enough to improve conditioning
small enough to provide fast convergence

Recommended to use µ ≈ λmin (we use µ = 10−11 when λmin ≈ 10−17)
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Connection to SVD

SVD solution of Ax = b:

x =
r∑

j=1

βj

σj
v j ,

where A = UΣV T and β = UT b

regularize by truncation of components associated with small
singular values

Riley:

xk =
r∑

j=1

[
1−

(
µ

µ+ σj

)k
]
βj

σj
v j ,

where C = A + µI

regularize by iteration (i.e., damping each mode)
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Connection to SVD

Another look at the regularization parameters

Riley iteration: xk =
r∑

j=1

[
1−

(
µ

µ+ σj

)k
]
βj

σj
v j

Assume µ ≈ σr (balancing regularization and convergence)
Then (

µ

µ+ σr

)k

≈ 1
2k

So

1−
(

µ

µ+ σr

)k

≈ 0.9 if k = 3 or k = 4

and

1−
(

µ

µ+ σr

)k

≈ 0.99 for k ≈ 7

Note: 1−
(

µ
µ+σj

)k
, j < r is even closer to 1
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Connection to SVD Finding a Better Basis

Obtaining a Stable Basis via SVD

Consider a stacked interpolation and evaluation system:[
A
B

]
c =

[
f
s

]
with Aij = Φ(x i ,x j), and Bkj = Φ(yk ,x j), where x i are centers = data
sites, yk are evaluation points

Apply SVD: [
A
B

]
c = U ΣV T c︸ ︷︷ ︸

=d

=

[
f
s

]
Now:

Ac = U(1:N,1:r)d = f =⇒ d = U†(1:N,1:r)f

s = Bc = U(N+1:end,1:r)d
= U(N+1:end,1:r)U†(1:N,1:r)f
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Numerical Experiments

The following quotes from [Golub (1965)] lead up to Riley’s algorithm:

. . . results of an extensive calculation. The matrix consists of
the first 5 columns of the inverse of the 6× 6 Hilbert matrix.

For many problems, even with the use of orthogonal
transformations it may be impossible to obtain an accurate
solution.

From the MathSciNet review of [Golub (1965)]:

This essentially consists in a more effective implementation of
J. D. Riley’s algorithm.

fasshauer@iit.edu Lecture III Dolomites 2008



Numerical Experiments

The following quotes from [Golub (1965)] lead up to Riley’s algorithm:

. . . results of an extensive calculation. The matrix consists of
the first 5 columns of the inverse of the 6× 6 Hilbert matrix.

For many problems, even with the use of orthogonal
transformations it may be impossible to obtain an accurate
solution.

From the MathSciNet review of [Golub (1965)]:

This essentially consists in a more effective implementation of
J. D. Riley’s algorithm.

fasshauer@iit.edu Lecture III Dolomites 2008



Numerical Experiments

The following quotes from [Golub (1965)] lead up to Riley’s algorithm:

. . . results of an extensive calculation. The matrix consists of
the first 5 columns of the inverse of the 6× 6 Hilbert matrix.

For many problems, even with the use of orthogonal
transformations it may be impossible to obtain an accurate
solution.

From the MathSciNet review of [Golub (1965)]:

This essentially consists in a more effective implementation of
J. D. Riley’s algorithm.

fasshauer@iit.edu Lecture III Dolomites 2008



Numerical Experiments

In our experiments with N = 900 (either equally spaced or Halton) and
µ = 10−11 we get

cond(A)

cond(C)
≈ 106 − 108

for our ill-conditioned problems (i.e., with cond(A) ≈ 1020).

The timing for the Riley algorithm is only about 5% slower than
standard backslash solver — and two orders of magnitude more
accurate!
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Numerical Experiments

Method backslash Riley SVD POD-SVD
Time (sec) 24.1 26.0 710.0 1417.8

Table: Execution times for solution of 100 linear systems of size 900× 900
(gridded data).
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Numerical Experiments

Method backslash Riley SVD POD-SVD
Time (sec) 24.0 26.7 739.1 1693.1

Table: Execution times for solution of 100 linear systems of size 900× 900
(irregular data).
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Numerical Experiments

Method backslash Riley
Time (sec) 401.2 429.8

Table: Execution times for solution of 200 linear systems of size 2500× 2500
(gridded data).
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Summary for Riley’s Algorithm

Summary

Riley’s paper seems largely forgotten/ignored
Riley’s algorithm seems to be superior to truncated SVD for
ill-conditioned symmetric positive definite systems
Riley’s algorithm can be extended to

arbitrary (indefinite) square linear systems (use QR factorization of
C = A + µI)
arbitrary non-square linear systems (use normal equations, and QR
factorization of C = AT A + µI)
sparse systems together with sparse Cholesky factorization (fast
approximate sparse SVD)

Riley’s algorithm can be accelerated (e.g., by Aitken’s method) —
not yet done
Need a strategy to find “optimal” regularization parameter µ
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