
Meshfree Approximation with MATLAB
Lecture V: “Optimal” Shape Parameters for RBF Approximation

Methods

Greg Fasshauer

Department of Applied Mathematics
Illinois Institute of Technology

Dolomites Research Week on Approximation
September 8–11, 2008

fasshauer@iit.edu Lecture V Dolomites 2008

Outline

fasshauer@iit.edu Lecture V Dolomites 2008

1 Rippa’s LOOCV Algorithm

2 LOOCV with Riley’s Algorithm

3 LOOCV for Iterated AMLS

4 LOOCV for RBF-PS Methods

5 Remarks and Conclusions

Rippa’s LOOCV Algorithm

Motivation

We saw earlier that the “correct” shape parameter ε plays a number of
important roles:

it determines the accuracy of the fit,
it is important for numerical stability,
it determines the speed of convergence,
it is related to the saturation error of stationary approximation.

In many applications the “best” ε is determined by “trial-and-error”.

We now consider the use of cross validation.

fasshauer@iit.edu Lecture V Dolomites 2008

Rippa’s LOOCV Algorithm

Motivation

We saw earlier that the “correct” shape parameter ε plays a number of
important roles:

it determines the accuracy of the fit,
it is important for numerical stability,
it determines the speed of convergence,
it is related to the saturation error of stationary approximation.

In many applications the “best” ε is determined by “trial-and-error”.

We now consider the use of cross validation.

fasshauer@iit.edu Lecture V Dolomites 2008

Rippa’s LOOCV Algorithm

Motivation

We saw earlier that the “correct” shape parameter ε plays a number of
important roles:

it determines the accuracy of the fit,
it is important for numerical stability,
it determines the speed of convergence,
it is related to the saturation error of stationary approximation.

In many applications the “best” ε is determined by “trial-and-error”.

We now consider the use of cross validation.

fasshauer@iit.edu Lecture V Dolomites 2008

Rippa’s LOOCV Algorithm

Leave-One-Out Cross-Validation (LOOCV)

Proposed by [Rippa (1999)] (and already [Wahba (1990)] and
[Dubrule ’83]) for RBF interpolation systems Ac = f
For a fixed k = 1, . . . ,N and fixed ε, let

P [k]
f (x , ε) =

N∑
j=1
j 6=k

c[k]
j Φε(x ,x j)

be the RBF interpolant to training data {f1, . . . , fk−1, fk+1, . . . , fN}, i.e.,

P [k]
f (x i) = fi , i = 1, . . . , k − 1, k + 1, . . . ,N.

Let
ek (ε) = fk − P

[k]
f (xk , ε)

be the error at the one validation point xk not used to determine the
interpolant.
Find

εopt = argmin
ε
‖e(ε)‖, e = [e1, . . . ,eN]T

fasshauer@iit.edu Lecture V Dolomites 2008

Rippa’s LOOCV Algorithm

Leave-One-Out Cross-Validation (LOOCV)

Proposed by [Rippa (1999)] (and already [Wahba (1990)] and
[Dubrule ’83]) for RBF interpolation systems Ac = f
For a fixed k = 1, . . . ,N and fixed ε, let

P [k]
f (x , ε) =

N∑
j=1
j 6=k

c[k]
j Φε(x ,x j)

be the RBF interpolant to training data {f1, . . . , fk−1, fk+1, . . . , fN}, i.e.,

P [k]
f (x i) = fi , i = 1, . . . , k − 1, k + 1, . . . ,N.

Let
ek (ε) = fk − P

[k]
f (xk , ε)

be the error at the one validation point xk not used to determine the
interpolant.

Find
εopt = argmin

ε
‖e(ε)‖, e = [e1, . . . ,eN]T

fasshauer@iit.edu Lecture V Dolomites 2008

Rippa’s LOOCV Algorithm

Leave-One-Out Cross-Validation (LOOCV)

Proposed by [Rippa (1999)] (and already [Wahba (1990)] and
[Dubrule ’83]) for RBF interpolation systems Ac = f
For a fixed k = 1, . . . ,N and fixed ε, let

P [k]
f (x , ε) =

N∑
j=1
j 6=k

c[k]
j Φε(x ,x j)

be the RBF interpolant to training data {f1, . . . , fk−1, fk+1, . . . , fN}, i.e.,

P [k]
f (x i) = fi , i = 1, . . . , k − 1, k + 1, . . . ,N.

Let
ek (ε) = fk − P

[k]
f (xk , ε)

be the error at the one validation point xk not used to determine the
interpolant.
Find

εopt = argmin
ε
‖e(ε)‖, e = [e1, . . . ,eN]T

fasshauer@iit.edu Lecture V Dolomites 2008

Rippa’s LOOCV Algorithm

Naive approach
Add a loop over ε
Compare the error norms for different values of the shape
parameter
εopt is the one which yields the minimal error norm

Problem: computationally very expensive, i.e., O(N4) operations
Advantage: does not require knowledge of the solution

fasshauer@iit.edu Lecture V Dolomites 2008

Rippa’s LOOCV Algorithm

Naive approach
Add a loop over ε
Compare the error norms for different values of the shape
parameter
εopt is the one which yields the minimal error norm

Problem: computationally very expensive, i.e., O(N4) operations
Advantage: does not require knowledge of the solution

fasshauer@iit.edu Lecture V Dolomites 2008

Rippa’s LOOCV Algorithm

Naive approach
Add a loop over ε
Compare the error norms for different values of the shape
parameter
εopt is the one which yields the minimal error norm

Problem: computationally very expensive, i.e., O(N4) operations

Advantage: does not require knowledge of the solution

fasshauer@iit.edu Lecture V Dolomites 2008

Rippa’s LOOCV Algorithm

Naive approach
Add a loop over ε
Compare the error norms for different values of the shape
parameter
εopt is the one which yields the minimal error norm

Problem: computationally very expensive, i.e., O(N4) operations
Advantage: does not require knowledge of the solution

fasshauer@iit.edu Lecture V Dolomites 2008

Rippa’s LOOCV Algorithm

Does this work?

Figure: Optimal ε curves for trial and error (left) and for LOOCV (right) for 1D
Gaussian interpolation.

N 3 5 9 17 33 65
trial-error 2.3246 5.1703 4.7695 5.6513 6.2525 6.5331
LOOCV 0.0401 0.0401 3.2064 5.7715 5.9319 6.9339

Table: Values of “optimal” ε.

fasshauer@iit.edu Lecture V Dolomites 2008

Rippa’s LOOCV Algorithm The formula of Rippa/Wahba

A more efficient formula

Rippa (and also Wahba and Dubrule) showed that computation of the
error components can be simplified to a single formula

ek =
ck

A−1
kk

,

where
ck : k th coefficient of full interpolant Pf

A−1
kk : k th diagonal element of inverse of corresponding

interpolation matrix

Remark

ck and A−1 need to be computed only once for each value of ε, so
we still have O(N3) computational complexity.
Can be vectorized in MATLAB: e = c./diag(inv(A)).

fasshauer@iit.edu Lecture V Dolomites 2008

Rippa’s LOOCV Algorithm The formula of Rippa/Wahba

A more efficient formula

Rippa (and also Wahba and Dubrule) showed that computation of the
error components can be simplified to a single formula

ek =
ck

A−1
kk

,

where
ck : k th coefficient of full interpolant Pf

A−1
kk : k th diagonal element of inverse of corresponding

interpolation matrix

Remark

ck and A−1 need to be computed only once for each value of ε, so
we still have O(N3) computational complexity.

Can be vectorized in MATLAB: e = c./diag(inv(A)).

fasshauer@iit.edu Lecture V Dolomites 2008

Rippa’s LOOCV Algorithm The formula of Rippa/Wahba

A more efficient formula

Rippa (and also Wahba and Dubrule) showed that computation of the
error components can be simplified to a single formula

ek =
ck

A−1
kk

,

where
ck : k th coefficient of full interpolant Pf

A−1
kk : k th diagonal element of inverse of corresponding

interpolation matrix

Remark

ck and A−1 need to be computed only once for each value of ε, so
we still have O(N3) computational complexity.
Can be vectorized in MATLAB: e = c./diag(inv(A)).

fasshauer@iit.edu Lecture V Dolomites 2008

Rippa’s LOOCV Algorithm The formula of Rippa/Wahba

LOOCV in MATLAB

We can again use a naive approach and run a loop over many
different values of ε.

To be more efficient, we implement a “cost function”, and then
apply a minimization algorithm.

Program (CostEps.m)

1 function ceps = CostEps(ep,r,rbf,rhs)
2 A = rbf(ep,r);
3 invA = pinv(A);
4 errorvector = (invA*rhs)./diag(invA);
5 ceps = norm(errorvector);

Possible calling sequence for the cost function:

ep = fminbnd(@(ep) CostEps(ep,DM,rbf,rhs),mine,maxe);

fasshauer@iit.edu Lecture V Dolomites 2008

Rippa’s LOOCV Algorithm The formula of Rippa/Wahba

LOOCV in MATLAB

We can again use a naive approach and run a loop over many
different values of ε.
To be more efficient, we implement a “cost function”, and then
apply a minimization algorithm.

Program (CostEps.m)

1 function ceps = CostEps(ep,r,rbf,rhs)
2 A = rbf(ep,r);
3 invA = pinv(A);
4 errorvector = (invA*rhs)./diag(invA);
5 ceps = norm(errorvector);

Possible calling sequence for the cost function:

ep = fminbnd(@(ep) CostEps(ep,DM,rbf,rhs),mine,maxe);

fasshauer@iit.edu Lecture V Dolomites 2008

Rippa’s LOOCV Algorithm The formula of Rippa/Wahba

LOOCV in MATLAB

We can again use a naive approach and run a loop over many
different values of ε.
To be more efficient, we implement a “cost function”, and then
apply a minimization algorithm.

Program (CostEps.m)

1 function ceps = CostEps(ep,r,rbf,rhs)
2 A = rbf(ep,r);
3 invA = pinv(A);
4 errorvector = (invA*rhs)./diag(invA);
5 ceps = norm(errorvector);

Possible calling sequence for the cost function:

ep = fminbnd(@(ep) CostEps(ep,DM,rbf,rhs),mine,maxe);

fasshauer@iit.edu Lecture V Dolomites 2008

Rippa’s LOOCV Algorithm The formula of Rippa/Wahba

LOOCV in MATLAB

We can again use a naive approach and run a loop over many
different values of ε.
To be more efficient, we implement a “cost function”, and then
apply a minimization algorithm.

Program (CostEps.m)

1 function ceps = CostEps(ep,r,rbf,rhs)
2 A = rbf(ep,r);
3 invA = pinv(A);
4 errorvector = (invA*rhs)./diag(invA);
5 ceps = norm(errorvector);

Possible calling sequence for the cost function:

ep = fminbnd(@(ep) CostEps(ep,DM,rbf,rhs),mine,maxe);

fasshauer@iit.edu Lecture V Dolomites 2008

Rippa’s LOOCV Algorithm RBF Interpolation with LOOCV in MATLAB

Program (RBFInterpolation_sDLOOCV.m)

1 s = 2; N = 289; gridtype = ’h’; M = 500;
2 global rbf; rbf_definition; mine = 0; maxe = 20;
3 [dsites, N] = CreatePoints(N,s,gridtype);
4 ctrs = dsites;
5 epoints = CreatePoints(M,s,’r’);
6 rhs = testfunctionsD(dsites);
7 DM = DistanceMatrix(dsites,ctrs);
8 ep = fminbnd(@(ep) CostEps(ep,DM,rbf,rhs),mine,maxe);
9 IM = rbf(ep,DM);

10 DM = DistanceMatrix(epoints,ctrs);
11 EM = rbf(ep,DM);
12 Pf = EM * (IM\rhs);
13 exact = testfunctionsD(epoints);
14 maxerr = norm(Pf-exact,inf)
15 rms_err = norm(Pf-exact)/sqrt(M)

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV with Riley’s Algorithm

Combining Riley’s Algorithm with LOOCV

We showed earlier that Riley’s algorithm is an efficient solver for
ill-conditioned symmetric positive definite linear systems.

That is exactly what we need to do LOOCV.
Since we need to compute

ek =
ck

A−1
kk

,

we need to adapt Riley to find both c and A−1.
Simple (and cheap):
Vectorize Riley’s algorithm so that it can handle multiple right-hand
sides, i.e., solve

Ac = [f I] .

Still need O(N3) operations (Cholesky factorization unchanged; now
matrix forward and back subs).
In fact, the beauty of MATLAB is that the code for Riley.m does not
change at all.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV with Riley’s Algorithm

Combining Riley’s Algorithm with LOOCV

We showed earlier that Riley’s algorithm is an efficient solver for
ill-conditioned symmetric positive definite linear systems.
That is exactly what we need to do LOOCV.

Since we need to compute

ek =
ck

A−1
kk

,

we need to adapt Riley to find both c and A−1.
Simple (and cheap):
Vectorize Riley’s algorithm so that it can handle multiple right-hand
sides, i.e., solve

Ac = [f I] .

Still need O(N3) operations (Cholesky factorization unchanged; now
matrix forward and back subs).
In fact, the beauty of MATLAB is that the code for Riley.m does not
change at all.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV with Riley’s Algorithm

Combining Riley’s Algorithm with LOOCV

We showed earlier that Riley’s algorithm is an efficient solver for
ill-conditioned symmetric positive definite linear systems.
That is exactly what we need to do LOOCV.
Since we need to compute

ek =
ck

A−1
kk

,

we need to adapt Riley to find both c and A−1.

Simple (and cheap):
Vectorize Riley’s algorithm so that it can handle multiple right-hand
sides, i.e., solve

Ac = [f I] .

Still need O(N3) operations (Cholesky factorization unchanged; now
matrix forward and back subs).
In fact, the beauty of MATLAB is that the code for Riley.m does not
change at all.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV with Riley’s Algorithm

Combining Riley’s Algorithm with LOOCV

We showed earlier that Riley’s algorithm is an efficient solver for
ill-conditioned symmetric positive definite linear systems.
That is exactly what we need to do LOOCV.
Since we need to compute

ek =
ck

A−1
kk

,

we need to adapt Riley to find both c and A−1.
Simple (and cheap):
Vectorize Riley’s algorithm so that it can handle multiple right-hand
sides, i.e., solve

Ac = [f I] .

Still need O(N3) operations (Cholesky factorization unchanged; now
matrix forward and back subs).
In fact, the beauty of MATLAB is that the code for Riley.m does not
change at all.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV with Riley’s Algorithm

Combining Riley’s Algorithm with LOOCV

We showed earlier that Riley’s algorithm is an efficient solver for
ill-conditioned symmetric positive definite linear systems.
That is exactly what we need to do LOOCV.
Since we need to compute

ek =
ck

A−1
kk

,

we need to adapt Riley to find both c and A−1.
Simple (and cheap):
Vectorize Riley’s algorithm so that it can handle multiple right-hand
sides, i.e., solve

Ac = [f I] .

Still need O(N3) operations (Cholesky factorization unchanged; now
matrix forward and back subs).

In fact, the beauty of MATLAB is that the code for Riley.m does not
change at all.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV with Riley’s Algorithm

Combining Riley’s Algorithm with LOOCV

We showed earlier that Riley’s algorithm is an efficient solver for
ill-conditioned symmetric positive definite linear systems.
That is exactly what we need to do LOOCV.
Since we need to compute

ek =
ck

A−1
kk

,

we need to adapt Riley to find both c and A−1.
Simple (and cheap):
Vectorize Riley’s algorithm so that it can handle multiple right-hand
sides, i.e., solve

Ac = [f I] .

Still need O(N3) operations (Cholesky factorization unchanged; now
matrix forward and back subs).
In fact, the beauty of MATLAB is that the code for Riley.m does not
change at all.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV with Riley’s Algorithm

MATLAB Algorithm for Cost Function using Riley

1 function ceps = CostEps(ep,r,rbf,rhs)
2 A = rbf(ep,r);
3 invA = pinv(A);
4 errorvector = (invA*rhs)./diag(invA);
5 ceps = norm(errorvector);

Program (CostEpsRiley.m)

1 function ceps = CostEpsRiley(ep,r,rbf,rhs)
2 A = rbf(ep,r);
3 mu = 1e-11;

% find solution of Ax=b and A^-1
4 D = Riley(A,[rhs eye(size(A))],mu);
5 errorvector = D(:,1)./diag(D(:,2:end));
6 ceps = norm(errorvector);

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV with Riley’s Algorithm

Program (RBFInterpolation_sDLOOCVRiley.m)

1 s = 2; N = 289; gridtype = ’h’; M = 500;
2 global rbf; rbf_definition;
3 mine = 0; maxe = 20; mu = 1e-11;
3 [dsites, N] = CreatePoints(N,s,gridtype);
4 ctrs = dsites;
5 epoints = CreatePoints(M,s,’r’);
6 rhs = testfunctionsD(dsites);
7 DM = DistanceMatrix(dsites,ctrs);
8a ep = fminbnd(@(ep) CostEpsRiley(ep,DM,rbf,rhs,mu),...
8b mine,maxe);
9 IM = rbf(ep,DM);

10 coef = Riley(IM,rhs,mu);
11 DM = DistanceMatrix(epoints,ctrs);
12 EM = rbf(ep,DM);
13 Pf = EM * coef;
14 exact = testfunctionsD(epoints);
15 maxerr = norm(Pf-exact,inf)
16 rms_err = norm(Pf-exact)/sqrt(M)

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV with Riley’s Algorithm Comparison of Original and Riley LOOCV

Data 900 uniform 900 Halton 2500 uniform 2500 Halton
εopt,pinv 5.9725 7.0165 6.6974 6.1277

RMS-err 1.6918e-06 4.6326e-07 1.9132e-08 2.0648e-07
cond(A) 8.813772e+19 1.433673e+19 2.835625e+21 7.387674e+20
εopt,Riley 5.6536 5.9678 6.0635 5.6205
RMS-err 4.1367e-07 7.7984e-07 1.9433e-08 4.9515e-08
cond(A) 1.737214e+21 1.465283e+20 1.079238e+22 5.811212e+20

Table: Interpolation with Gaussians to 2D Franke function.

Remark
LOOCV with Riley is much faster than with pinv and of similar
accuracy.
If we use backslash in CostEps, then results are less accurate
than with pinv

e.g., N = 900 uniform: RMS-err= 5.1521e-06 with ε = 7.5587.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV with Riley’s Algorithm Comparison of Original and Riley LOOCV

Data 900 uniform 900 Halton 2500 uniform 2500 Halton
εopt,pinv 5.9725 7.0165 6.6974 6.1277

RMS-err 1.6918e-06 4.6326e-07 1.9132e-08 2.0648e-07
cond(A) 8.813772e+19 1.433673e+19 2.835625e+21 7.387674e+20
εopt,Riley 5.6536 5.9678 6.0635 5.6205
RMS-err 4.1367e-07 7.7984e-07 1.9433e-08 4.9515e-08
cond(A) 1.737214e+21 1.465283e+20 1.079238e+22 5.811212e+20

Table: Interpolation with Gaussians to 2D Franke function.

Remark
LOOCV with Riley is much faster than with pinv and of similar
accuracy.
If we use backslash in CostEps, then results are less accurate
than with pinv

e.g., N = 900 uniform: RMS-err= 5.1521e-06 with ε = 7.5587.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for Iterated AMLS

LOOCV for Iterated AMLS

Recall

Q(n)
f (x) = ΦT

ε (x)
n∑
`=0

(I − Aε)` f

Now we find both
a good value of the shape parameter ε,
and a good stopping criterion that results in an optimal number, n,
of iterations.

Remark
For the latter to make sense we note that for noisy data the iteration
acts like a noise filter. However, after a certain number of iterations the
noise will begin to feed on itself and the quality of the approximant will
degrade.

In [F. & Zhang (2007b)] two algorithms were presented.
We discuss one of them.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for Iterated AMLS

LOOCV for Iterated AMLS

Recall

Q(n)
f (x) = ΦT

ε (x)
n∑
`=0

(I − Aε)` f

Now we find both
a good value of the shape parameter ε,
and a good stopping criterion that results in an optimal number, n,
of iterations.

Remark
For the latter to make sense we note that for noisy data the iteration
acts like a noise filter. However, after a certain number of iterations the
noise will begin to feed on itself and the quality of the approximant will
degrade.

In [F. & Zhang (2007b)] two algorithms were presented.
We discuss one of them.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for Iterated AMLS

LOOCV for Iterated AMLS

Recall

Q(n)
f (x) = ΦT

ε (x)
n∑
`=0

(I − Aε)` f

Now we find both
a good value of the shape parameter ε,
and a good stopping criterion that results in an optimal number, n,
of iterations.

Remark
For the latter to make sense we note that for noisy data the iteration
acts like a noise filter. However, after a certain number of iterations the
noise will begin to feed on itself and the quality of the approximant will
degrade.

In [F. & Zhang (2007b)] two algorithms were presented.
We discuss one of them.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for Iterated AMLS

Rippa’s algorithm was designed for LOOCV of interpolation problems.
Therefore, convert IAMLS approximation to similar formulation.

We showed earlier that

A
n∑
`=0

(I − A)` f = Q(n)
f ,

where Q(n)
f is the IAMLS approximant evaluated on the data sites.

This is a linear system with system matrix A, but right-hand side vector
Q(n)

f . We want f on the right-hand side.
Therefore, multiply both sides by[

n∑
`=0

(I − A)`
]−1

A−1

and obtain [
n∑
`=0

(I − A)`
]−1(n∑

`=0

(I − A)` f

)
= f .

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for Iterated AMLS

Rippa’s algorithm was designed for LOOCV of interpolation problems.
Therefore, convert IAMLS approximation to similar formulation.
We showed earlier that

A
n∑
`=0

(I − A)` f = Q(n)
f ,

where Q(n)
f is the IAMLS approximant evaluated on the data sites.

This is a linear system with system matrix A, but right-hand side vector
Q(n)

f . We want f on the right-hand side.

Therefore, multiply both sides by[
n∑
`=0

(I − A)`
]−1

A−1

and obtain [
n∑
`=0

(I − A)`
]−1(n∑

`=0

(I − A)` f

)
= f .

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for Iterated AMLS

Rippa’s algorithm was designed for LOOCV of interpolation problems.
Therefore, convert IAMLS approximation to similar formulation.
We showed earlier that

A
n∑
`=0

(I − A)` f = Q(n)
f ,

where Q(n)
f is the IAMLS approximant evaluated on the data sites.

This is a linear system with system matrix A, but right-hand side vector
Q(n)

f . We want f on the right-hand side.
Therefore, multiply both sides by[

n∑
`=0

(I − A)`
]−1

A−1

and obtain [
n∑
`=0

(I − A)`
]−1(n∑

`=0

(I − A)` f

)
= f .

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for Iterated AMLS

Now [
n∑
`=0

(I − A)`
]−1(n∑

`=0

(I − A)` f

)
= f

is in the form of a standard interpolation system with

system matrix

[
n∑
`=0

(I − A)`
]−1

,

coefficient vector
n∑
`=0

(I − A)` f ,

and the usual right-hand side f .

Remark

The matrix
n∑
`=0

(I − A)` is a truncated Neumann series approximation

of A−1.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for Iterated AMLS

Do LOOCV for the system[
n∑
`=0

(I − A)`
]−1(n∑

`=0

(I − A)` f

)
= f

Now formula for components of the error vector becomes

ek =
ck

(sytem matrix)−1
kk

=

[∑n
`=0 (I − A)` f

]
k[∑n

`=0 (I − A)`
]

kk

No matrix inverse required!
Numerator and denominator can be accumulated iteratively.
Numerator: take k th component of

v (0) = f , v (n) = f + (I − A) v (n−1)

Denominator: take k th diagonal element of

M(0) = I, M(n) = I + (I − A) M(n−1)

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for Iterated AMLS

Do LOOCV for the system[
n∑
`=0

(I − A)`
]−1(n∑

`=0

(I − A)` f

)
= f

Now formula for components of the error vector becomes

ek =
ck

(sytem matrix)−1
kk

=

[∑n
`=0 (I − A)` f

]
k[∑n

`=0 (I − A)`
]

kk

No matrix inverse required!
Numerator and denominator can be accumulated iteratively.
Numerator: take k th component of

v (0) = f , v (n) = f + (I − A) v (n−1)

Denominator: take k th diagonal element of

M(0) = I, M(n) = I + (I − A) M(n−1)

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for Iterated AMLS

Do LOOCV for the system[
n∑
`=0

(I − A)`
]−1(n∑

`=0

(I − A)` f

)
= f

Now formula for components of the error vector becomes

ek =
ck

(sytem matrix)−1
kk

=

[∑n
`=0 (I − A)` f

]
k[∑n

`=0 (I − A)`
]

kk

No matrix inverse required!

Numerator and denominator can be accumulated iteratively.
Numerator: take k th component of

v (0) = f , v (n) = f + (I − A) v (n−1)

Denominator: take k th diagonal element of

M(0) = I, M(n) = I + (I − A) M(n−1)

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for Iterated AMLS

Do LOOCV for the system[
n∑
`=0

(I − A)`
]−1(n∑

`=0

(I − A)` f

)
= f

Now formula for components of the error vector becomes

ek =
ck

(sytem matrix)−1
kk

=

[∑n
`=0 (I − A)` f

]
k[∑n

`=0 (I − A)`
]

kk

No matrix inverse required!
Numerator and denominator can be accumulated iteratively.
Numerator: take k th component of

v (0) = f , v (n) = f + (I − A) v (n−1)

Denominator: take k th diagonal element of

M(0) = I, M(n) = I + (I − A) M(n−1)

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for Iterated AMLS

Complexity of matrix powers in denominator can be reduced by using
an eigen-decomposition.

First compute
I − A = XΛX−1,

where
Λ: diagonal matrix of eigenvalues of I − A,
X : columns are eigenvectors.

Then, iterate
M(0) = I, M(n) = I + ΛM(n−1)

so that, for any fixed n,[
n∑
`=0

(I − A)`
]

= XM(n)X−1.

Need only diagonal elements of this. Since M(n) is diagonal this can be
done efficiently as well.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for Iterated AMLS

Complexity of matrix powers in denominator can be reduced by using
an eigen-decomposition.
First compute

I − A = XΛX−1,

where
Λ: diagonal matrix of eigenvalues of I − A,
X : columns are eigenvectors.

Then, iterate
M(0) = I, M(n) = I + ΛM(n−1)

so that, for any fixed n,[
n∑
`=0

(I − A)`
]

= XM(n)X−1.

Need only diagonal elements of this. Since M(n) is diagonal this can be
done efficiently as well.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for Iterated AMLS

Complexity of matrix powers in denominator can be reduced by using
an eigen-decomposition.
First compute

I − A = XΛX−1,

where
Λ: diagonal matrix of eigenvalues of I − A,
X : columns are eigenvectors.

Then, iterate
M(0) = I, M(n) = I + ΛM(n−1)

so that, for any fixed n,[
n∑
`=0

(I − A)`
]

= XM(n)X−1.

Need only diagonal elements of this. Since M(n) is diagonal this can be
done efficiently as well.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for Iterated AMLS

Complexity of matrix powers in denominator can be reduced by using
an eigen-decomposition.
First compute

I − A = XΛX−1,

where
Λ: diagonal matrix of eigenvalues of I − A,
X : columns are eigenvectors.

Then, iterate
M(0) = I, M(n) = I + ΛM(n−1)

so that, for any fixed n,[
n∑
`=0

(I − A)`
]

= XM(n)X−1.

Need only diagonal elements of this. Since M(n) is diagonal this can be
done efficiently as well.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for Iterated AMLS

Algorithm (for iterated AMLS with LOOCV)

Fix ε. Perform an eigen-decomposition

I − A = XΛX−1

Initialize v (0) = f and M(0) = I
For n = 1,2, . . .

Perform the updates

v (n) = f + (I − A) v (n−1)

M(n) = I + ΛM(n−1)

Compute the cost vector (using MATLAB notation)

e(n) = v (n)./diag(X ∗M(n)/X)

If
∥∥e(n)

∥∥− ∥∥e(n−1)
∥∥ < tol

Stop the iteration
end

end

Also finds optimal stopping value for n
fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for Iterated AMLS Ridge Regression for Noise Filtering

Ridge regression or smoothing splines

(see, e.g., [Kimeldorf & Wahba (1971)])

min
c

cT Ac + γ

N∑
j=1

(
Pf (x j)− fj

)2

 ,

Equivalent to solving (
A +

1
γ

I
)

c = f .

Just like before, so LOOCV error components given by

ek =

[(
A + 1

γ I
)−1

f
]

k(
A + 1

γ I
)−1

kk

.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for Iterated AMLS Ridge Regression for Noise Filtering

Ridge regression or smoothing splines

(see, e.g., [Kimeldorf & Wahba (1971)])

min
c

cT Ac + γ

N∑
j=1

(
Pf (x j)− fj

)2

 ,

Equivalent to solving (
A +

1
γ

I
)

c = f .

Just like before, so LOOCV error components given by

ek =

[(
A + 1

γ I
)−1

f
]

k(
A + 1

γ I
)−1

kk

.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for Iterated AMLS Ridge Regression for Noise Filtering

Ridge regression or smoothing splines

(see, e.g., [Kimeldorf & Wahba (1971)])

min
c

cT Ac + γ

N∑
j=1

(
Pf (x j)− fj

)2

 ,

Equivalent to solving (
A +

1
γ

I
)

c = f .

Just like before, so LOOCV error components given by

ek =

[(
A + 1

γ I
)−1

f
]

k(
A + 1

γ I
)−1

kk

.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for Iterated AMLS Ridge Regression for Noise Filtering

The “optimal” values of the shape parameter ε and the smoothing
parameter γ are determined in a nested manner.
We now use a new cost function CostEpsGamma

Program (CostEpsGamma.m)

1 function ceg = CostEpsGamma(ep,gamma,r,rbf,rhs,ep)
2 A = rbf(ep,r);
3 A = A + eye(size(A))/gamma;
4 invA = pinv(A);
5 errorvector = (invA*rhs)./diag(invA);
6 ceg = norm(errorvector);

For a fixed initial ε we find the “optimal” γ followed by an optimization of
CostEpsGamma over ε.
The algorithm terminates when the difference between to successive
optimization runs is sufficiently small.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for Iterated AMLS Ridge Regression for Noise Filtering

N = 9 25 81 289 1089

AMLS

RMSerr 4.80e-3 1.53e-3 6.42e-4 4.39e-4 2.48e-4
ε 1.479865 1.268158 0.911530 0.652600 0.468866
no. iter. 7 6 6 4 3
time 0.2 0.4 1.0 5.7 254

Ridge

RMSerr 3.54e-3 1.62e-3 7.20e-4 4.57e-4 2.50e-4
ε 2.083918 0.930143 0.704802 0.382683 0.181895
γ 100.0 100.0 47.324909 26.614484 29.753487
time 0.3 1.2 1.1 21.3 672

Table: Comparison of IAMLS and ridge regression using Gaussians for noisy
data sampled at Halton points.

See [F. & Zhang (2007a)]

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for RBF-PS Methods

RBF-PS methods

Adapt Rippa’s LOOCV algorithm for RBF-PS methods

Instead of Ac = f with components of the cost vector determined by

ek =
ck

A−1
kk

we now have (due to the symmetry of A)

D = ALA−1 ⇐⇒ ADT = (AL)T

so that the components of the cost matrix are given by

Ek` =
(DT)k`

A−1
kk

.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for RBF-PS Methods

RBF-PS methods

Adapt Rippa’s LOOCV algorithm for RBF-PS methods
Instead of Ac = f with components of the cost vector determined by

ek =
ck

A−1
kk

we now have (due to the symmetry of A)

D = ALA−1 ⇐⇒ ADT = (AL)T

so that the components of the cost matrix are given by

Ek` =
(DT)k`

A−1
kk

.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for RBF-PS Methods

RBF-PS methods

Adapt Rippa’s LOOCV algorithm for RBF-PS methods
Instead of Ac = f with components of the cost vector determined by

ek =
ck

A−1
kk

we now have (due to the symmetry of A)

D = ALA−1 ⇐⇒ ADT = (AL)T

so that the components of the cost matrix are given by

Ek` =
(DT)k`

A−1
kk

.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for RBF-PS Methods

In MATLAB this can again be vectorized:

Program (CostEpsLRBF.m)

1 function ceps = CostEpsLRBF(ep,DM,rbf,Lrbf)
2 N = size(DM,2);
3 A = rbf(ep,DM);
4 rhs = Lrbf(ep,DM)’;
5 invA = pinv(A);
6 errormatrix = (invA*rhs)./repmat(diag(invA),1,N);
7 ceps = norm(errormatrix(:));

The function Lrbf creates the matrix AL. For the Gaussian RBF and
the Laplacian differential operator this could look like

Lrbf = @(ep,r) 4*ep^2*exp(-(ep*r).^2).*((ep*r).^2-1);

Remark
For differential operators of odd order one also needs difference
matrices.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for RBF-PS Methods

In MATLAB this can again be vectorized:

Program (CostEpsLRBF.m)

1 function ceps = CostEpsLRBF(ep,DM,rbf,Lrbf)
2 N = size(DM,2);
3 A = rbf(ep,DM);
4 rhs = Lrbf(ep,DM)’;
5 invA = pinv(A);
6 errormatrix = (invA*rhs)./repmat(diag(invA),1,N);
7 ceps = norm(errormatrix(:));

The function Lrbf creates the matrix AL. For the Gaussian RBF and
the Laplacian differential operator this could look like

Lrbf = @(ep,r) 4*ep^2*exp(-(ep*r).^2).*((ep*r).^2-1);

Remark
For differential operators of odd order one also needs difference
matrices.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for RBF-PS Methods

In MATLAB this can again be vectorized:

Program (CostEpsLRBF.m)

1 function ceps = CostEpsLRBF(ep,DM,rbf,Lrbf)
2 N = size(DM,2);
3 A = rbf(ep,DM);
4 rhs = Lrbf(ep,DM)’;
5 invA = pinv(A);
6 errormatrix = (invA*rhs)./repmat(diag(invA),1,N);
7 ceps = norm(errormatrix(:));

The function Lrbf creates the matrix AL. For the Gaussian RBF and
the Laplacian differential operator this could look like

Lrbf = @(ep,r) 4*ep^2*exp(-(ep*r).^2).*((ep*r).^2-1);

Remark
For differential operators of odd order one also needs difference
matrices.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for RBF-PS Methods Numerical Examples

Example (2D Laplace equation, Program 36 of [Trefethen (2000)])

uxx + uyy = 0, x , y ∈ (−1,1)2,

with piecewise defined boundary conditions

u(x , y) =
sin4(πx), y = 1 and −1 < x < 0,
1
5 sin(3πy), x = 1,
0, otherwise.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for RBF-PS Methods Numerical Examples

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.2

0

0.2

0.4

0.6

0.8

u(0,0) = 0.0495946503

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.2

0

0.2

0.4

0.6

0.8

u(0,0) = 0.0495907491

Figure: Solution of the Laplace equation using a Chebyshev PS approach
(left) and cubic Matérn RBFs with ε = 0.362752 (right) with 625 collocation
points.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for RBF-PS Methods Numerical Examples

Example (2D Helmholtz equation, Program 17 in [Trefethen (2000)])

uxx + uyy + k2u = f (x , y), x , y ∈ (−1,1)2,

with boundary condition u = 0 and

f (x , y) = exp
(
−10

[
(y − 1)2 + (x − 1

2
)2
])

.

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

x

u(0,0) = 0.01172257000

y

u

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

x

u(0,0) = 0.01172256909

y

u

Figure: Solution of 2-D Helmholtz equation with 625 collocation points using
the Chebyshev pseudospectral method (left) and Gaussians with
ε = 2.549243 (right).

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for RBF-PS Methods Numerical Examples

Example (2D Helmholtz equation, Program 17 in [Trefethen (2000)])

uxx + uyy + k2u = f (x , y), x , y ∈ (−1,1)2,

with boundary condition u = 0 and

f (x , y) = exp
(
−10

[
(y − 1)2 + (x − 1

2
)2
])

.

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

x

u(0,0) = 0.01172257000

y

u

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

x

u(0,0) = 0.01172256909

y

u

Figure: Solution of 2-D Helmholtz equation with 625 collocation points using
the Chebyshev pseudospectral method (left) and Gaussians with
ε = 2.549243 (right).

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for RBF-PS Methods Numerical Examples

Example (Allen-Cahn equation, Program 35 in [Trefethen (2000)])

Most challenging for the RBF-PS method.

ut = µuxx + u − u3, x ∈ (−1,1), t ≥ 0,

with parameter µ = 0.01, initial condition

u(x ,0) = 0.53x + 0.47 sin
(
−3

2
πx
)
, x ∈ [−1,1],

and non-homogeneous (time-dependent) boundary conditions

u(−1, t) = −1 and u(1, t) = sin2(t/5).

The solution to this equation has three steady states (u = −1,0,1)
with the two nonzero solutions being stable. The transition between
these states is governed by the parameter µ.
The unstable state should vanish around t = 30.

fasshauer@iit.edu Lecture V Dolomites 2008

LOOCV for RBF-PS Methods Numerical Examples

−1

−0.5

0

0.5

1

0

20

40

60

80

100
−1

0

1

2

xt

u

−1

−0.5

0

0.5

1

0

20

40

60

80

100
−1

0

1

2

xt

u

Figure: Solution of the Allen-Cahn equation using the Chebyshev
pseudospectral method (left) and a cubic Matérn functions with ε = 0.350920
(right) with 21 Chebyshev points.

fasshauer@iit.edu Lecture V Dolomites 2008

Remarks and Conclusions

Summary

Several applications of LOOCV:
RBF interpolation (with and without Riley),
IAMLS,
ridge regression,
RBF-PS

Riley more efficient than pinv

IAMLS method performs favorably when compared to ridge
regression for noisy data (no dense linear systems solved)
LOOCV algorithm for finding an “optimal” shape parameter for
Kansa’s method in [Ferreira et al. (2007)]

fasshauer@iit.edu Lecture V Dolomites 2008

Remarks and Conclusions

Future work or work in progress:
variable shape parameters (e.g.,
[Kansa & Carlson (1992), Fornberg and Zuev (2007)])

potential for improved accuracy and stability
challenging at the theoretical level
difficult multivariate optimization problem

other criteria for “optimal” ε
compare Fourier transforms of kernels with data
maximum likelihood

fasshauer@iit.edu Lecture V Dolomites 2008

Appendix References

References I

Buhmann, M. D. (2003).
Radial Basis Functions: Theory and Implementations.
Cambridge University Press.

Fasshauer, G. E. (2007).
Meshfree Approximation Methods with MATLAB.
World Scientific Publishers.

Higham, D. J. and Higham, N. J. (2005).
MATLAB Guide.
SIAM (2nd ed.), Philadelphia.

Trefethen, L. N. (2000).
Spectral Methods in MATLAB.
SIAM (Philadelphia, PA).

Wahba, G. (1990).
Spline Models for Observational Data.
CBMS-NSF Regional Conference Series in Applied Mathematics 59, SIAM
(Philadelphia).

fasshauer@iit.edu Lecture V Dolomites 2008

Appendix References

References II

Wendland, H. (2005).
Scattered Data Approximation.
Cambridge University Press.

O. Dubrule.
Cross validation of Kriging in a unique neighborhood.
J. Internat. Assoc. Math. Geol. 15/6 (1983), 687–699.

Fasshauer, G. E. and Zhang, J. G. (2007).
Scattered data approximation of noisy data via iterated moving least squares.
in Curve and Surface Fitting: Avignon 2006, T. Lyche, J. L. Merrien and
L. L. Schumaker (eds.), Nashboro Press, pp. 150–159.

Fasshauer, G. E. and Zhang, J. G. (2007).
On choosing "optimal" shape parameters for RBF approximation.
Numerical Algorithms 45, pp. 345–368.

fasshauer@iit.edu Lecture V Dolomites 2008

Appendix References

References III

Ferreira, A. J. M., Fasshauer, G. E., Roque, C. M. C., Jorge, R. M. N. and Batra,
R. C. (2007).
Analysis of functionally graded plates by a robust meshless method.
J. Mech. Adv. Mater. & Struct. 14/8, pp. 577–587.

Fornberg, B. and Zuev, J. (2007).
The Runge phenomenon and spatially variable shape parameters in RBF
interpolation,
Comput. Math. Appl. 54, pp. 379–398.

Kansa, E. J. (1990).
Multiquadrics — A scattered data approximation scheme with applications to
computational fluid-dynamics — II: Solutions to parabolic, hyperbolic and elliptic
partial differential equations.
Comput. Math. Applic. 19, pp. 147–161.

Kansa, E. J. and Carlson, R. E. (1992).
Improved accuracy of multiquadric interpolation using variable shape parameters.

Comput. Math. Applic. 24, pp. 99–120.

fasshauer@iit.edu Lecture V Dolomites 2008

Appendix References

References IV

Kimeldorf, G. and Wahba, G. (1971).
Some results on Tchebycheffian spline functions.
J. Math. Anal. Applic. 33, pp. 82–95.

Rippa, S. (1999).
An algorithm for selecting a good value for the parameter c in radial basis
function interpolation.
Adv. in Comput. Math. 11, pp. 193–210.

fasshauer@iit.edu Lecture V Dolomites 2008

	Rippa's LOOCV Algorithm
	The formula of Rippa/Wahba
	RBF Interpolation with LOOCV in Matlab

	LOOCV with Riley's Algorithm
	Comparison of Original and Riley LOOCV

	LOOCV for Iterated AMLS
	Ridge Regression for Noise Filtering

	LOOCV for RBF-PS Methods
	Numerical Examples

	Remarks and Conclusions
	Appendix
	Appendix
	

