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Motivation

We saw earlier that the “correct” shape parameter ¢ plays a number of
important roles:

@ it determines the accuracy of the fit,

@ it is important for numerical stability,

@ it determines the speed of convergence,

@ it is related to the saturation error of stationary approximation.
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Motivation

We saw earlier that the “correct” shape parameter ¢ plays a number of
important roles:

@ it determines the accuracy of the fit,

@ it is important for numerical stability,

@ it determines the speed of convergence,

@ it is related to the saturation error of stationary approximation.

In many applications the “best” ¢ is determined by “trial-and-error”.

We now consider the use of cross validation.
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Rippa’s LOOCV Algorithm

Leave-One-Out Cross-Validation (LOOCV)

Proposed by [Rippa (1999)] (and already [Wahba (1990)] and
[Dubrule ’83]) for RBF interpolation systems Ac = f
For afixed k =1,..., N and fixed ¢, let

N
K K
PH(x,e) = > cj[ lo_(x, x))
o
be the RBF interpolant to training data {fi,

ceey fk,1, fk+1 9oocog fN}, i.e.,
Pi) = £,

i=1,....k—1,k+1,...,N.
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Leave-One-Out Cross-Validation (LOOCV)
Proposed by [Rippa (1999)] (and already [Wahba (1990)] and

[Dubrule ’83]) for RBF interpolation systems Ac = f
For afixed k =1,..., N and fixed ¢, let

N
PH(x.2) =3 Mo (x, x))

o

be the RBF interpolant to training data {fi, ..., fx_1, fxa1,. .., v}, i-€.,
PRy =f,  i=1,.. k—1,k+1,...,N.
Let B}
ex(e) = f — P (xk. e)

be the error at the one validation point xx not used to determine the
interpolant.
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Leave-One-Out Cross-Validation (LOOCV)

Proposed by [Rippa (1999)] (and already [Wahba (1990)] and
[Dubrule ’83]) for RBF interpolation systems Ac = f
For afixed k =1,..., N and fixed ¢, let

N
PH(x,e) = > cj[k]CDE(x, X))

o

be the RBF interpolant to training data {fi, ..., fx_1, fxa1,. .., v}, i-€.,
PRy =f,  i=1,.. k—1,k+1,...,N.
Let
ex(e) = f — PH(xx, )
be the error at the one validation point xx not used to determine the
interpolant.
Find
€opt=af9€min|!e(€)||7 e=ler,....en]"
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Naive approach

@ Add a loop over

@ Compare the error norms for different values of the shape
parameter

@ oyt is the one which yields the minimal error norm
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Naive approach

@ Add a loop over

@ Compare the error norms for different values of the shape
parameter

@ oyt is the one which yields the minimal error norm

Problem: computationally very expensive, i.e., O(N*) operations
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Naive approach

@ Add a loop over

@ Compare the error norms for different values of the shape
parameter

@ oyt is the one which yields the minimal error norm

Problem: computationally very expensive, i.e., O(N*) operations
Advantage: does not require knowledge of the solution
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Does this work?

Figure: Optimal ¢ curves for trial and error (left) and for LOOCV (right) for 1D

Gaussian interpolation.

N 3 5 ) 17 33 65
trial-error | 2.3246 | 5.1703 | 4.7695 | 5.6513 | 6.2525 | 6.5331
LOOCV | 0.0401 | 0.0401 | 3.2064 | 5.7715 | 5.9319 | 6.9339

Table: Values of “optimal” e.
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The formula of Rippa/Wahba
A more efficient formula

Rippa (and also Wahba and Dubrule) showed that computation of the
error components can be simplified to a single formula
Ck
€k = 7>
Ak
where
@ ci: kth coefficient of full interpolant P

° A;k‘: kth diagonal element of inverse of corresponding
interpolation matrix
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The formula of Rippa/Wahba
A more efficient formula

Rippa (and also Wahba and Dubrule) showed that computation of the
error components can be simplified to a single formula

Ck
YA
where
@ ci: kth coefficient of full interpolant P
° A;k‘: kth diagonal element of inverse of corresponding
interpolation matrix

Remark

@ cx and A~ need to be computed only once for each value of ¢, so
we still have O(N3) computational complexity.
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The formula of Rippa/Wahba
A more efficient formula

Rippa (and also Wahba and Dubrule) showed that computation of the
error components can be simplified to a single formula
Ck

ek = ——
—1?
Ak

where
@ ci: kth coefficient of full interpolant P

° A;k‘: kth diagonal element of inverse of corresponding
interpolation matrix

Remark

@ cx and A~ need to be computed only once for each value of ¢, so
we still have O(N3) computational complexity.

@ Can be vectorized in MATLAB: e = c./diag(inv (A)).
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LOOCV in MATLAB

@ We can again use a naive approach and run a loop over many
different values of ¢.
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LOOCV in MATLAB

@ We can again use a naive approach and run a loop over many
different values of «.

@ To be more efficient, we implement a “cost function”, and then
apply a minimization algorithm.
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LOOCV in MATLAB

@ We can again use a naive approach and run a loop over many

different values of ¢.

@ To be more efficient, we implement a “cost function”, and then

apply a minimization algorithm.

Program (CostEps.m)

1 function ceps = CostEps(ep,r,rbf, rhs)
2 A = rbf(ep,r);

3 invA = pinv (A);

4 errorvector = (invA*rhs)./diag(invA);
5 ceps = norm(errorvector);
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LOOCV in MATLAB

@ We can again use a naive approach and run a loop over many
different values of ¢.

@ To be more efficient, we implement a “cost function”, and then
apply a minimization algorithm.

Program (CostEps.m)

1 function ceps = CostEps(ep,r,rbf, rhs)
2 A = rbf(ep,r);

3 invA = pinv (A);

4 errorvector = (invA*rhs)./diag(invA);
5 ceps = norm(errorvector);

Possible calling sequence for the cost function:

ep = fminbnd (@ (ep) CostEps (ep,DM, rbf, rhs),mine, maxe) ;
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Rippa’s LOOCV Algorithm RBF Interpolation with LOOCV in MATLAB

Program (RBFInterpolation_sDLOOCV.m)

1 s =2; N = 289; gridtype = "h’; M = 500;

2 global rbf; rbf_definition; mine = 0; maxe = 20;
3 [dsites, N] = CreatePoints (N, s,gridtype);

4 ctrs = dsites;

5 epoints = CreatePoints(M,s,’'r’);

6 rhs = testfunctionsD (dsites);

7 DM = DistanceMatrix(dsites,ctrs);

8 ep = fminbnd (@ (ep) CostEps(ep,DM, rbf,rhs),mine,maxe);
9 IM = rbf (ep,DM);
10 DM = DistanceMatrix (epoints,ctrs);
11 EM = rbf (ep,DM);

12 Pf = EM *x (IM\rhs);

13 exact = testfunctionsD (epoints);
14 maxerr = norm(Pf-exact, inf)

15 rms_err = norm(Pf-exact)/sqrt (M)
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Combining Riley’s Algorithm with LOOCV

We showed earlier that Riley’s algorithm is an efficient solver for
ill-conditioned symmetric positive definite linear systems.
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LOOCV with Riley’s Algorithm

Combining Riley’s Algorithm with LOOCV

We showed earlier that Riley’s algorithm is an efficient solver for
ill-conditioned symmetric positive definite linear systems.
That is exactly what we need to do LOOCV.
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Combining Riley’s Algorithm with LOOCV

We showed earlier that Riley’s algorithm is an efficient solver for
ill-conditioned symmetric positive definite linear systems.
That is exactly what we need to do LOOCV.
Since we need to compute
_ %
=
Kk

we need to adapt Riley to find both ¢ and A1,

€k
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Combining Riley’s Algorithm with LOOCV

We showed earlier that Riley’s algorithm is an efficient solver for
ill-conditioned symmetric positive definite linear systems.
That is exactly what we need to do LOOCV.
Since we need to compute
_ %
Ak
we need to adapt Riley to find both ¢ and A1,
Simple (and cheap):
Vectorize Riley’s algorithm so that it can handle multiple right-hand
sides, i.e., solve

€k

Ac=[f1].
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Combining Riley’s Algorithm with LOOCV

We showed earlier that Riley’s algorithm is an efficient solver for
ill-conditioned symmetric positive definite linear systems.
That is exactly what we need to do LOOCV.
Since we need to compute
_ %
Ak
we need to adapt Riley to find both ¢ and A1,
Simple (and cheap):
Vectorize Riley’s algorithm so that it can handle multiple right-hand
sides, i.e., solve

€k

Ac=[f1].

Still need O(N?3) operations (Cholesky factorization unchanged; now
matrix forward and back subs).
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Combining Riley’s Algorithm with LOOCV

We showed earlier that Riley’s algorithm is an efficient solver for
ill-conditioned symmetric positive definite linear systems.
That is exactly what we need to do LOOCV.
Since we need to compute
_ %
Ak
we need to adapt Riley to find both ¢ and A1,
Simple (and cheap):
Vectorize Riley’s algorithm so that it can handle multiple right-hand
sides, i.e., solve

€k

Ac=[f].
Still need O(N?3) operations (Cholesky factorization unchanged; now
matrix forward and back subs).
In fact, the beauty of MATLAB is that the code for Riley.m does not
change at all.
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MATLAB Algorithm for Cost Function using Riley

1 function ceps = CostEps(ep,r,rbf, rhs)
2 A = rbf(ep,r);

3 invA = pinv (A);

4 errorvector = (invAxrhs)./diag(invA);
5 ceps = norm(errorvector);

Program (CostEpsRiley.m)

1 function ceps = CostEpsRiley(ep, r, rbf, rhs)
A = rbf(ep,r);
3 mu = le-11;

% find solution of Ax=b and A"-1
4 D = Riley (A, [rhs eye(size(A))],mu);
errorvector = D(:,1)./diag(D(:,2:end));
ceps = norm(errorvector);

N

o U1
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LOOCV with Riley’s Algorithm

Program (RBFInterpolation_sDLOOCVRiley.m)

rhs = testfunctionsD (dsites);
DM = DistanceMatrix (dsites,ctrs);

1 s =2; N = 289; gridtype = "h’; M = 500;
2 global rbf; rbf _definition;

3 mine = 0; maxe = 20; mu = le-11;

3 [dsites, N] = CreatePoints (N, s,gridtype);

4 ctrs = dsites;

5 epoints = CreatePoints(M,s,’'r’);

6

7

8

8b mine, maxe) ;
9 IM = rbf (ep,DM);
10 coef = Riley (IM, rhs,mu);
11 DM = DistanceMatrix (epoints,ctrs);
12 EM = rbf (ep,DM);
13 Pf = EM x coef;
14 exact = testfunctionsD (epoints);
15 maxerr = norm(Pf-exact, inf)
16 rms_err = norm(Pf-exact) /sqgrt (M)

a ep = fminbnd (@ (ep) CostEpsRiley (ep,DM, rbf,rhs,mu), ...

v
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LOOCV with Riley’s Algorithm Comparison of Original and Riley LOOCV

Data 900 uniform 900 Halton 2500 uniform 2500 Halton
E opt,pinv 5.9725 7.0165 6.6974 6.1277
RMS-err 1.6918e-06 4.6326e-07 1.9132e-08 2.0648e-07
cond(A) | 8.813772e+19 | 1.433673e+19 | 2.835625e+21 | 7.387674e+20
€ opt, Riley 5.6536 5.9678 6.0635 5.6205
RMS-err 4.1367e-07 7.7984e-07 1.9433e-08 4.9515e-08
cond(A) | 1.737214e+21 | 1.465283e+20 | 1.079238e+22 | 5.811212e+20

Table: Interpolation with Gaussians to 2D Franke function.
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LOOCV with Riley’s Algorithm Comparison of Original and Riley LOOCV

Data 900 uniform 900 Halton 2500 uniform 2500 Halton
E opt,pinv 5.9725 7.0165 6.6974 6.1277
RMS-err 1.6918e-06 4.6326e-07 1.9132e-08 2.0648e-07
cond(A) | 8.813772e+19 | 1.433673e+19 | 2.835625e+21 | 7.387674e+20
€ opt, Riley 5.6536 5.9678 6.0635 5.6205
RMS-err 4.1367e-07 7.7984e-07 1.9433e-08 4.9515e-08
cond(A) | 1.737214e+21 | 1.465283e+20 | 1.079238e+22 | 5.811212e+20

Table: Interpolation with Gaussians to 2D Franke function.

Remark

@ LOOCV with Riley is much faster than with pinv and of similar
accuracy.

@ If we use backslash in CostEps, then results are less accurate
than withpinv

e.g., N =900 uniform: RMS-err= 5.1521e-06 with e = 7.5587.
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LOOCV for lterated AMLS

Recall
n

O (x) = ®I(x) > (I-A)'
=0
Now we find both
@ a good value of the shape parameter ¢,
@ and a good stopping criterion that results in an optimal number, n,
of iterations.
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LOOCV for lterated AMLS

Recall
n

O (x) = ®I(x) > (I-A)'
=0
Now we find both
@ a good value of the shape parameter ¢,
@ and a good stopping criterion that results in an optimal number, n,
of iterations.

Remark

For the latter to make sense we note that for noisy data the iteration
acts like a noise filter. However, after a certain number of iterations the
noise will begin to feed on itself and the quality of the approximant will
degrade.
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LOOQCYV for lterated AMLS

Recall
n

O (x) = ®I(x) > (I-A)'
=0
Now we find both
@ a good value of the shape parameter ¢,
@ and a good stopping criterion that results in an optimal number, n,
of iterations.

Remark

For the latter to make sense we note that for noisy data the iteration
acts like a noise filter. However, after a certain number of iterations the
noise will begin to feed on itself and the quality of the approximant will
degrade.

In [F. & Zhang (2007b)] two algorithms were presented.
We discuss one of them.

fasshauer@iit.edu Lecture V Dolomites 2008



Rippa’s algorithm was designed for LOOCV of interpolation problems.
Therefore, convert IAMLS approximation to similar formulation.
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Rippa’s algorithm was designed for LOOCV of interpolation problems.
Therefore, convert IAMLS approximation to similar formulation.
We showed earlier that

n
AN (1-A)Yf=0",
£=0

where Qs,”) is the IAMLS approximant evaluated on the data sites.
This is a linear system with system maitrix A, but right-hand side vector
9" We want f on the right-hand side.
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LOOCYV for lterated AMLS

Rippa’s algorithm was designed for LOOCV of interpolation problems.
Therefore, convert IAMLS approximation to similar formulation.
We showed earlier that

n
AN (1-A)Yf=0",
=0

where QS,”) is the IAMLS approximant evaluated on the data sites.
This is a linear system with system maitrix A, but right-hand side vector

9" We want f on the right-hand side.
Therefore, multiply both sides by

[zn:(/— A)’

=0

—1
A—1

and obtain
—1 n
(Z(/— A)f f) =f.
£=0

fasshauer@iit.edu Lecture V Dolomites 2008




Now
n -1 n
[Z(/—A)f] (Z(I—A)E f) = f
=0 (=0
is in the form of a standard interpolation system with
n _1
@ system matrix [Z (I— A
(=0

)

n
@ coefficient vector » (/- A)'f,
=0
@ and the usual right-hand side f.

Remark

n
The matrix Y " (I — A)" is a truncated Neumann series approximation
=0
of A1,
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Do LOOCYV for the system

[zn:(/—A)f] B (g(/—A)K f) = f

=0
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Do LOOCYV for the system

[zn:(l—A)"]_1 (zz:(:)(/—A)f f) = f

=0
Now formula for components of the error vector becomes
o S (- A f|,

Ok = e n ¢
(sytem matrix) [Ze:o (I— A) }

kk
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Do LOOCYV for the system

[zn:(/—A)"] B (zz:(:)(/—A)f f) = f

=0

Now formula for components of the error vector becomes

o S (- A f|,

ek: =

(sytem matrix),,] [Zgzo (/- A)f} y

No matrix inverse required!
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Do LOOCYV for the system

[zn:(/—A)fr (zn:(/—A)f f) = f

=0 =0
Now formula for components of the error vector becomes
o S (- A f|,

Ok = e n ¢
(sytem matrix) [Ze:o (I— A) }

kk

No matrix inverse required!
Numerator and denominator can be accumulated iteratively.
Numerator: take k' component of

v = f viD = f 4 (1— A) v
Denominator: take k! diagonal element of
MO = M) =4 (- A) M=)
Lecture V Dolomites 2008



LOOCYV for lterated AMLS

Complexity of matrix powers in denominator can be reduced by using
an eigen-decomposition.
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LOOCYV for lterated AMLS

Complexity of matrix powers in denominator can be reduced by using
an eigen-decomposition.
First compute
I—A=XAX"",
where
@ A: diagonal matrix of eigenvalues of | — A,
@ X: columns are eigenvectors.
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LOOCYV for lterated AMLS

Complexity of matrix powers in denominator can be reduced by using
an eigen-decomposition.
First compute
[— A= XAX"T,

where

@ A: diagonal matrix of eigenvalues of | — A,

@ X: columns are eigenvectors.
Then, iterate

MO = M =AM

so that, for any fixed n,

n
[ (1= A | = XmMx—1
l

=0
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LOOCYV for lterated AMLS

Complexity of matrix powers in denominator can be reduced by using
an eigen-decomposition.
First compute
[— A= XAX"T,

where

@ A: diagonal matrix of eigenvalues of | — A,

@ X: columns are eigenvectors.
Then, iterate

MO = M =AM

so that, for any fixed n,

[n (1 A

(=0

= XXMM x—1,

Need only diagonal elements of this. Since M(") is diagonal this can be
done efficiently as well.
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Algorithm (for iterated AMLS with LOOCV)

Fix e. Perform an eigen-decomposition

|— A= XAX""
Initialize v(®) = f and M(©) = |
Forn=12,...
Perform the updates
vin = f4 (- A v

MO = [ AM=D
Compute the cost vector (using MATLAB notation)
el = v(" /diag(X + M/ X)

If ||e™]| — ||e"~ V|| < tol
Stop the iteration
end

end
Also finds optimal stopping value for n
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Ridge Regression for Noise Filtering
Ridge regression or smoothing splines

(see, e.g., [Kimeldorf & Wahba (1971)])

N
min {cTAc +9> (Pr(x)) — £)? } :

=1
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Ridge Regression for Noise Filtering
Ridge regression or smoothing splines

(see, e.g., [Kimeldorf & Wahba (1971)])

j=1

<A+1/>c:f.
Y

N
min {cTAc +9> (Pr(x)) — £)? } :

Equivalent to solving
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Ridge Regression for Noise Filtering
Ridge regression or smoothing splines

(see, e.g., [Kimeldorf & Wahba (1971)])

N
ijn {cTAc + Z (Pe(x)) — 7}-)2 } :

j=1

<A+1/>c:f.
Y

Just like before, so LOOCV error components given by

[(A+;/>_1 f]k.
(A+31),
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LOOCYV for Iterated AMLS Ridge Regression for Noise Filtering

The “optimal” values of the shape parameter ¢ and the smoothing
parameter v are determined in a nested manner.
We now use a new cost function CostEpsGamma

Program (CostEpsGamma .m)

A = rbf(ep,r);

A = A + eye(size(A))/gamma;

invA = pinv(A);

errorvector = (invAxrhs)./diag(invA);
ceg = norm(errorvector);

o U b W N

function ceg = CostEpsGamma (ep, gamma, r, rbf, rhs, ep)

v

For a fixed initial £ we find the “optimal” ~ followed by an optimization of

CostEpsGamma OVer ¢.

The algorithm terminates when the difference between to successive

optimization runs is sufficiently small.

fasshauer@iit.edu Lecture V Dolomites 2008



LOOCYV for Iterated AMLS Ridge Regression for Noise Filtering

N = 9 25 81 289 1089

RMSerr | 4.80e-3 1.53e-3 6.42e-4 4.39e-4 2.48e-4
AMLS | € 1.479865 | 1.268158 | 0.911530 0.652600 0.468866

no. iter. | 7 6 6 4 3

time 0.2 0.4 1.0 5.7 254

RMSerr | 3.54e-3 1.62e-3 7.20e-4 4.57e-4 2.50e-4
Ridge € 2.083918 | 0.930143 | 0.704802 0.382683 0.181895

~ 100.0 100.0 47.324909 | 26.614484 | 29.753487

time 0.3 1.2 1.1 21.3 672

Table: Comparison of IAMLS and ridge regression using Gaussians for noisy

data sampled at Halton points.

See [F. & Zhang (2007a)]
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RBF-PS methods

Adapt Rippa’s LOOCV algorithm for RBF-PS methods
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RBF-PS methods

Adapt Rippa’s LOOCV algorithm for RBF-PS methods
Instead of Ac = f with components of the cost vector determined by

Ck
€k = ——3
Ak
we now have (due to the symmetry of A)

D=AA" — AD" =(A;)"
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RBF-PS methods

Adapt Rippa’s LOOCV algorithm for RBF-PS methods
Instead of Ac = f with components of the cost vector determined by

G
ex = A;";
we now have (due to the symmetry of A)

D=AA" — AD"=(A)T
so that the components of the cost matrix are given by

(D7 )ke

Ee = 3
Ak
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LOOCYV for RBF-PS Methods

In MATLAB this can again be vectorized:

Program (CostEpsLRBF .m)

1 function ceps = CostEpsLRBF (ep,DM, rbf, Lrbf)

2 N = size (DM, 2);

3 A = rbf (ep,DM);

4 rhs = Lrbf (ep,DM)’;

5 invA = pinv (A);

6 errormatrix = (invAs*rhs)./repmat (diag(inva),1,N);
7 ceps = norm(errormatrix(:));
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LOOCYV for RBF-PS Methods

In MATLAB this can again be vectorized:

Program (CostEpsLRBF .m)

~ o U b W

function ceps = CostEpsLRBF (ep,DM, rbf, Lrbf)

N size (DM, 2) ;

A = rbf (ep,DM);

rhs = Lrbf (ep,DM)’;

invA = pinv (A);

errormatrix = (invAxrhs)./repmat (diag(invAdA),1,N);
ceps = norm(errormatrix(:));

The function Lrbf creates the matrix A.. For the Gaussian RBF and
the Laplacian differential operator this could look like

Lrbf = @(ep,r) 4+ep”2+exp(—(ep*r)."2) .*((ep*r)."2-1);
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In MATLAB this can again be vectorized:

Program (CostEpsLRBF .m)

function ceps = CostEpsLRBF (ep,DM, rbf, Lrbf)

N size (DM, 2) ;

A = rbf (ep,DM);

rhs = Lrbf (ep,DM)’;

invA = pinv (A);

errormatrix = (invAxrhs)./repmat (diag(invAdA),1,N);
ceps = norm(errormatrix(:));

~ o U b W

The function Lrbf creates the matrix A.. For the Gaussian RBF and
the Laplacian differential operator this could look like

Lrbf = @(ep,r) 4+ep”2+exp(—(ep*r)."2) .*((ep*r)."2-1);

Remark

For differential operators of odd order one also needs difference
matrices.
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LOOCYV for RBF-PS Methods Numerical Examples

Example (2D Laplace equation, Program 36 of [Trefethen (2000)])

Uxx+Uyy:o, X,ye(—1,1)2,
with piecewise defined boundary conditions
sin*(rx), y=1and-1<x<0,

u(x,y)= tsin(3ry), x=1,
0, otherwise.
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LOOCYV for RBF-PS Methods Numerical Examples

u(0,0)-=0.0495946503 . u(0,0)-=0.0495907491

Figure: Solution of the Laplace equation using a Chebyshev PS approach
(left) and cubic Matérn RBFs with ¢ = 0.362752 (right) with 625 collocation
points.
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Example (2D Helmholtz equation, Program 17 in [Trefethen (2000)])

Uxx+Uyy+k2U:f(X,y), X,ye(—1,1)2,

with boundary condition v = 0 and

f(x,y) = exp (—10 [(y— 12 + (x — ;)ZD .
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LOOCYV for RBF-PS Methods Numerical Examples

Example (2D Helmholtz equation, Program 17 in [Trefethen (2000)])
Uxx+Uyy+k2UZf(XaY)a X:ye(_1’1)2

with boundary condition v = 0 and

f(x,y)=exp (10 |(y — 1)+ (x — %)2

U(0,0)= 0,01172256909

U(0.0) = 0.01172257000
: 003

A \“‘m
,:w \\\\;\ ':»»

\\\ \ SR
\\\\\\\ ‘“ /I,,IN‘\“\&“\\\%\\

-1

Figure: Solution of 2-D Helmholtz equation with 625 collocation points using
the Chebyshev pseudospectral method (left) and Gaussians with
e = 2.549243 (right).

Dolomites 2008
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Example (Allen-Cahn equation, Program 35 in [Trefethen (2000)])
Most challenging for the RBF-PS method.
Ut = plxx + U — US, xe(=1,1), t>0,

with parameter ;1 = 0.01, initial condition

u(x,0) = 0.53x + 0.47sin (—‘Zm) Coxelt]

and non-homogeneous (time-dependent) boundary conditions
u(—1,t) = —1 and u(1, t) = sin?(t/5).

The solution to this equation has three steady states (u= —1,0, 1)
with the two nonzero solutions being stable. The transition between
these states is governed by the parameter .

The unstable state should vanish around t = 30.

v
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Numerical Examples

3
o
YA
i
i

Figure: Solution of the Allen-Cahn equation using the Chebyshev
pseudospectral method (left) and a cubic Matérn functions with e = 0.350920
(right) with 21 Chebyshev points.



Summary

@ Several applications of LOOCV:
o RBF interpolation (with and without Riley),
o |AMLS,
@ ridge regression,
o RBF-PS
@ Riley more efficient than pinv
@ |IAMLS method performs favorably when compared to ridge
regression for noisy data (no dense linear systems solved)
@ LOOCYV algorithm for finding an “optimal” shape parameter for
Kansa’s method in [Ferreira et al. (2007)]
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Remarks and Conclusions

Future work or work in progress:
@ variable shape parameters (e.g.,
[Kansa & Carlson (1992), Fornberg and Zuev (2007)])

e potential for improved accuracy and stability
e challenging at the theoretical level
o difficult multivariate optimization problem

@ other criteria for “optimal” &

e compare Fourier transforms of kernels with data
e maximum likelihood
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