
Meshfree Approximation with MATLAB
Lecture IV: RBF Collocation and Polynomial Pseudospectral Methods

Greg Fasshauer

Department of Applied Mathematics
Illinois Institute of Technology

Dolomites Research Week on Approximation
September 8–11, 2008

fasshauer@iit.edu Lecture IV Dolomites 2008

Outline

fasshauer@iit.edu Lecture IV Dolomites 2008

1 RBF Collocation, Kansa’s method

2 PS Methods and Differentiation Matrices

3 PDEs with BCs via PS Methods

4 Symmetric RBF collocation

5 RBF Differentiation Matrices in MATLAB

6 Solving PDEs via RBF-PS Methods

RBF Collocation, Kansa’s method PDEs of Interest

Linear elliptic PDE with boundary conditions

Lu = f in Ω

u = g on Γ = ∂Ω

Time-dependent PDE with initial and boundary conditions

ut (x , t) + Lu(x , t) = f (x , t), x ∈ Ω ∪ Γ, t ≥ 0
u(x ,0) = u0(x), x ∈ Ω

u(x , t) = g(t), x ∈ Γ

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Collocation, Kansa’s method PDEs of Interest

Linear elliptic PDE with boundary conditions

Lu = f in Ω

u = g on Γ = ∂Ω

Time-dependent PDE with initial and boundary conditions

ut (x , t) + Lu(x , t) = f (x , t), x ∈ Ω ∪ Γ, t ≥ 0
u(x ,0) = u0(x), x ∈ Ω

u(x , t) = g(t), x ∈ Γ

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Collocation, Kansa’s method Kansa’s (non-symmetric) Method

According to [Kansa (1986)] we consider an elliptic PDE and start with

u(x) =
N∑

j=1

λjΦj(x) = ΦT (x)λ

Coefficients λ determined by solving[
ÃL
Ã

]
λ =

[
f
g

]
,

with (rectangular) collocation matrices

ÃL,ij = LΦj(x i) = Lϕ(‖x − x j‖)
∣∣
x=x i

,

i = 1, . . . ,N − NB, j = 1, . . . ,N,
Ãij = Φj(x i) = ϕ(‖x i − x j‖),

i = N − NB + 1, . . . ,N, j = 1, . . . ,N.

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Collocation, Kansa’s method Kansa’s (non-symmetric) Method

According to [Kansa (1986)] we consider an elliptic PDE and start with

u(x) =
N∑

j=1

λjΦj(x) = ΦT (x)λ

Coefficients λ determined by solving[
ÃL
Ã

]
λ =

[
f
g

]
,

with (rectangular) collocation matrices

ÃL,ij = LΦj(x i) = Lϕ(‖x − x j‖)
∣∣
x=x i

,

i = 1, . . . ,N − NB, j = 1, . . . ,N,
Ãij = Φj(x i) = ϕ(‖x i − x j‖),

i = N − NB + 1, . . . ,N, j = 1, . . . ,N.

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Collocation, Kansa’s method Kansa’s (non-symmetric) Method

If

[
ÃL
Ã

]
invertible (open problem since 1986), then approximate

solution (at any point x) found by inserting λ in basis expansion, i.e.,

u(x) = ΦT (x)λ

Solution at collocation points

u = A

[
ÃL
Ã

]−1 [
f
g

]
︸ ︷︷ ︸

=λ

, Aij = Φj(x i)

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Collocation, Kansa’s method Kansa’s (non-symmetric) Method

If

[
ÃL
Ã

]
invertible (open problem since 1986), then approximate

solution (at any point x) found by inserting λ in basis expansion, i.e.,

u(x) = ΦT (x)λ

Solution at collocation points

u = A

[
ÃL
Ã

]−1 [
f
g

]
︸ ︷︷ ︸

=λ

, Aij = Φj(x i)

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Collocation, Kansa’s method Kansa’s (non-symmetric) Method

Note

u = A

[
ÃL
Ã

]−1 [
f
g

]
⇐⇒

[
ÃL
Ã

]
A−1

︸ ︷︷ ︸
=LΓ

u =

[
f
g

]

with

LΓ =

[
ÃLA−1

I ÃLA−1
B

ÃA−1
I ÃA−1

B

]
=

[
M P
0 I

]
,

−→ RBF-PS method (see later).

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Collocation, Kansa’s method Kansa’s (non-symmetric) Method

Note

u = A

[
ÃL
Ã

]−1 [
f
g

]
⇐⇒

[
ÃL
Ã

]
A−1

︸ ︷︷ ︸
=LΓ

u =

[
f
g

]

with

LΓ =

[
ÃLA−1

I ÃLA−1
B

ÃA−1
I ÃA−1

B

]
=

[
M P
0 I

]
,

−→ RBF-PS method (see later).

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Collocation, Kansa’s method Kansa’s (non-symmetric) Method

Example (2D Laplace Equation)

uxx + uyy = 0, x , y ∈ (−1,1)2

Boundary conditions:

u(x , y) =

sin4(πx), y = 1 and − 1 < x < 0,
1
5 sin(3πy), x = 1,
0, otherwise.

See [Trefethen (2000)]

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Collocation, Kansa’s method Kansa’s (non-symmetric) Method

fasshauer@iit.edu Lecture IV Dolomites 2008

Figure: Gaussian-RBF (ε = 2.75), N = 24× 24

RBF Collocation, Kansa’s method Kansa’s (non-symmetric) Method

Program (KansaLaplaceMixedBCTref_2D.m)

global rbf Lrbf; rbf_definition; epsilon = 3;
N = 289; M = 1681;
Lu = @(x,y) zeros(size(x));
[collpts, N] = CreatePoints(N, 2, ’u’); collpts = 2*collpts-1;
indx = find(abs(collpts(:,1))==1 | abs(collpts(:,2))==1);
bdypts = collpts(indx,:);
intpts = collpts(setdiff([1:N],indx),:);
ctrs = [intpts; bdypts];
evalpts = CreatePoints(M,2,’u’); evalpts = 2*evalpts-1;
DM_eval = DistanceMatrix(evalpts,ctrs);
EM = rbf(epsilon,DM_eval);
DM_int = DistanceMatrix(intpts,ctrs);
DM_bdy = DistanceMatrix(bdypts,ctrs);
LCM = Lrbf(epsilon,DM_int);
BCM = rbf(epsilon,DM_bdy);
CM = [LCM; BCM];
rhs = zeros(N,1); NI = size(intpts,1);
indx = find(bdypts(:,1)==1 | (bdypts(:,1)<0) & (bdypts(:,2)==1));
rhs(NI+indx) = (bdypts(indx,1)==1)*0.2.*sin(3*pi*bdypts(indx,2)) + ...

(bdypts(indx,1)<0).*(bdypts(indx,2)==1).*sin(pi*bdypts(indx,1)).^4;
Pf = EM * (CM\rhs);
disp(sprintf(’u(0,0) = %16.12f’,Pf(841)))

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Collocation, Kansa’s method Kansa’s (non-symmetric) Method

We just showed that we always have (even if the Kansa matrix is not
invertible)

LΓ =

[
ÃL
Ã

]
A−1 =

[
M P
0 I

]

It is known that
LΓ is invertible for polynomial basis (1D)
In a certain limiting case RBF interpolant yields polynomial
interpolant

=⇒ Kansa’s collocation matrix is invertible in the limiting case

Other recent work on a well-defined approach to Kansa’s method, e.g.,
in [Schaback (2007)]

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Collocation, Kansa’s method Kansa’s (non-symmetric) Method

We just showed that we always have (even if the Kansa matrix is not
invertible)

LΓ =

[
ÃL
Ã

]
A−1 =

[
M P
0 I

]

It is known that
LΓ is invertible for polynomial basis (1D)
In a certain limiting case RBF interpolant yields polynomial
interpolant

=⇒ Kansa’s collocation matrix is invertible in the limiting case

Other recent work on a well-defined approach to Kansa’s method, e.g.,
in [Schaback (2007)]

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Collocation, Kansa’s method Kansa’s (non-symmetric) Method

We just showed that we always have (even if the Kansa matrix is not
invertible)

LΓ =

[
ÃL
Ã

]
A−1 =

[
M P
0 I

]

It is known that
LΓ is invertible for polynomial basis (1D)
In a certain limiting case RBF interpolant yields polynomial
interpolant

=⇒ Kansa’s collocation matrix is invertible in the limiting case

Other recent work on a well-defined approach to Kansa’s method, e.g.,
in [Schaback (2007)]

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Collocation, Kansa’s method Kansa’s (non-symmetric) Method

We just showed that we always have (even if the Kansa matrix is not
invertible)

LΓ =

[
ÃL
Ã

]
A−1 =

[
M P
0 I

]

It is known that
LΓ is invertible for polynomial basis (1D)
In a certain limiting case RBF interpolant yields polynomial
interpolant

=⇒ Kansa’s collocation matrix is invertible in the limiting case

Other recent work on a well-defined approach to Kansa’s method, e.g.,
in [Schaback (2007)]

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Collocation, Kansa’s method Time-Dependent PDEs

Consider time-dependent PDE

ut + Lu = f

and discretize the time, e.g.,

ut (x , tk) ≈ u(x , tk)− u(x , tk−1)

∆t
=

uk (x)− uk−1(x)

∆t

Then
uk (x) ≈ uk−1(x) + ∆t [f (x)− Luk−1(x)]

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Collocation, Kansa’s method Time-Dependent PDEs

Consider time-dependent PDE

ut + Lu = f

and discretize the time, e.g.,

ut (x , tk) ≈ u(x , tk)− u(x , tk−1)

∆t
=

uk (x)− uk−1(x)

∆t

Then
uk (x) ≈ uk−1(x) + ∆t [f (x)− Luk−1(x)]

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Collocation, Kansa’s method Kansa for Time-Dependent PDEs

Start with

u(x , t) =
N∑

j=1

λj(t)Φj(x) = ΦT (x)λ(t)

Then after time discretization

N∑
j=1

λ
(k)
j Φj(x) =

N∑
j=1

λ
(k−1)
j Φj(x) + ∆t

f (x)−
N∑

j=1

λ
(k−1)
j LΦj(x)

or
ΦT (x)λ(k) =

[
ΦT (x)−∆tLΦT (x)

]
λ(k−1) + ∆tf (x)

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Collocation, Kansa’s method Kansa for Time-Dependent PDEs

Start with

u(x , t) =
N∑

j=1

λj(t)Φj(x) = ΦT (x)λ(t)

Then after time discretization

N∑
j=1

λ
(k)
j Φj(x) =

N∑
j=1

λ
(k−1)
j Φj(x) + ∆t

f (x)−
N∑

j=1

λ
(k−1)
j LΦj(x)

or
ΦT (x)λ(k) =

[
ΦT (x)−∆tLΦT (x)

]
λ(k−1) + ∆tf (x)

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Collocation, Kansa’s method Kansa for Time-Dependent PDEs

Start with

u(x , t) =
N∑

j=1

λj(t)Φj(x) = ΦT (x)λ(t)

Then after time discretization

N∑
j=1

λ
(k)
j Φj(x) =

N∑
j=1

λ
(k−1)
j Φj(x) + ∆t

f (x)−
N∑

j=1

λ
(k−1)
j LΦj(x)

or
ΦT (x)λ(k) =

[
ΦT (x)−∆tLΦT (x)

]
λ(k−1) + ∆tf (x)

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Collocation, Kansa’s method Application to Time-Dependent PDEs

Collocation on X = {x1, . . . ,xN} yields

Aλ(k) = [A−∆tAL] λ(k−1) + ∆tf

Solve for λ(k), then (for any x)

u(k)(x) =
N∑

j=1

λ
(k)
j Φj(x) = ΦT (x)λ(k)

Solution at collocation points

u(k) = Aλ(k), Aij = Φj(x i)

Much too complicated!

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Collocation, Kansa’s method Application to Time-Dependent PDEs

Collocation on X = {x1, . . . ,xN} yields

Aλ(k) = [A−∆tAL] λ(k−1) + ∆tf

Solve for λ(k), then (for any x)

u(k)(x) =
N∑

j=1

λ
(k)
j Φj(x) = ΦT (x)λ(k)

Solution at collocation points

u(k) = Aλ(k), Aij = Φj(x i)

Much too complicated!

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Collocation, Kansa’s method Application to Time-Dependent PDEs

Collocation on X = {x1, . . . ,xN} yields

Aλ(k) = [A−∆tAL] λ(k−1) + ∆tf

Solve for λ(k), then (for any x)

u(k)(x) =
N∑

j=1

λ
(k)
j Φj(x) = ΦT (x)λ(k)

Solution at collocation points

u(k) = Aλ(k), Aij = Φj(x i)

Much too complicated!

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Collocation, Kansa’s method Application to Time-Dependent PDEs

Collocation on X = {x1, . . . ,xN} yields

Aλ(k) = [A−∆tAL] λ(k−1) + ∆tf

Solve for λ(k), then (for any x)

u(k)(x) =
N∑

j=1

λ
(k)
j Φj(x) = ΦT (x)λ(k)

Solution at collocation points

u(k) = Aλ(k), Aij = Φj(x i)

Much too complicated!

fasshauer@iit.edu Lecture IV Dolomites 2008

PS Methods and Differentiation Matrices Background

PS methods are known as highly accurate solvers for PDEs

Basic idea (in 1D)

u(x) =
N∑

j=1

λjΦj(x), x ∈ [a,b]

with (smooth and global) basis functions Φj , j = 1, . . . ,N

Here u is the unknown (approximate) solution of the PDE

fasshauer@iit.edu Lecture IV Dolomites 2008

PS Methods and Differentiation Matrices Differentiation Matrices

For PDEs we need to be able to represent values of derivatives of u.

For PS methods values at grid points suffice.

Key idea: find differentiation matrix D such that

u′ = Du

where u = [u(x1), . . . ,u(xN)]T

Example
Chebyshev polynomials on Chebyshev points. In this case explicit
formulas for entries of D are known.

fasshauer@iit.edu Lecture IV Dolomites 2008

PS Methods and Differentiation Matrices Differentiation Matrices

For PDEs we need to be able to represent values of derivatives of u.

For PS methods values at grid points suffice.

Key idea: find differentiation matrix D such that

u′ = Du

where u = [u(x1), . . . ,u(xN)]T

Example
Chebyshev polynomials on Chebyshev points. In this case explicit
formulas for entries of D are known.

fasshauer@iit.edu Lecture IV Dolomites 2008

PS Methods and Differentiation Matrices General Differentiation Matrices

u(x) =
N∑

j=1

λjΦj(x) =⇒ u′(x) =
N∑

j=1

λj
d
dx

Φj(x).

Evaluate at grid points:

u = Aλ with Aij = Φj(xi)

and
u′ = Axλ with Ax ,ij =

d
dx

Φj(xi).

Therefore
u′ = AxA−1u =⇒ D = AxA−1.

fasshauer@iit.edu Lecture IV Dolomites 2008

PS Methods and Differentiation Matrices General Differentiation Matrices

u(x) =
N∑

j=1

λjΦj(x) =⇒ u′(x) =
N∑

j=1

λj
d
dx

Φj(x).

Evaluate at grid points:

u = Aλ with Aij = Φj(xi)

and
u′ = Axλ with Ax ,ij =

d
dx

Φj(xi).

Therefore
u′ = AxA−1u =⇒ D = AxA−1.

fasshauer@iit.edu Lecture IV Dolomites 2008

PS Methods and Differentiation Matrices General Differentiation Matrices

u(x) =
N∑

j=1

λjΦj(x) =⇒ u′(x) =
N∑

j=1

λj
d
dx

Φj(x).

Evaluate at grid points:

u = Aλ with Aij = Φj(xi)

and
u′ = Axλ with Ax ,ij =

d
dx

Φj(xi).

Therefore
u′ = AxA−1u =⇒ D = AxA−1.

fasshauer@iit.edu Lecture IV Dolomites 2008

PS Methods and Differentiation Matrices RBF Differentiation Matrices

Want to use radial basis functions

Φj(x) = ϕ(‖x − x j‖), x ∈ Rs

and a general linear differential operator L with constant coefficients.

Discretized differential operator (differentiation matrix):

L = ALA−1

with Aij = Φj(x i) = ϕ(‖x i − x j‖)
and AL,ij = LΦj(x i) = Lϕ(‖x − x j‖)

∣∣
x=x i

.

A is (non-singular) RBF interpolation matrix

fasshauer@iit.edu Lecture IV Dolomites 2008

PS Methods and Differentiation Matrices RBF Differentiation Matrices

Want to use radial basis functions

Φj(x) = ϕ(‖x − x j‖), x ∈ Rs

and a general linear differential operator L with constant coefficients.

Discretized differential operator (differentiation matrix):

L = ALA−1

with Aij = Φj(x i) = ϕ(‖x i − x j‖)
and AL,ij = LΦj(x i) = Lϕ(‖x − x j‖)

∣∣
x=x i

.

A is (non-singular) RBF interpolation matrix

fasshauer@iit.edu Lecture IV Dolomites 2008

PS Methods and Differentiation Matrices RBF Differentiation Matrices

Want to use radial basis functions

Φj(x) = ϕ(‖x − x j‖), x ∈ Rs

and a general linear differential operator L with constant coefficients.

Discretized differential operator (differentiation matrix):

L = ALA−1

with Aij = Φj(x i) = ϕ(‖x i − x j‖)
and AL,ij = LΦj(x i) = Lϕ(‖x − x j‖)

∣∣
x=x i

.

A is (non-singular) RBF interpolation matrix

fasshauer@iit.edu Lecture IV Dolomites 2008

PS Methods and Differentiation Matrices RBF Differentiation Matrices

How to proceed for a time-independent PDE

Lu = f

Discretize space
Lu ≈ Lu

Then (at grid points)
u = L−1f

Challenge

Need to ensure invertibility of L

fasshauer@iit.edu Lecture IV Dolomites 2008

PS Methods and Differentiation Matrices RBF Differentiation Matrices

How to proceed for a time-independent PDE

Lu = f

Discretize space
Lu ≈ Lu

Then (at grid points)
u = L−1f

Challenge

Need to ensure invertibility of L

fasshauer@iit.edu Lecture IV Dolomites 2008

PS Methods and Differentiation Matrices A First (ill-posed) PDE

Want to solve Lu = f without BCs.

Discretize:
Lu = f =⇒ u = L−1f = A (AL)−1 f

Invertibility of L (and therefore AL) required.

Chebyshev PS: L is singular
RBF-PS: L is non-singular since AL invertible for positive definite
RBFs and elliptic L.

Remark
RBFs “too good to be true”. Built-in regularization due to variational
framework.

fasshauer@iit.edu Lecture IV Dolomites 2008

PS Methods and Differentiation Matrices A First (ill-posed) PDE

Want to solve Lu = f without BCs.

Discretize:
Lu = f =⇒ u = L−1f = A (AL)−1 f

Invertibility of L (and therefore AL) required.

Chebyshev PS: L is singular

RBF-PS: L is non-singular since AL invertible for positive definite
RBFs and elliptic L.

Remark
RBFs “too good to be true”. Built-in regularization due to variational
framework.

fasshauer@iit.edu Lecture IV Dolomites 2008

PS Methods and Differentiation Matrices A First (ill-posed) PDE

Want to solve Lu = f without BCs.

Discretize:
Lu = f =⇒ u = L−1f = A (AL)−1 f

Invertibility of L (and therefore AL) required.

Chebyshev PS: L is singular
RBF-PS: L is non-singular since AL invertible for positive definite
RBFs and elliptic L.

Remark
RBFs “too good to be true”. Built-in regularization due to variational
framework.

fasshauer@iit.edu Lecture IV Dolomites 2008

PS Methods and Differentiation Matrices A First (ill-posed) PDE

Want to solve Lu = f without BCs.

Discretize:
Lu = f =⇒ u = L−1f = A (AL)−1 f

Invertibility of L (and therefore AL) required.

Chebyshev PS: L is singular
RBF-PS: L is non-singular since AL invertible for positive definite
RBFs and elliptic L.

Remark
RBFs “too good to be true”. Built-in regularization due to variational
framework.

fasshauer@iit.edu Lecture IV Dolomites 2008

PDEs with BCs via PS Methods

Consider linear elliptic PDE

Lu = f in Ω

with boundary condition

u = g on Γ = ∂Ω

and assume basis functions do not satisfy BCs.

Construct differentiation matrix L based on all grid points x i .
Then replace diagonal entries corresponding to boundary points
with ones and the remainder of those rows with zeros.

fasshauer@iit.edu Lecture IV Dolomites 2008

PDEs with BCs via PS Methods

Consider linear elliptic PDE

Lu = f in Ω

with boundary condition

u = g on Γ = ∂Ω

and assume basis functions do not satisfy BCs.

Construct differentiation matrix L based on all grid points x i .
Then replace diagonal entries corresponding to boundary points
with ones and the remainder of those rows with zeros.

fasshauer@iit.edu Lecture IV Dolomites 2008

PDEs with BCs via PS Methods

Reorder rows and columns to obtain

LΓ =

[
M P
0 I

]
,

Here
M is NI × NI (interior points)
I is NB × NB (boundary points)
NB number of grid points on boundary Γ

NI = N − NB number of grid points in the interior Ω

Then

u = L−1
Γ

[
f
g

]

fasshauer@iit.edu Lecture IV Dolomites 2008

PDEs with BCs via PS Methods

Reorder rows and columns to obtain

LΓ =

[
M P
0 I

]
,

Here
M is NI × NI (interior points)
I is NB × NB (boundary points)
NB number of grid points on boundary Γ

NI = N − NB number of grid points in the interior Ω

Then

u = L−1
Γ

[
f
g

]

fasshauer@iit.edu Lecture IV Dolomites 2008

PDEs with BCs via PS Methods

Using u = [uΩ,uΓ]T and substituting uΓ = g back in we get

uΩ = M−1(f − Pg),

or, for homogeneous boundary conditions,

uΩ = M−1f .

Remark
For standard PS methods the block M is invertible. Its spectrum is well
studied for many different L and BCs.

fasshauer@iit.edu Lecture IV Dolomites 2008

PDEs with BCs via PS Methods

Using u = [uΩ,uΓ]T and substituting uΓ = g back in we get

uΩ = M−1(f − Pg),

or, for homogeneous boundary conditions,

uΩ = M−1f .

Remark
For standard PS methods the block M is invertible. Its spectrum is well
studied for many different L and BCs.

fasshauer@iit.edu Lecture IV Dolomites 2008

Symmetric RBF collocation

As in [F. (1997)] we start with

u(x) =

NI∑
j=1

λjL∗j Φ(x) +
N∑

j=NI+1

λjΦj(x).

Since Φj(x) = ϕ(‖x − x j‖), L∗j denotes application of L to ϕ viewed as
a function of the second variable followed by evaluation at x j .

Then λ = [λΩ,λΓ]T obtained from[
ÂLL∗ ÂL
ÂL∗ Â

][
λΩ

λΓ

]
=

[
f
g

]
.

fasshauer@iit.edu Lecture IV Dolomites 2008

Symmetric RBF collocation

As in [F. (1997)] we start with

u(x) =

NI∑
j=1

λjL∗j Φ(x) +
N∑

j=NI+1

λjΦj(x).

Since Φj(x) = ϕ(‖x − x j‖), L∗j denotes application of L to ϕ viewed as
a function of the second variable followed by evaluation at x j .

Then λ = [λΩ,λΓ]T obtained from[
ÂLL∗ ÂL
ÂL∗ Â

][
λΩ

λΓ

]
=

[
f
g

]
.

fasshauer@iit.edu Lecture IV Dolomites 2008

Symmetric RBF collocation

The collocation matrix [
ÂLL∗ ÂL
ÂL∗ Â

]
consists of

square blocks

ÂLL∗,ij =
[
L [L∗ϕ(‖x − ξ‖)]ξ=x j

]
x=x i

, i , j = 1, . . . ,NI

Âij = Φj(x i) = ϕ(‖x i − x j‖), i , j = NI + 1, . . . ,N

rectangular blocks

ÂL,ij =
[
Lϕ(‖x − x j‖)

]
x=x i

, i = 1, . . . ,NI , j = NI + 1, . . . ,N

ÂL∗,ij = [L∗ϕ(‖x i − x‖)]x=x j
, i = NI + 1, . . . ,N, j = 1, . . . ,NI

fasshauer@iit.edu Lecture IV Dolomites 2008

Symmetric RBF collocation

2D Laplace Equation from [Trefethen (2000)]

fasshauer@iit.edu Lecture IV Dolomites 2008

Figure: Gaussian-RBF (ε = 6), N = 17× 17 (+ 64 boundary points)

Symmetric RBF collocation

Program (HermiteLaplaceMixedBCTref_2D.m)
global rbf Lrbf L2rbf; rbf_definition; epsilon = 3;
N = 289; M = 1681;
Lu = @(x,y) zeros(size(x));
[datasites, N] = CreatePoints(N, 2, ’u’); intdata = 2*datasites-1;
sg = sqrt(N); bdylin = linspace(-1,1,sg)’; bdy1 = ones(sg-1,1);
bdydata = [bdylin(1:end-1) -bdy1; bdy1 bdylin(1:end-1);...

flipud(bdylin(2:end)) bdy1; -bdy1 flipud(bdylin(2:end))];
h = 2/(sg-1); bdylin = (-1+h:h:1-h)’; bdy0 = repmat(-1-h,sg-2,1); bdy1 = repmat(1+h,sg-2,1);
bdycenters = [-1-h -1-h; bdylin bdy0; 1+h -1-h; bdy1 bdylin;...

1+h 1+h; flipud(bdylin) bdy1; -1-h 1+h; bdy0 flipud(bdylin)];
centers = [intdata; bdycenters];
evalpoints = CreatePoints(M, 2, ’u’); evalpoints = 2*evalpoints-1;
DM_inteval = DistanceMatrix(evalpoints,intdata);
DM_bdyeval = DistanceMatrix(evalpoints,bdycenters);
LEM = Lrbf(epsilon,DM_inteval);
BEM = rbf(epsilon,DM_bdyeval);
EM = [LEM BEM];
DM_IIdata = DistanceMatrix(intdata,intdata);
DM_IBdata = DistanceMatrix(intdata,bdycenters);
DM_BIdata = DistanceMatrix(bdydata,intdata);
DM_BBdata = DistanceMatrix(bdydata,bdycenters);
LLCM = L2rbf(epsilon,DM_IIdata);
LBCM = Lrbf(epsilon,DM_IBdata);
BLCM = Lrbf(epsilon,DM_BIdata);
BBCM = rbf(epsilon,DM_BBdata);
CM = [LLCM LBCM; BLCM BBCM];
rhs = [Lu(intdata(:,1),intdata(:,2)); zeros(sg-1,1); 0.2*sin(3*pi*bdydata(sg:2*sg-2,2)); ...

zeros((sg-1)/2,1); sin(pi*bdydata((5*sg-3)/2:3*sg-3,1)).^4; zeros(sg-1,1)];
Pf = EM * (CM\rhs);
disp(sprintf(’u(0,0) = %16.12f’,Pf(841)))

fasshauer@iit.edu Lecture IV Dolomites 2008

Symmetric RBF collocation

It is well known that the symmetric collocation matrix[
ÂLL∗ ÂL
ÂL∗ Â

]

is invertible.

Therefore, the solution at any point is obtained by inserting λ into basis
expansion, or at grid points

u =
[

AL∗ ÃT
]

︸ ︷︷ ︸
=K T

[
ÂLL∗ ÂL
ÂL∗ Â

]−1 [
f
g

]
︸ ︷︷ ︸

=λ

with evaluation matrix K T .

fasshauer@iit.edu Lecture IV Dolomites 2008

Symmetric RBF collocation

It is well known that the symmetric collocation matrix[
ÂLL∗ ÂL
ÂL∗ Â

]

is invertible.

Therefore, the solution at any point is obtained by inserting λ into basis
expansion, or at grid points

u =
[

AL∗ ÃT
]

︸ ︷︷ ︸
=K T

[
ÂLL∗ ÂL
ÂL∗ Â

]−1 [
f
g

]
︸ ︷︷ ︸

=λ

with evaluation matrix K T .

fasshauer@iit.edu Lecture IV Dolomites 2008

Symmetric RBF collocation

Entries of K T given by

AL∗,ij = [L∗ϕ(‖x i − x‖)]x=x j
, i = 1, . . . ,N, j = 1, . . . ,NI

ÃT
ij = Φj(x i) = ϕ(‖x i − x j‖), i = 1, . . . ,N, j = NI + 1, . . . ,N

Symmetry of RBFs implies AL∗ = ÃT
L, and therefore

K T =
[

AL∗ ÃT
]

=

[
ÃL
Ã

]T

→ transpose of Kansa’s matrix

fasshauer@iit.edu Lecture IV Dolomites 2008

Symmetric RBF collocation

Entries of K T given by

AL∗,ij = [L∗ϕ(‖x i − x‖)]x=x j
, i = 1, . . . ,N, j = 1, . . . ,NI

ÃT
ij = Φj(x i) = ϕ(‖x i − x j‖), i = 1, . . . ,N, j = NI + 1, . . . ,N

Symmetry of RBFs implies AL∗ = ÃT
L, and therefore

K T =
[

AL∗ ÃT
]

=

[
ÃL
Ã

]T

→ transpose of Kansa’s matrix

fasshauer@iit.edu Lecture IV Dolomites 2008

Symmetric RBF collocation Symmetric RBF-PS Method

Start with “symmetric basis” expansion

u(x) =

NI∑
j=1

λjL∗j Φ(x) +
N∑

j=NI+1

λjΦj(x).

At the grid points in matrix notation we have

u =
[

AL∗ ÃT
] [λΩ

λΓ

]
or

λ =
[

AL∗ ÃT
]−1

u.

fasshauer@iit.edu Lecture IV Dolomites 2008

Symmetric RBF collocation Symmetric RBF-PS Method

Apply L to basis expansion and restrict to grid

Lu =
[

ALL∗ AL
]
λ

with

ALL∗,ij =
[
L [L∗ϕ(‖x − ξ‖)]ξ=x j

]
x=x i

, i = 1, . . . ,N, j = 1, . . . ,NI

AL,ij =
[
Lϕ(‖x − x j‖)

]
x=x i

, i = 1, . . . ,N, j = NI + 1, . . . ,N

Replace λ and get

L̂u =
[

ALL∗ AL
] [

AL∗ ÃT
]−1

u.

Remark

Note that L̂ differs from

L̂Γ =

[
ÂLL∗ ÂL
ÂL∗ Â

] [
AL∗ ÃT

]−1

since the BCs are not yet enforced.

fasshauer@iit.edu Lecture IV Dolomites 2008

Symmetric RBF collocation Symmetric RBF-PS Method

Apply L to basis expansion and restrict to grid

Lu =
[

ALL∗ AL
]
λ

with

ALL∗,ij =
[
L [L∗ϕ(‖x − ξ‖)]ξ=x j

]
x=x i

, i = 1, . . . ,N, j = 1, . . . ,NI

AL,ij =
[
Lϕ(‖x − x j‖)

]
x=x i

, i = 1, . . . ,N, j = NI + 1, . . . ,N

Replace λ and get

L̂u =
[

ALL∗ AL
] [

AL∗ ÃT
]−1

u.

Remark

Note that L̂ differs from

L̂Γ =

[
ÂLL∗ ÂL
ÂL∗ Â

] [
AL∗ ÃT

]−1

since the BCs are not yet enforced.
fasshauer@iit.edu Lecture IV Dolomites 2008

Symmetric RBF collocation RBF-PS Methods: Summary

Non-symmetric (Kansa):

Can formulate discrete differential operator LΓ =

[
ÃL
Ã

]
A−1

Cannot ensure general invertibility of LΓ

=⇒ OK for time-dependent PDEs

Symmetric:
Can ensure general solution of Lu = f
Cannot in general formulate discrete differential operator

L̂Γ =

[
ÂLL∗ ÂL
ÂL∗ Â

] [
AL∗ ÃT

]−1

=⇒ OK for time-independent PDEs

fasshauer@iit.edu Lecture IV Dolomites 2008

Symmetric RBF collocation RBF-PS Methods: Summary

Non-symmetric (Kansa):

Can formulate discrete differential operator LΓ =

[
ÃL
Ã

]
A−1

Cannot ensure general invertibility of LΓ

=⇒ OK for time-dependent PDEs

Symmetric:
Can ensure general solution of Lu = f
Cannot in general formulate discrete differential operator

L̂Γ =

[
ÂLL∗ ÂL
ÂL∗ Â

] [
AL∗ ÃT

]−1

=⇒ OK for time-independent PDEs

fasshauer@iit.edu Lecture IV Dolomites 2008

Symmetric RBF collocation RBF-PS Methods: Summary

Non-symmetric (Kansa):

Can formulate discrete differential operator LΓ =

[
ÃL
Ã

]
A−1

Cannot ensure general invertibility of LΓ

=⇒ OK for time-dependent PDEs

Symmetric:
Can ensure general solution of Lu = f
Cannot in general formulate discrete differential operator

L̂Γ =

[
ÂLL∗ ÂL
ÂL∗ Â

] [
AL∗ ÃT

]−1

=⇒ OK for time-independent PDEs

fasshauer@iit.edu Lecture IV Dolomites 2008

Symmetric RBF collocation RBF-PS Methods: Summary

Non-symmetric (Kansa):

Can formulate discrete differential operator LΓ =

[
ÃL
Ã

]
A−1

Cannot ensure general invertibility of LΓ

=⇒ OK for time-dependent PDEs

Symmetric:
Can ensure general solution of Lu = f
Cannot in general formulate discrete differential operator

L̂Γ =

[
ÂLL∗ ÂL
ÂL∗ Â

] [
AL∗ ÃT

]−1

=⇒ OK for time-independent PDEs

fasshauer@iit.edu Lecture IV Dolomites 2008

Symmetric RBF collocation RBF-PS Methods: Summary

Non-symmetric (Kansa):

Can formulate discrete differential operator LΓ =

[
ÃL
Ã

]
A−1

Cannot ensure general invertibility of LΓ

=⇒ OK for time-dependent PDEs

Symmetric:

Can ensure general solution of Lu = f
Cannot in general formulate discrete differential operator

L̂Γ =

[
ÂLL∗ ÂL
ÂL∗ Â

] [
AL∗ ÃT

]−1

=⇒ OK for time-independent PDEs

fasshauer@iit.edu Lecture IV Dolomites 2008

Symmetric RBF collocation RBF-PS Methods: Summary

Non-symmetric (Kansa):

Can formulate discrete differential operator LΓ =

[
ÃL
Ã

]
A−1

Cannot ensure general invertibility of LΓ

=⇒ OK for time-dependent PDEs

Symmetric:
Can ensure general solution of Lu = f

Cannot in general formulate discrete differential operator

L̂Γ =

[
ÂLL∗ ÂL
ÂL∗ Â

] [
AL∗ ÃT

]−1

=⇒ OK for time-independent PDEs

fasshauer@iit.edu Lecture IV Dolomites 2008

Symmetric RBF collocation RBF-PS Methods: Summary

Non-symmetric (Kansa):

Can formulate discrete differential operator LΓ =

[
ÃL
Ã

]
A−1

Cannot ensure general invertibility of LΓ

=⇒ OK for time-dependent PDEs

Symmetric:
Can ensure general solution of Lu = f
Cannot in general formulate discrete differential operator

L̂Γ =

[
ÂLL∗ ÂL
ÂL∗ Â

] [
AL∗ ÃT

]−1

=⇒ OK for time-independent PDEs

fasshauer@iit.edu Lecture IV Dolomites 2008

Symmetric RBF collocation RBF-PS Methods: Summary

Non-symmetric (Kansa):

Can formulate discrete differential operator LΓ =

[
ÃL
Ã

]
A−1

Cannot ensure general invertibility of LΓ

=⇒ OK for time-dependent PDEs

Symmetric:
Can ensure general solution of Lu = f
Cannot in general formulate discrete differential operator

L̂Γ =

[
ÂLL∗ ÂL
ÂL∗ Â

] [
AL∗ ÃT

]−1

=⇒ OK for time-independent PDEs

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Differentiation Matrices in MATLAB

First-order Derivatives

The chain rule says

∂

∂xj
ϕ(‖x‖) =

xj

r
d
dr
ϕ(r),

where xj is a component of x , and r = ‖x‖ =
√

x2
1 + . . .+ x2

s .

This implies we need to
provide code for derivatives of ϕ, e.g., for the Gaussian
dxrbf = @(ep,r,dx) -2*dx*ep^2.*exp(-(ep*r).^2);

compute distances r (with DistanceMatrix.m),
and compute differences in x .

Program (DifferenceMatrix.m)

1 function DM = DifferenceMatrix(dcoord,ccoord)
2 [dr,cc] = ndgrid(dcoord(:),ccoord(:));
3 DM = dr-cc;

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Differentiation Matrices in MATLAB

First-order Derivatives

The chain rule says

∂

∂xj
ϕ(‖x‖) =

xj

r
d
dr
ϕ(r),

where xj is a component of x , and r = ‖x‖ =
√

x2
1 + . . .+ x2

s .
This implies we need to

provide code for derivatives of ϕ, e.g., for the Gaussian
dxrbf = @(ep,r,dx) -2*dx*ep^2.*exp(-(ep*r).^2);

compute distances r (with DistanceMatrix.m),
and compute differences in x .

Program (DifferenceMatrix.m)

1 function DM = DifferenceMatrix(dcoord,ccoord)
2 [dr,cc] = ndgrid(dcoord(:),ccoord(:));
3 DM = dr-cc;

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Differentiation Matrices in MATLAB

First-order Derivatives

The chain rule says

∂

∂xj
ϕ(‖x‖) =

xj

r
d
dr
ϕ(r),

where xj is a component of x , and r = ‖x‖ =
√

x2
1 + . . .+ x2

s .
This implies we need to

provide code for derivatives of ϕ, e.g., for the Gaussian
dxrbf = @(ep,r,dx) -2*dx*ep^2.*exp(-(ep*r).^2);

compute distances r (with DistanceMatrix.m),

and compute differences in x .

Program (DifferenceMatrix.m)

1 function DM = DifferenceMatrix(dcoord,ccoord)
2 [dr,cc] = ndgrid(dcoord(:),ccoord(:));
3 DM = dr-cc;

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Differentiation Matrices in MATLAB

First-order Derivatives

The chain rule says

∂

∂xj
ϕ(‖x‖) =

xj

r
d
dr
ϕ(r),

where xj is a component of x , and r = ‖x‖ =
√

x2
1 + . . .+ x2

s .
This implies we need to

provide code for derivatives of ϕ, e.g., for the Gaussian
dxrbf = @(ep,r,dx) -2*dx*ep^2.*exp(-(ep*r).^2);

compute distances r (with DistanceMatrix.m),
and compute differences in x .

Program (DifferenceMatrix.m)

1 function DM = DifferenceMatrix(dcoord,ccoord)
2 [dr,cc] = ndgrid(dcoord(:),ccoord(:));
3 DM = dr-cc;

fasshauer@iit.edu Lecture IV Dolomites 2008

RBF Differentiation Matrices in MATLAB

Program (DRBF.m)

1 function [D,x] = DRBF(N,rbf,dxrbf,ep)
2 if N==0, D=0; x=1; return, end
3 x = cos(pi*(0:N)/N)’; % Chebyshev points
4 r = DistanceMatrix(x,x);
5 dx = DifferenceMatrix(x,x);
6 A = rbf(ep,r);
7 Ax = dxrbf(ep,r,dx);
8 D = Ax/A;

Remark

The differentiation matrix is given by D = AxA−1. In MATLAB we
implement this as solution of DA = Ax using mrdivide (/).
Could add a version of LOOCV to find “optimal” ε.

fasshauer@iit.edu Lecture IV Dolomites 2008

Solving PDEs via RBF-PS Methods

Example (1D Transport Equation)
Consider

ut (x , t) + cux (x , t) = 0, x > −1, t > 0
u(−1, t) = 0
u(x ,0) = f (x)

with solution
u(x , t) = f (x − ct)

Use implicit Euler for time discretization

fasshauer@iit.edu Lecture IV Dolomites 2008

Solving PDEs via RBF-PS Methods

fasshauer@iit.edu Lecture IV Dolomites 2008

Figure: Gaussian RBFs with “optimal” ε = 1.874528, ∆t = 0.01, collocation
on 21 Chebyshev points

Solving PDEs via RBF-PS Methods Example: Allen-Cahn Equation

Example (Allen-Cahn)

ut = µuxx + u − u3, x ∈ (−1,1), t ≥ 0,

µ coupling parameter (governs transition between stable solutions),
here µ = 0.01
Initial condition:

u(x ,0) = 0.53x + 0.47 sin
(
−3

2
πx
)
, x ∈ [−1,1],

Boundary conditions:

u(−1, t) = −1 and u(1, t) = sin2(t/5)

See [Trefethen (2000)]

fasshauer@iit.edu Lecture IV Dolomites 2008

Solving PDEs via RBF-PS Methods Example: Allen-Cahn Equation

fasshauer@iit.edu Lecture IV Dolomites 2008

Figure: Matérn-RBF with “optimal” ε = 0.351011, collocated on 21
Chebyshev points

Solving PDEs via RBF-PS Methods Example: Allen-Cahn Equation

fasshauer@iit.edu Lecture IV Dolomites 2008

Figure: Chebyshev pseudospectral with 21 points

Solving PDEs via RBF-PS Methods Example: 2D Laplace Equation

Example (2D Laplace Equation)

uxx + uyy = 0, x , y ∈ (−1,1)2

Boundary conditions:

u(x , y) =

sin4(πx), y = 1 and − 1 < x < 0,
1
5 sin(3πy), x = 1,
0, otherwise.

See [Trefethen (2000)]

fasshauer@iit.edu Lecture IV Dolomites 2008

Solving PDEs via RBF-PS Methods Example: 2D Laplace Equation

fasshauer@iit.edu Lecture IV Dolomites 2008

Figure: Matérn-RBF (ε = 2.4), N = 24× 24

Solving PDEs via RBF-PS Methods Example: 2D Laplace Equation

fasshauer@iit.edu Lecture IV Dolomites 2008

Figure: Chebyshev pseudospectral, N = 24× 24

Solving PDEs via RBF-PS Methods MATLAB Code

Program (p36_2D.m)

1 rbf=@(e,r) exp(-e*r).*(15+15*e*r+6*(e*r).^2+(e*r).^3);
2 Lrbf=@(e,r)e^2*exp(-e*r).*((e*r).^3-(e*r).^2-6*e*r-6);
3 N = 24; ep = 2.4;
4 [L,x,y] = LRBF(N,rbf,Lrbf,ep);
5 [xx,yy] = meshgrid(x,y); xx = xx(:); yy = yy(:);
6 b = find(abs(xx)==1 | abs(yy)==1); % boundary pts
7 L(b,:) = zeros(4*N,(N+1)^2); L(b,b) = eye(4*N);
8 rhs = zeros((N+1)^2,1);
9a rhs(b) = (yy(b)==1).*(xx(b)<0).*sin(pi*xx(b)).^4 + ...
9b .2*(xx(b)==1).*sin(3*pi*yy(b));

10 u = L\rhs;
11 uu = reshape(u,N+1,N+1); [xx,yy] = meshgrid(x,y);
12 [xxx,yyy] = meshgrid(-1:.04:1,-1:.04:1);
13 uuu = interp2(xx,yy,uu,xxx,yyy,’cubic’);
14 surf(xxx,yyy,uuu), colormap(’default’);
15 axis([-1 1 -1 1 -.2 1]), view(-20,45)
16a text(0,.8,.4,sprintf(’u(0,0) = %12.10f’,...
16b uu(N/2+1,N/2+1)))

fasshauer@iit.edu Lecture IV Dolomites 2008

Solving PDEs via RBF-PS Methods MATLAB Code

Remark
Note that for this type of elliptic problem we require inversion of the
differentiation matrix.
As pointed out above, we use the non-symmetric RBF-PS method
even though this may not be warranted theoretically.

fasshauer@iit.edu Lecture IV Dolomites 2008

Solving PDEs via RBF-PS Methods MATLAB Code

Program (LRBF.m)

1 function [L,x,y] = LRBF(N,rbf,Lrbf,ep)
2 if N==0, L=0; x=1; return, end
3 x = cos(pi*(0:N)/N)’; % Chebyshev points
4 y = x; [xx,yy] = meshgrid(x,y);
5 points = [xx(:) yy(:)];
6 r = DistanceMatrix(points,points);
7 A = rbf(ep,r);
8 AL = Lrbf(ep,r);
9 L = AL/A;

fasshauer@iit.edu Lecture IV Dolomites 2008

Solving PDEs via RBF-PS Methods MATLAB Code

Summary

Coupling RBF collocation and PS methods yields additional
insights about RBF methods
Provides “standard" procedure for solving time-dependent PDEs
with RBFs
Can apply many standard PS procedures to RBF solvers, but now
can take advantage of scattered (multivariate) grids
RBF-PS method for ε = 0 identical to Chebyshev-PS method and
more accurate for small ε
RBF-PS method has been applied successfully to a number of
engineering problems (see, e.g.,
[Ferreira & F. (2006), Ferreira & F. (2007)])

fasshauer@iit.edu Lecture IV Dolomites 2008

Solving PDEs via RBF-PS Methods MATLAB Code

Future work:

Need to think about stable way to compute larger problems with
RBFs (preconditioning) – especially for eigenvalue problems
Need efficient computation of differentiation matrix analogous to
FFT
Can think about adaptive PS methods with moving grids

fasshauer@iit.edu Lecture IV Dolomites 2008

Appendix References

References I

Buhmann, M. D. (2003).
Radial Basis Functions: Theory and Implementations.
Cambridge University Press.

Fasshauer, G. E. (2007).
Meshfree Approximation Methods with MATLAB.
World Scientific Publishers.

Fornberg, B. (1998).
A Practical Guide to Pseudospectral Methods.
Cambridge Univ. Press.

Higham, D. J. and Higham, N. J. (2005).
MATLAB Guide.
SIAM (2nd ed.), Philadelphia.

Trefethen, L. N. (2000).
Spectral Methods in MATLAB.
SIAM (Philadelphia, PA).

fasshauer@iit.edu Lecture IV Dolomites 2008

Appendix References

References II

Wendland, H. (2005).
Scattered Data Approximation.
Cambridge University Press.

Fasshauer, G. E. (1997).
Solving partial differential equations by collocation with radial basis functions.
in Surface Fitting and Multiresolution Methods, A. Le Méhauté, C. Rabut, and L.
L. Schumaker (eds.), Vanderbilt University Press (Nashville, TN), pp. 131–138.

Ferreira, A. J. M. and Fasshauer, G. E. (2006).
Computation of natural frequencies of shear deformable beams and plates by an
RBF-pseudospectral method.
Comput. Methods Appl. Mech. Engrg. 196, pp. 134–146.

Ferreira, A. J. M. and Fasshauer, G. E. (2007).
Analysis of natural frequencies of composite plates by an RBF-pseudospectral
method.
Composite Structures, 79, pp. 202–210.

fasshauer@iit.edu Lecture IV Dolomites 2008

Appendix References

References III

Kansa, E. J. (1986).
Application of Hardy’s multiquadric interpolation to hydrodynamics.
Proc. 1986 Simul. Conf. 4, pp. 111–117.

Schaback, R. (2007).
Convergence of unsymmetric kernel-based meshless collocation methods,
SIAM J. Numer. Anal. 45(1), pp. 333–351.

fasshauer@iit.edu Lecture IV Dolomites 2008

	RBF Collocation, Kansa's method
	PDEs of Interest
	Kansa's (non-symmetric) Method
	Time-Dependent PDEs
	Kansa for Time-Dependent PDEs
	Application to Time-Dependent PDEs

	PS Methods and Differentiation Matrices
	Background
	Differentiation Matrices
	General Differentiation Matrices
	RBF Differentiation Matrices
	A First (ill-posed) PDE

	PDEs with BCs via PS Methods
	Symmetric RBF collocation
	Symmetric RBF-PS Method
	RBF-PS Methods: Summary

	RBF Differentiation Matrices in Matlab
	Solving PDEs via RBF-PS Methods
	Example: Allen-Cahn Equation
	Example: 2D Laplace Equation
	Matlab Code

	Appendix
	Appendix
	

