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Regularity for solutions to a class of PDE’s with Orlicz growth

Flavia Giannetti a · Antonia Passarelli di Napoli b

Abstract

We consider weak solutions u : Ω→ R to partial differential equations of the form

div a(x , Du) = 0

in Ω ⊂ Rn, n > 2, where the partial map x 7→ a(x ,ξ) has a suitable Sobolev regularity and satisfies
growth conditions with respect to the second variable expressed through an Orlicz function φ . We prove
the second order regularity of the weak solutions.

AMS Classifications: 35J60; 35B45; 35Q35.
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1 Introduction and statement of the result
In this paper we study the higher differentiability of solutions to weak solutions u ∈W 1,φ(Ω), of the equation

div a(x , Du) = 0, (1)

in Ω ⊂ Rn, n> 2. The main features of the Carathéodory function a : Ω×Rn→ Rn considered here are the following

• the map ξ→ a(x ,ξ) satisfies the so called general growth conditions

• the map x → a(x ,ξ) is possibly discontinuous.

To be more precise, we consider a convex functionφ ∈ C1(R≥0,R≥0) that is piecewise C2 onR≥0 and satisfiesφ′(0) = φ(0) = 0.
In what follows, we assume that φ′(t)> 0 holds for any t > 0, as well as

p− 1≤
tφ′′(t)
φ′(t)

≤ q− 1, (2)

for given parameters 2≤ p ≤ q, for every t > 0 for which φ′′(t) exists. We note that the case p = q corresponds to the model
case φ(t) = 1

p t p.
The Carathéodory function a : Ω×Rn→ Rn is such that, for given parameters 0< ν≤ L and for a function k ∈ Ln

loc(Ω) satisfies,
the following conditions




a(x ,ξ)− a(x ,η),ξ−η
�

≥ νφ′′(|ξ|+ |η|)|ξ−η|2 (3)

|a(x ,ξ)− a(x ,η)| ≤ Lφ′′(|ξ|+ |η|)|ξ−η|, (4)

|a(x ,ξ)| ≤ Lφ′(|ξ|), (5)

|a(x ,ξ)− a(y,ξ)| ≤ (k(x) + k(y))|x − y|φ′(|ξ|), (6)

for a.e. x , y ∈ Ω and every ξ,η ∈ Rn. It is worth noticing that, by virtue of the point-wise characterization of the Sobolev
functions due to Hajlasz (see [32]), assumption (6) implies that the partial map x → a(x ,ξ) belongs locally to W 1,n and therefore
is possibly discontinuous.

The interest for such kind of equations is based on the fact that some physical phenomena are governed by nonlinearities
which are not of polynomial type and therefore the associated mathematical models involve the use of more general functions.

Many authors gave contributions on the regularity of solutions to nonlinear elliptic equations with Orlicz growth (see e.g.
[12, 35]), also with L1 or measure data as in [7, 5, 4, 6]. Moreover, results concerning the regularity of minimizers of functionals
satisfying Orlicz growth conditions are also available, we refer for example to [39, 36, 16, 27, 28, 23, 15, 34]. We rely on the
following notion of weak solutions to (1).

Definition 1.1. We call u ∈W 1,φ(Ω,R) a weak solution of (1) if it holds
∫

Ω

〈a(x , Du), Dη〉 d x = 0 (7)

for every η ∈ C∞0 (Ω,Rn).
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Higher differentiability results for weak solutions of p-Laplace type equations with differentiable coefficients are commonly
known from classical regularity theory (see [31] and the references therein).
In the last few years there has been an intense research activity showing that a suitable Sobolev regularity on the coefficients
is still sufficient to establish the second order regularity of the solutions to p-harmonic equations either in the elliptic or in
the parabolic setting, both in the scalar and in the vectorial cases ([41, 30, 24, 25, 2, 3]). We would also mention the several
contributions available for the higher differentiability of local minimizers of integral functionals ( see for example [40, 11, 18, 17]
as well as the recent paper [21], where the second order regularity of solutions to elliptic systems has been obtained assuming
that the partial map x → a(x ,ξ) has derivatives in the Marcinkiewicz class Ln,∞(Ω) with sufficiently small distance to L∞(Ω).
For a wide discussion on such condition we refer to [19] and [20].
In case of general growth condition, despite the huge amount of papers investigating the regularity of the solutions or of the
minimizers (see the recent survey [38] with the references therein), the question of the higher differentiability still needs to be
explored. We refer e.g. to [22] for p(x)-growth, [8, 10, 9, 37] for (p, q)-growth conditions.
More specifically, for what concerns the case of φ-growth, we have to quote [13] where, in case of Hölder continuous coefficients,
Diening and Ettwein were able to establish a fractional higher differentiability for the solutions to (1).
To our knowledge, the main result of this paper is the first higher differentiability result of integer order for equations with
φ-growth in the gradient variable and with Sobolev coefficients.
Already for the p-Laplace equation, due to the nonlinear nature of the problem, it is not to be expected that second weak
derivatives exist, but the extra differentiability quantity makes sense for the nonlinear function Vµ(Du) := (µ2 + |Du|2)

p−2
4 Du ,

(see [31] and the references therein).
Therefore, our results here involve the natural corresponding auxiliary function V : Rn→ Rn associated to φ defined as

V (ξ) :=

(
Ç

φ′(|ξ|)
|ξ| ξ if ξ ̸= 0

0 if ξ= 0
(8)

and introduced for the first time in ([13]).
More precisley, our main theorem states as follows.

Theorem 1.1. Let a : Ω×Rn → Rn be a Carathéodory function. Assume that (2)– (6) are in force and that u ∈W 1,φ(Ω,R) is a
weak solution of the equation

div a(x , Du) = 0, (9)

in the sense of Definition 1.1. Then V (Du) ∈W 1,2
loc (Ω,Rn) and, for every ball BR(xo) ⋐ Ω with R ∈ (0, 1], the following local estimates

hold
∫

B R
2

|D(V (Du))|2 d x ≤
c

Rq

∫

BR

φ(|Du|) d x +
c

Rn
(10)

and




∫

B R
2

|V (Du))|
2n

n−2 d x





n−2
n

≤
c

Rq

∫

BR

φ(|Du|) d x +
c

Rn
. (11)

The proof of previous Theorem is achieved combining a suitable a priori estimate with an approximation argument. The a
priori estimate is established by the use of the well known difference quotient method that here presents new difficulties due to
the general growth of our problem. Next we construct the approximating problem by regularizing the coefficients. In order to
use the a priori estimate for the solution of such problems, we need to establish their second order regularity that doesn’t seem
available in literature ( see Theorem 3.1). Finally, we show that such estimates are preserved in passing to the limit.

2 Preliminaries

2.1 Notation and a useful lemma

We write Br(xo) ⊂ Rn for the open ball of radius r > 0 and center xo ∈ Rn. If the center is clear from the context, we use the
shorter notation Br .

The symbol 〈·, ·〉 will be used to denote the standard scalar product on the space Rn.
We will write c to indicate a general constant that may vary on different occasions, even within the same line of estimates.

Relevant dependencies on parameters and special constants will be suitably emphasized using parentheses or subscripts.
In what follows, we shall use the following well-known iteration lemma.

Lemma 2.1. For 0< R1 < R2, consider a bounded function f : [R1, R2]→ [0,∞) with

f (r1)≤ ϑ f (r2) +
A

(r2 − r1)α
+

B
(r2 − r1)β

+ C for all R1 < r1 < r2 < R2,

where A, B, C, and α,β denote nonnegative constants and ϑ ∈ (0, 1). Then we have

f (R1)≤ c(α,ϑ)
�

A
(R2 − R1)α

+
B

(R2 − R1)β
+ C

�

.

For the proof we refer to, e.g., [31, Lemma 6.1, p.191]
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2.2 Preliminaries on Orlicz Functions

Here we introduce some basic properties of Orlicz functions that will be useful to frame and solve our problem (more details can
be found in [42]).

A function ψ : R≥0 → R≥0 is called an N -function if and only if there is a right-continuous, positive on the positive real
line, and non-decreasing function ψ′ : R≥0 → R≥0 with ψ′(0) = 0 and limt→∞ψ

′(t) =∞ such that ψ(t) =
∫ t

0
ψ′(τ) dτ. An

N -function is said to satisfy the ∆2-condition if and only if there is a constant c > 1 such that ψ(2t)≤ cψ(t) for every t > 0.
The conjugate of an N -function ψ is defined as

ψ∗(t) := sup
s≥0
(st −ψ(s)) , t ≥ 0.

A direct consequence of the definition is the following Young’s inequality

st ≤ψ(s) +ψ∗(t) for any s, t ≥ 0. (12)

We note that our assumptions on the function φ ensure that it is an N -function. Moreover, in view of the following lemma,
condition (2) guarantees that φ and φ∗ both satisfy the ∆2-condition.

Lemma 2.2 ([1, Lemma 2.1]). Let φ ∈ C1(R≥0,R≥0) be a function which is piecewise C2 and satisfying (2). Then the following
estimates hold true for every λ > 1 and t > 0:

λpφ(t)≤ φ(λt)≤ λqφ(t), (13)

λ
q

q−1φ∗(t)≤ φ∗(λt)≤ λ
p

p−1φ∗(t), (14)

λp−1φ′(t)≤ φ′(λt)≤ λq−1φ′(t). (15)

Remark 1. Under assumption (2), Lemma 2.2 implies the bounds

φ(1)min{t p, tq} ≤ φ(t)≤ φ(1)max{t p, tq}, (16)

φ∗(1)min{t p′ , tq′} ≤ φ∗(t)≤ φ∗(1)max{t p′ , tq′}, (17)

for any t > 0.
Moreover, we recall the notion of shifted N-functions first introduced in [13]. Here, we use the slight variant of [14,

Appendix B] with even nicer properties. The shifted N-function φa, for a ≥ 0, are defined by

φa(t) :=

∫ t

0

φ′(a ∨ s)
a ∨ s

s ds, (18)

where s1 ∨ s2 :=max{s1, s2} for s1, s2 ∈ R. In the model case φ(t) := 1
p t p, the shifted N -functions satisfy

φa(t)≂ (a ∨ t)p−2 t2,

φ′a(t)≂ (a ∨ t)p−2 t,
(19)

with constants only depending on p. The index a is called the shift. Obviously, φ0 = φ. Moreover, if a ≂ b, then φa(t)≂ φb(t).
For the shifted N -function φa we have

(φa)
∗ = (φ∗)φ′(a), (20)

cf. [14, Lemma 33]. A straightforward computation yields the identity

tφ′′a (t)

φ′a(t)
=

¨

1, if 0≤ t < a,
tφ′′(t)
φ′(t) , if t > a.

Consequently, assumption (2) implies

min{1, p− 1} ≤
tφ′′a (t)

φ′a(t)
≤max{1, q− 1}, (21)

provided t > 0 and φ′′a (t) exists. Therefore, Lemma 2.2, implies

Lemma 2.3. Let φ : R≥0 → R≥0 be a function as in (2), and a ≥ 0. Then, for any λ > 1 and t > 0, the shifted N-function φa
satisfies the estimates

λ2φa(t)≤ φa(λt)≤ λqφa(t), (22)

λ
q

q−1φ∗a(t)≤ φ
∗
a(λt)≤ λ2φ∗a(t). (23)

In particular, φa and φ∗a satisfy the ∆2-condition with constants respectively given by 2q and 22, independently of a ≥ 0.
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For further needs we observe that if σ ∈ (0,1) we have

σqφa(t)≤ φa(σt)≤ σ2φa(t), (24)

Indeed from (22) we deduce that

φa(t) = φa

�

1
σ
σt
�

≤
1
σq
φa(σt) =⇒ φa(σt)≥ σqφa(t)

The other inequality can be derived arguing analogously.
Since φ′a is nondecreasing and φa satisfies the ∆2-condition, we have the estimate

sφ′a(s)≤ φa(2s)−φa(s)≤ c(q)φa(s) (25)

for every s ≥ 0 and an arbitrary shift a ≥ 0. Moreover, as a consequence of (22) and the convexity of φ, we obtain

φa(s+ t)≤ 2qφa

� s+ t
2

�

≤ 2q−1
�

φa(s) +φa(t)
�

(26)

for every s, t ≥ 0, independently of a ≥ 0. Using the bounds (22) and (23), we observe that (12) implies the following versions
of Young’s inequality for the shifted N -function φa.
For every δ > 0 there exists cδ = cδ(δ, p, q)≥ 1 such that for all s, t, a ≥ 0

s t ≤ δφa(t) + cδφ
∗
a(s),

s t ≤ cδφa(t) +δφ
∗
a(s).

(27)

We use these estimates with s replaced by φ′a(s). A direct computation and estimate (25) imply

φ∗a(φ
′
a(s)) = sφ′a(s)−φa(s)≤ c(q)φa(s), (28)

for any s ≥ 0. Therefore, the Young type inequalities (27) yield the estimates

φ′a(s) t ≤ δφa(t) + cδφa(s),
φ′a(s) t ≤ cδφa(t) +δφa(s),

(29)

for s, t, a ≥ 0, with constants cδ = cδ(δ, p, q).
We have the following equivalent representations of the shifted N -functions.

Lemma 2.4 ([14, Lemma 40]). Let φ : R≥0→ R≥0 be a function as in (2). Then, for every P,Q ∈ Rn×n, we have

φ′|Q|(|P −Q|)≂
φ′(|P| ∨ |Q|)
|P| ∨ |Q|

|P −Q|,

φ|Q|(|P −Q|)≂
φ′(|P| ∨ |Q|)
|P| ∨ |Q|

|P −Q|2,

where the implicit constants depend only on p and q.

The following equivalences will be useful for our aims.

Lemma 2.5 ([13, Lemma 24]). Let φ be an N-function satisfying assumption (2). Then uniformly in P,Q with |P|+ |Q|> 0 we
have

φ′′(|P|+ |Q|)|P −Q| ∼ φ′|P|(|P −Q|)

φ′′(|P|+ |Q|)|P −Q|2 ∼ φ|P|(|P −Q|)

Next Lemma summarize the relation between a(x ,ξ), the auxiliary function V introduced in (8) and the shifted versions
of φ. For the proof we remind to [14, 26].

Lemma 2.6. Let a : Ω×Rn→ Rn be a Carathéodory function with properties (3) and (5) for an N- function φ satisfying (2). Then,
for all P,Q ∈ Rn and a.e. x , y ∈ Ω there holds




a(x , P)− a(x ,Q), P −Q
�

≥ cφ|Q| (|P −Q|)≂ |V (P)− V (Q)|2, (30)

a(x ,Q) ·Q ≂ |V (Q)|2 ≂ φ|Q|(|Q|)≂ φ(|Q|) (31)

with constants that depend only on p, q,ν, and L. If, additionally, assumption (4) is satisfied, then we have

|a(x , P)− a(x ,Q)| ≤ cφ′|Q|(|P −Q|), (32)



a(x , P)− a(x ,Q), P −Q
�

≂ φ|Q| (|P −Q|)≂ |V (P)− V (Q)|2. (33)

Also of strong use is the possibility to change the shift:
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Lemma 2.7 (Change of shift, [14, Corollary 44]). For δ > 0 there exists cδ = cδ(δ, p, q) such that for all P,Q ∈ Rn there holds

φ|P|(t)≤ cδφ|Q|(t) +δ |V (P)− V (Q)|2,

(φ|P|)
∗(t)≤ cδ(φ|Q|)

∗(t) +δ |V (P)− V (Q)|2.

In particular, the choice P = 0 allows to add a shift in the form

φ(t)≤ cφ|Q|(t) + c|V (Q)|2 ≤ cφ|Q|(t) + cφ(|Q|) (34)

for every Q ∈ Rn, where we used (31) for the last estimate. Moreover, the choice of Q = 0 in the preceding lemma allows to
remove the shift from the N -function. For the proof we refer to [14].
Lemma 2.8 (Removal of shift). For all P ∈ Rn, all t ≥ 0 and all δ ∈ (0,1] there holds

φ′|P|(t)≤ φ
′
�

t
δ

�

∨
�

δφ′(|P|)
�

, (35)

φ|P|(t)≤ δφ(|P|) + cδφ
�

t
δ

�

, (36)

(φ|P|)
∗(t)≤ δφ(|P|) + cδφ∗

�

t
δ

�

, (37)

where c depends only on p and q.

For an N -function φ satisfying the ∆2-condition, the space Lφ(Ω) consists of those functions u ∈ L1(Ω) that satisfy
∫

Ω

φ(|u|) d x <∞.

The Orlicz space Lφ(Ω) becomes a Banach space with the norm

∥u∥Lφ (Ω) := inf
§

λ > 0:

∫

Ω

φ

�

|u(x)|
λ

�

d x ≤ 1
ª

.

The Orlicz-Sobolev space W 1,φ(Ω,Rn) is defined as the space of functions u ∈ Lφ(Ω) that are weakly differentiable with Du ∈ Lφ(Ω),
and is equipped with the norm ∥u∥W 1,φ := ∥u∥Lφ + ∥Du∥Lφ . Finally, we define the subspace W 1,φ

0 (Ω,Rn) ⊂W 1,φ(Ω,Rn) as the
completion of C∞0 (Ω,Rn) with respect to the W 1,φ-norm.

2.3 Difference quotients

In the sequel we recall some properties of the finite difference operator. We use the customary notation

τhF(x)≡ τh,i F(x) := F(x + hei)− F(x), (38)

for any F ∈ L1
loc(Ω), i = 1, . . . , n, x ∈ Ω, and h ̸= 0 with x + hei ∈ Ω.

We start with some elementary properties, cf. [31].
Proposition 2.9. Consider two functions F, G ∈W 1,φ(Ω,Rn). For h ̸= 0 and the inner parallel sets

Ω|h| := {x ∈ Ω : dist(x ,∂Ω)> |h|} ,

we have the following properties.

(i) τhF ∈W 1,φ(Ω|h|,Rn) and Di(τhF) = τh(Di F).
(ii) If the support of at least one of the functions F and G is contained in Ω|h|, then we have the discrete integration by parts formula

∫

Ω

F τhG d x =

∫

Ω

Gτ−hF d x .

(iii) We have the following product rule for the finite differences:

τh(FG)(x) = F(x + hei)τhG(x) + G(x)τhF(x).

The next result about the finite difference operator is a kind of integral version of the Lagrange Theorem.

Lemma 2.10. Let φ be an N-function satisfying the ∆2-condition and F ∈W 1,φ(BR,Rn). Then, for any ρ > 0 and h ∈ R ̸=0 with
ρ + |h| ≤ R, we have the estimates

∫

Bρ

φ

� |τhF(x)|
|h|

�

d x ≤
∫

Bρ+|h|

φ(|DF(x)|) d x . (39)

Moreover,
∫

Bρ

φ(|F(x + hei)|) d x ≤
∫

Bρ+|h|

φ(|F(x)|) d x . (40)

For the proof we refer to [26].
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3 Higher differentiability
The first result of this section is the second order regularity of solutions to (1) in case the coefficients are Lipschitz continuous. It
will be fundamental to legitimate the construction of approximating problems whose solutions are sufficiently regular. Next, we
shall establish an a priori estimate for the solutions that possess the same second order regularity proven before.

3.1 The case of smooth coefficients

Consider a Carathéodory function A : Ω×Rn→ Rn and the equation

divA(x , Dv) = 0. (41)

Assume that there exist an N -function φ(t) satisfying (2) and positive constants ν, L, K such that



A(x ,ξ)− A(x ,η),ξ−η
�

≥ νφ′′(|ξ|+ |η|)|ξ−η|2 (42)

|A(x ,ξ)− A(x ,η)| ≤ Lφ′′(|ξ|+ |η|)|ξ−η|, (43)

|A(x ,ξ)| ≤ Lφ′(|ξ|), (44)

|A(x ,ξ)− A(y,ξ)| ≤ K |x − y|φ′(|ξ|), (45)

for a.e. x , y ∈ Ω and every ξ,η ∈ Rn . The following higher differentiability result holds true.

Theorem 3.1. Let v ∈W 1,φ(Ω) be a weak solution to (41) under the assumptions (42)– (45). Then

V (Dv) ∈W 1,2
loc (Ω) and φ(|Dv|) ∈ L

n
n−2
loc (Ω).

Proof. Since v ∈W 1,φ(Ω) is a weak solution to (41), we have
∫

Ω

〈A(x , Dv), Dη〉 d x = 0 for every η ∈W 1,φ
0 (Ω,Rn). (46)

We fix a ball BR ⋐ Ω with R ∈ (0,1]. For radii 0< R
2 < R1 < R2 ≤ R, we consider the maximal step size ho := 1

2 (R2 − R1). Then,
we fix radii r1, r2 with R1 ≤ r1 < r2 ≤ R2 − ho =

1
2 (R1 + R2) and choose a cut-off function ζ ∈ C∞0 (Br2

, [0,1]) with ζ= 1 on Br1

and such that |∇ζ| ≤ c
r2−r1

.

We choose η= τ−h(ζ2τhu) ∈W 1,φ
0 (BR2

) as an admissible test function in (46), obtaining the identity
∫

BR




A(x , Du), D(τ−h(ζ
2τhu))

�

d x = 0, (47)

Exploiting the properties of the difference quotient, we rewrite the integral on the left-hand side as
∫

BR




A(x , Dv), D(τ−h(ζ
2τhv))

�

d x (48)

=

∫

BR

ζ2



τh[A(x , Dv)],τhDv
�

d x + 2

∫

BR




τh[A(x , Dv)],ζ∇ζτhv
�

d x .

Now, we decompose

τh[A(x , Dv)] =
�

A(x + hei , Dv(x + hei))− A(x + hei , Dv(x))
�

+
�

A(x + hei , Dv(x))− A(x , Dv(x))
�

=: A′h +B′h.

Joining (47) and (48), keeping in mind the abbreviations above and the definition of η , we arrive at the identity
∫

Br2

ζ2



A′h,τhDv
�

d x = −
∫

Br2

ζ2



B′h,τhDv
�

d x − 2

∫

Br2




A′h,ζ∇ζτhv
�

d x

− 2

∫

Br2




B′h,ζ∇ζτhv
�

d x

=: J1 + J2 + J3. (49)

According to (42), by Lemmas 2.5 and 2.6, the left-hand side is bounded from below by
∫

Br2

ζ2



A′h,τhDv
�

d x ≥ c

∫

Br2

ζ2|τhV (Dv)|2 d x , (50)
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for a constant c = c(ν, p, q). For the estimate of J1, we introduce the abbreviation

D(h) := |Dv(x)| ∨ |Dv(x + hei)|. (51)

Using in turn assumption (45), the monotonicity of φ′, and Young’s inequality with a parameter ϵ ∈ (0, 1], we get

|J1| ≤
∫

Br2

ζ2|B′h| |τhDv| d x ≤ cK |h|
∫

Br2

ζ2φ′(|Dv|)|τhDv| d x

≤ cK |h|
∫

Br2

ζ2φ
′(D(h))
D(h)

D(h) |τhDv| d x

≤ ϵ
∫

BR

ζ2φ
′(D(h))
D(h)

|τhDv|2 d x + cϵK
2|h|2

∫

Br2

ζ2φ′(D(h))D(h) d x .

In order to bound the first integral on the right-hand side, we apply the second assertion of Lemma 2.4 and (30)2, while the last
integral is bounded by (25), estimate (26) with a = 0, and (40). In this way, we deduce

|J1| ≤ cϵ

∫

BR

ζ2φ|Dv|(|τhDv|) d x + cϵK
2|h|2

∫

Br2

φ(D(h)) d x (52)

≤ cϵ

∫

Br2

ζ2|τhV (Dv)|2 d x + cϵK
2|h|2

∫

BR2

φ(|Dv|) d x .

Next, we exploit assumption (43) and the properties of ζ to obtain

|J2| ≤ 2

∫

Br2

|A′h| |ζ∇ζτhv| d x ≤
c

r2 − r1

∫

Br2

φ′′(|D(h)|) |τhDv||τhv| d x (53)

≤
c

r2 − r1

∫

Br2

φ′|Dv| (|τhDv|) |τhv| d x

≤ ϵ
∫

Br2

(φ|Dv|)
∗
�

φ′|Dv| (|τhDv|)
�

d x + cϵ

∫

Br2

φ|Dv|

�

|h|
r2 − r1

|τhv|
|h|

�

d x

≤ ϵ c

∫

Br2

φ|Dv| (|τhDv|) d x +
cϵ|h|2

(r2 − r1)q

∫

Br2

φ|Dv|

� |τhv|
|h|

�

d x

≤ ϵ c

∫

Br2

φ|Dv| (|τhDv|) d x +
cϵ|h|2

(r2 − r1)q

∫

BR2

φ|Dv| (|Dv|) d x

≤ ϵ c

∫

Br2

|τhV (Dv)|2 d x +
cϵ|h|2

(r2 − r1)q

∫

BR2

φ (|Dv|) d x ,

where we used in turn the first assertion in Lemma 2.5, Young’s inequality at (27), estimate (28), the homogeneity inequalities
at (22) and (24), the first assertion in Lemma 2.10, the equivalence in (30), and Lemma 2.7 with one shift equal to zero. For the
estimate of J3, we use (45) and Young’s inequality as follows

|J3| ≤ 2

∫

Br2

|B′h| |ζ∇ζτhv| d x ≤ cK
|h|

r2 − r1

∫

Br2

φ′(|D(h)|) |τhv| d x (54)

= cK
|h|2

r2 − r1

∫

Br2

φ′(|D(h)|)
|τhv|
|h|

d x

≤ cK
|h|2

r2 − r1

∫

Br2

�

φ∗(φ′(|D(h)|)) +φ
� |τhv|
|h|

��

d x

≤ cK
|h|2

r2 − r1

∫

Br2

φ(|D(h)|) d x + cK
|h|2

r2 − r1

∫

Br2

φ

� |τhv|
|h|

�

d x

≤ cK
|h|2

r2 − r1

∫

BR2

φ(|Dv|) d x ,

where we also used (28) and the first assertion in Lemma 2.10. Collecting the estimates (50), (52), (53) and (54) , recalling
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identity (49) and using the properties of ζ, we deduce the bound
∫

Br1

|τhV (Dv)|2 d x ≤ cϵ

∫

Br2

|τhV (Dv)|2 d x

+ cϵ(K)
|h|2

(r2 − r1)q

∫

BR2

φ(|Dv|) d x

for every ϵ ∈ (0, 1] and all radii r1, r2 with R1 ≤ r1 < r2 ≤ R2. Choosing ϵ = 1
2c , we can use Lemma 2.1, thus obtaining

∫

BR1

|τhV (Dv)|2 d x ≤ c(K)
|h|2

(R2 − R1)q

∫

BR2

φ(|Dv|) d x .

Previous inequality implies that V (Dv) ∈W 1,2
loc (Ω) with the following estimate

∫

BR1

|DV (Dv)|2 d x ≤
c

(R2 − R1)q

∫

BR2

φ(|Dv|) d x ,

with a constant c depending on n,ν, L, p, q and K . The other assertion easily comes from the Sobolev imbedding Theorem.

3.2 The a priori estimate

This subsection contains the a priori estimate suitable for establishing the main result. More precisely, we are going to establish
the following Theorem.

Theorem 3.2. Let φ be an N-function with the property (2), and consider a weak solution u ∈ W 1,φ(Ω) of (1) under the
assumptions (3)– (6). Then, if

V (Du) ∈W 1,2
loc (Ω), (55)

there exists a radius R̄= R̄(c, n, p, q,ν, L, ||k||Ln) such that the following estimate
∫

B R
2

|D(V (Du))|2 d x ≤
c

Rq

∫

BR

φ(|Du|) d x +
c

Rn
, (56)

holds for every ball BR(xo) ⋐ Ω with R< R̄ and with a constant c = c(n,ν, L, p, q).

Proof. As before, we fix a ball BR ⋐ Ω with R ∈ (0,1]. For radii 0 < R
2 < R1 < R2 ≤ R, we consider the maximal step

size ho := 1
2 (R2 − R1). Then, we fix radii r1, r2 with R1 ≤ r1 < r2 ≤ R2 − ho =

1
2 (R1 + R2) and choose a cut-off function

ζ ∈ C∞0 (Br2
, [0, 1]) with ζ= 1 on Br1

and |∇ζ| ≤ c
r2−r1

.

We choose η= τ−h(ζ2τhu) ∈W 1,φ
0 (BR2

) as an admissible test function in (7), obtaining the identity
∫

BR

ζ2



Ah,τhDu
�

d x = −
∫

BR

ζ2



Bh,τhDu
�

d x − 2

∫

BR




Ah,ζ∇ζτhu
�

d x

− 2

∫

BR




Bh,ζ∇ζτhu
�

d x

=: I1 + I2 + I3, (57)

where now, we used the decomposition

τh[a(x , Du)] =
�

a(x + hei , Du(x + hei))− a(x + hei , Du(x))
�

+
�

a(x + hei , Du(x))− a(x , Du(x))
�

=: Ah +Bh.

According to (3), by Lemmas 2.5 and 2.6, the left-hand side of (57) is bounded from below by
∫

BR

ζ2



Ah,τhDu
�

d x ≥ c

∫

Br2

ζ2|τhV (Du)|2 d x , (58)

for a constant c = c(ν, p, q). For the estimate of I1, we use the abbreviations (51) and

K(h) := |k(x)| ∨ |k(x + hei)|.
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Using in turn assumption (6), the monotonicity of φ′, and Young’s inequality with a parameter κ ∈ (0, 1], we estimate

|I1| ≤
∫

Br2

ζ2|Bh| |τhDu| d x ≤ c|h|
∫

Br2

ζ2K(h)φ′(|Du|)|τhDu| d x (59)

= c|h|
∫

Br2

ζ2K(h)
φ′(D(h))
D(h)

D(h) |τhDu| d x

≤ κ
∫

Br2

ζ2φ
′(D(h))
D(h)

|τhDu|2 d x + cκ|h|2
∫

Br2

ζ2K2(h)φ′(D(h))D(h) d x .

In order to bound the first integral on the right-hand side, we apply Lemma 2.4 and (30)2, while the last integral is bounded
by (25), the assumption on k(x), Hölder’s inequality, estimate at (26) with a = 0, and (40). In this way, we deduce

|I1| ≤ cκ

∫

Br2

ζ2φ|Du|(|τhDu|) d x + cκ|h|2
∫

Br2

ζ2K2(h)φ(D(h)) d x (60)

≤ cκ

∫

Br2

ζ2|τhV (Du)|2 d x + cκ|h|2
 

∫

Br2

Kn(h) d x

!
2
n
 

∫

Br2

ζ
2n

n−2φ(D(h))
n

n−2 d x

!
n−2

n

≤ cκ

∫

Br2

ζ2|τhV (Du)|2 d x + cκ|h|2
 

∫

BR2

kn(x) d x

!
2
n
 

∫

BR2

φ(|Du|)
n

n−2 d x

!
n−2

n

.

Arguing exactly as we did for the estimation of J2 in Theorem 3.1, we obtain

|I2| ≤ φ′|Dv| (|τhDv|) |τhv| d x

≤ ϵ c

∫

Br2

|τhV (Du)|2 d x +
cϵ|h|2

(r2 − r1)q

∫

Br2

φ (|Du|) d x . (61)

For the estimate of I3, we use (6) and Young’s inequality with exponents n and n
n−1 as follows

|I3| ≤ 2

∫

Br2

|Bh| |ζ∇ζτhu| d x ≤ c
|h|

r2 − r1

∫

Br2

K(h)φ′(|D(h)|) |τhu| d x (62)

≤ c
|h|2

r2 − r1

∫

Br2

Kn(h) d x + c
|h|2

r2 − r1

∫

Br2

�

φ′(|D(h)|)
|τhu|
|h|

�
n

n−1

d x

≤ c
|h|2

r2 − r1

∫

Br2

Kn(h) d x + c
|h|2

r2 − r1

∫

Br2

�

φ∗(φ′(|D(h)|)) + φ
� |τhu|
|h|

��
n

n−1

d x

≤ c
|h|2

r2 − r1

∫

BR2

kn(x) d x + c
|h|2

r2 − r1

∫

BR2

φ
n

n−1 (|Du|) d x

+ c
|h|2

r2 − r1

∫

Br2

�

φ

� |τhu|
|h|

��
n

n−1

d x

where we also used Young’s inequality at (27), (28) and the second assertion in Lemma 2.10.
Note that the a priori assumption V (Du) ∈W 1,2

loc (Ω) in particular implies, by Sobolev imbedding Theorem, φ
n

n−2 (|Du|) ∈ L1
loc(Ω)

and so also φ
n

n−1 (|Du|) ∈ L1
loc(Ω). Therefore we are legitimate to use the first assertion of Lemma 2.10 with the Orlicz function

φ(t)
n

n−1 to bound last integral in previous estimate as follows
∫

Br2

�

φ

� |τhu|
|h|

��
n

n−1

d x ≤ c

∫

BR2

(φ(|Du|))
n

n−1 d x .

Inserting the above inequality in estimate (62), we get

|I3| ≤ c
|h|2

r2 − r1

∫

BR2

kn(x) d x + c
|h|2

r2 − r1

∫

BR2

φ(|Du|)
n

n−1 d x (63)

≤ c
|h|2

r2 − r1

∫

BR2

kn(x) d x + c
|h|2

r2 − r1

 

∫

BR2

φ(|Du|)
n

n−2 d x

!
n−2
n−1

|BR2
|

1
n−1

≤ c
|h|2

r2 − r1

∫

BR2

kn(x) d x + cσ|h|2
|BR2
|

n
n−1

(r2 − r1)n
+σ|h|2

 

∫

BR2

φ(|Du|)
n

n−2 d x

!
n−2

n

,
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where we used Hölder’s and Young’s inequality and σ ∈ (0, 1) will be chosen later. Collecting the estimates (58), (60), (61), (63)
and recalling identity (57), we deduce the bound

∫

Br2

ζ2|τhV (Du)|2 d x ≤ cκ

∫

Br2

ζ2|τhV (Du)|2 d x + ϵc

∫

Br2

|τhV (Du)|2 d x

+ cκ|h|2
 

∫

BR2

kn(x) d x

!
2
n
 

∫

BR2

φ(|Du|)
n

n−2 d x

!
n−2

n

+
cϵ,κ|h|2

(r2 − r1)q

∫

BR2

φ(|Du|) d x + c
|h|2

r2 − r1

∫

BR2

kn(x) d x

+cσ|h|2
|BR2
|

n
n−1

(r2 − r1)n
+σ|h|2

 

∫

BR2

φ(|Du|)
n

n−2 d x

!
n−2

n

,

for every κ,ϵ,σ ∈ (0,1) and all radii r1, r2 with R1 ≤ r1 < r2 ≤ R2. Choosing κ = 1
2c , we can reabsorb the first integral in the

right hand side of the previous inequality by the left hand side thus getting
∫

Br1

|τhV (Du)|2 d x ≤
∫

Br2

ζ2|τhV (Du)|2 d x ≤ cϵ

∫

Br2

|τhV (Du)|2 d x

+ c|h|2
 

∫

BR2

kn(x) d x

!
2
n
 

∫

BR2

φ(|Du|)
n

n−2 d x

!
n−2

n

+
cϵ|h|2

(r2 − r1)2

∫

BR2

φ(|Du|) d x + c
|h|2

r2 − r1

∫

BR2

kn(x) d x

+cσ|h|2
|BR2
|

n
n−1

(r2 − r1)n
+σ|h|2

 

∫

BR2

φ(|Du|)
n

n−2 d x

!
n−2

n

.

Choosing now ϵ = 1
2c , we can use Lemma 2.1 to obtain

∫

BR1

|τhV (Du)|2 d x ≤ c|h|2
 

∫

BR2

kn(x) d x

!
2
n
 

∫

BR2

φ(|Du|)
n

n−2 d x

!
n−2

n

+cσ|h|2
 

∫

BR2

φ(|Du|)
n

n−2 d x

!
n−2

n

+
c|h|2

(R2 − R1)q

∫

BR2

φ(|Du|) d x

+c
|h|2

R2 − R1

∫

BR2

kn(x) d x + cσ|h|2
|BR2
|

n
n−1

(R2 − R1)n
.

Dividing both sides of previous inequality by |h|2 and taking the limit as h→ 0, by virtue of the a priori assumption on V (Du),
we get

∫

BR1

|DV (Du)|2 d x ≤ c



σ+

 

∫

BR2

kn(x) d x

!
2
n




 

∫

BR2

φ(|Du|)
n

n−2 d x

!
n−2

n

(64)

+
c

(R2 − R1)q

∫

BR2

φ(|Du|) d x

+
c

R2 − R1

∫

BR2

kn(x) d x + cσ
|BR2
|

n
n−1

(R2 − R1)n

for all radii with R
2 ≤ R1 < R2 ≤ R where the dependencies of the constant are given by c = c(n,ν, L, p, q).

Let λ > 1 and R
2 ≤ r < λr ≤ R and select

R1 = r +
λ− 1

4
r R2 = λr −

λ− 1
4

r

so that
R
2
≤ r < R1 < R2 < λr ≤ R.
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Consider a cut off function η ∈ C∞0 (Bλr) such that 0≤ η≤ 1, η= 1 on BR2
such that |∇η| ≤ C

(λ−1)r . By the Sobolev imbedding
theorem, we have

 

∫

BR2

|V (Du)|
2n

n−2 d x

!
n−2

n

≤

�

∫

Bλr

|ηV (Du)|
2n

n−2 d x

�
n−2

n

≤ c(n)

∫

Bλr

|D(ηV (Du))|2 d x

≤ c(n)

�

∫

Bλr

η2|D(V (Du))|2 d x +

∫

Bλr

|∇η|2|V (Du)|2 d x

�

.

Recalling that |V (t)|2 ∼ φ(t) and using previous inequality in (64) we get

∫

BR1

|DV (Du)|2 d x ≤ c



σ+

 

∫

BR2

kn(x) d x

!
2
n




∫

Bλr

|D(V (Du))|2 d x (65)

+
c

(λr − R2)2



σ+

 

∫

BR2

kn(x) d x

!
2
n




∫

Bλr

φ(|Du|) d x

+
c

(R2 − R1)q

∫

BR2

φ(|Du|) d x

+
c

R2 − R1

∫

BR2

kn(x) d x + cσ
|BR2
|

n
n−1

(R2 − R1)n
.

Our choice of R1, R2 implies that

R2 − R1 =
1
2
(λ− 1)r and λr − R2 =

1
4
(λ− 1)r

and so (65) gives

∫

Br

|DV (Du)|2 d x ≤ c



σ+

�

∫

BR

kn(x) d x

�
2
n





∫

Bλr

|D(V (Du))|2 d x (66)

+
c

(λ− 1)2r2



σ+

�

∫

BR

kn(x) d x

�
2
n





∫

Bλr

φ(|Du|) d x

+
c

(λ− 1)q rq

∫

BR

φ(|Du|) d x

+
c

(λ− 1)r

∫

BR

kn(x) d x + cσ
|BR2
|

n
n−1

(λ− 1)nrn
.

By the absolute continuity of the integral, we may choose R small enough to have

c

�

∫

BR

kn(x) d x

�
2
n

≤
1
4

and so, choosing σ ∈ (0,1) such that cσ ≤ 1
4 we have

c



σ+

 

∫

BR2

kn(x) d x

!
2
n


≤
1
2

.

Therefore (66) yields
∫

Br

|DV (Du)|2 d x ≤
1
2

∫

Bλr

|D(V (Du))|2 d x +
c

(λ− 1)nrn

+
c

(λ− 1)2r2

∫

BR

φ(|Du|) d x +
c

(λ− 1)q rq

∫

BR

φ(|Du|) d x .

Since previous estimate holds true for every R
2 ≤ r ≤ λr ≤ R, and for every λ ∈ (1, 2) we can use again Lemma 2.1 to conclude

∫

B R
2

|D(V (Du))|2 d x ≤
c

Rq

∫

BR

φ(|Du|) d x +
c

Rn
,

where we also used that R≤ 1.
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4 Proof of Theorem 1.1
For a function ρ ∈ C∞c (B1(0)), ρ ≥ 0, such that

∫

B1(0)
ρ d x = 1, let ρϵ be the corresponding family of mollifiers and set

aϵ(x ,ξ) =

∫

B1(0)

ρ(ω)a(x + ϵω,ξ) dω.

Let u ∈W 1,φ(Ω,Rn) be a weak solution to equation (7), fix a ball BR ⋐ Ω and let vϵ ∈ u+W 1,φ
0 (BR,Rn) be the unique solution to

the Dirichlet problem






div aϵ(x , Dvϵ) = 0 in BR

vϵ = u on ∂ BR.
(67)

Note that assumptions (3)–(5) imply the corresponding conditions

〈aϵ(x ,ξ)− aϵ(x ,η),ξ−η〉 ≥ νφ′′(|ξ|+ |η|)|ξ−η|2 (68)

|aϵ(x ,ξ)− aϵ(x ,η)| ≤ Lφ′′(|ξ|+ |η|)|ξ−η| (69)

|aϵ(x ,ξ)| ≤ Lφ′(|ξ|), (70)

while (6) yields
|aϵ(x ,ξ)− aϵ(x ,η)| ≤ |x − y|(kϵ(x) + kϵ(y))φ

′(|ξ|) (71)

where
kϵ = k ∗ρϵ.

Theorem 3.1 implies that V (Dvϵ) ∈W 1,2
loc (BR) and so we can use estimate in Theorem 3.2 to deduce that

∫

B r
2

|D(V (Dvϵ))|2 d x ≤
c
rq

∫

Br

φ(|Dvϵ|) d x+
c
rn

(72)





∫

B r
2

φ(|Dvϵ|)
n

n−2 d x





n−2
n

≤
c
rq

∫

Br

φ(|Dvϵ|) d x+
c
rn

(73)

for every r < R and where, since kϵ → k strongly in Ln, both the constant and the radius r can be chosen independently of ϵ.
By assumption (69) and since vϵ solves problem (67) we get

ν

∫

BR

|Dvϵ − Du|2φ′′(|Dvϵ|+ |Du|) d x ≤
∫

Ω

〈aϵ(x , Dvϵ)− aϵ(x , Du), Dvϵ − Du〉 d x

=

∫

BR

〈aϵ(x , Dvϵ), Dvϵ − Du〉 d x −
∫

Ω

〈aϵ(x , Du), Dvϵ − Du〉 d x

= −
∫

BR

〈aϵ(x , Du), Dvϵ − Du〉 d x

≤
∫

BR

|aϵ(x , Du)||Dvϵ − Du| d x ≤
∫

BR

φ′(|Du|)|Dvϵ − Du| d x

≤ ϵ

∫

BR

φ|Du|(|Dvϵ − Du|) d x + cϵ

∫

BR

(φ|Du|)
∗(φ′(|Du|)) d x

≤ ϵ

∫

BR

φ|Du|(|Dvϵ − Du|) d x + cϵ

∫

BR

φ(|Du|) d x ,

where we used (70), Young’s inequality (27) and (37). By the second equivalence of Lemma 2.4, previous estimate implies

ν

∫

BR

φ|Du|(|Dvϵ − Du|) d x ≤ ν

∫

BR

|Dvϵ − Du|2φ′′(|Dvϵ|+ |Du|) d x

≤ ϵ

∫

BR

φ|Du|(|Dvϵ − Du|) d x + cϵ

∫

BR

φ(|Du|) d x

and so, choosing ϵ sufficiciently small, also
∫

BR

φ|Du|(|Dvϵ − Du|) d x ≤ c

∫

BR

φ(|Du|) d x
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that, by virtue of (34), implies
∫

BR

φ(|Dvϵ|) d x ≤ c

∫

BR

φ(|Du|) d x . (74)

Since assumption (2) guaratees the reflexivity of the space W 1,φ(BR), from previous estimate we deduce that there exists
v ∈W 1,φ(BR) such that

vϵ * v weakly in W 1,φ(BR).

Inserting (74) in (72), we get
∫

B r
2

|D(V (Dvϵ))|2 d x ≤
c
rq

∫

BR

φ(|Du|) d x+
c
rn

(75)

i.e. the sequence V (Dvϵ) is bounded in W 1,2
loc (BR). Therefore there exists w ∈W 1,2

loc (BR) such that

V (Dvϵ)* w weakly in W 1,2
loc (BR)

and
V (Dvϵ)→ w strongly in L2

loc(BR).

The continuity of the operator V (ξ) together with the uniqueness of the weak limit implies that w= V (Dv) and so that

V (Dvϵ)* V (Dv) weakly in W 1,2
loc (BR)

and
V (Dvϵ)→ V (Dv) strongly in L2

loc(BR)

and, up to a subsequence, also
V (Dvϵ)→ V (Dv) a.e. in Br , r < R.

Using Fatou’s Lemma in the left hand side of (75), we obtain
∫

B r
2

|D(V (Dv))|2 d x ≤
c
rq

∫

BR

φ(|Du|) d x+
c
rn

. (76)

We are left to prove that v ≡ u. To this aim, we first observe that v solves (1). Indeed, for every ϕ ∈ C1
c (Br) where Br ⊂ BR, we

have
∫

BR

〈a(x , Dv), Dϕ〉 d x

=

∫

BR

〈a(x , Dv)− aϵ(x , Dv), Dϕ〉 d x +

∫

BR

〈aϵ(x , Dv)− aϵ(x , Dvϵ), Dϕ〉 d x

+

∫

BR

〈aϵ(x , Dvϵ), Dϕ〉 d x

=

∫

BR

〈a(x , Dv)− aϵ(x , Dv), Dϕ〉 d x +

∫

BR

〈aϵ(x , Dv)− aϵ(x , Dvϵ), Dϕ〉 d x ,

where we used that vϵ solves problem (67). Therefore, we are left to prove that the right hand side of previous equality vanishes
as ϵ→ 0. This will come if we show that

lim
ϵ→0

Iϵ1 := lim
ϵ→0

�

�

�

�

�

∫

BR

〈a(x , Dv)− aϵ(x , Dv), Dϕ〉 d x

�

�

�

�

�

= 0

lim
ϵ→0

Iϵ2 := lim
ϵ→0

�

�

�

�

�

∫

BR

〈aϵ(x , Dv)− aϵ(x , Dvϵ), Dϕ〉 d x

�

�

�

�

�

= 0.

For what concerns Iϵ1 we have by the definition of aϵ and by (71) that

lim
ϵ→0

Iϵ1 ≤ lim
ϵ→0
||Dϕ||L∞(Br )

∫

Br

|a(x , Dv)− aϵ(x , Dv)| d x

≤ lim
ϵ→0
||Dϕ||L∞(Br )

∫

Br

�

�

�

�

�

a(x , Dv)−
∫

B1(0)

ρ(ω)a(x + ϵω, Dv) dω

�

�

�

�

�

d x

≤ lim
ϵ→0
||Dϕ||L∞(Br )

∫

Br

∫

B1(0)

ρ(ω)
�

�

�a(x , Dv)− a(x + ϵω, Dv)
�

�

� dω d x
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≤ lim
ϵ→0
ϵ||Dϕ||L∞(Br )

∫

Br

∫

B1(0)

ρ(ω)
�

�

�(k(x) + k(x + ϵω))φ′(|Dv|)
�

�

� dω d x

≤ lim
ϵ→0
ϵ||Dϕ||L∞(Br )

∫

Br

(k(x) + kϵ(x))φ
′(|Dv|) d x

≤ lim
ϵ→0
ϵ||Dϕ||L∞(Br )

�

∫

Br

(k(x) + kϵ(x))
n

�
1
n
�

∫

Br

φ′(1+ |Dv|)
n

n−1 d x

�
n−1

n

≤ c lim
ϵ→0
ϵ||Dϕ||L∞(Br )

�

∫

Br

(k(x) + kϵ(x))
n

�
1
n
�

∫

Br

φ(1+ |Dv|)
n

n−2 d x

�
n−2

n

(77)

where we used that φ′(t) is increasing and that

φ′(1+ t)∼
φ(1+ t)

1+ t
≤ φ(1+ t).

Now observing that, by the Sobolev imbedding Theorem, (76) implies that

φ(|Dv|)
n

n−2 ∼ V (Dv)
2n

n−2 ∈ L1
loc(BR)

and since kϵ → k strongly in Ln(Ω), we deduce that the right hand side of (77) goes to zero. For Iϵ2 , using the definition of aϵ and
(69), we observe that

lim
ϵ→0

Iϵ2 ≤ lim
ϵ→0
||Dϕ||L∞(Br )

∫

Br

|aϵ(x , Dv)− aϵ(x , Dvϵ)| d x

≤ lim
ϵ→0
||Dϕ||L∞(Br )

∫

Br

∫

B1(0)

ρ(ω)
�

�

�a(x + ϵω, Dv)− a(x + ϵω, Dvϵ)
�

�

� dω d x

≤ lim
ϵ→0
||Dϕ||L∞(Br )

∫

Br

|Dv − Dvϵ|φ′′(|Dv|+ |Dvϵ|) d x

≤ lim
ϵ→0
||Dϕ||L∞(Br )

∫

Br

φ′|Dv|(|Dv − Dvϵ|) d x

≤ lim
ϵ→0

cδ||Dϕ||L∞(Br )

∫

Br

(φ|Dv|)
∗
�

φ′|Dv|(|Dv − Dvϵ|)
�

d x +δ

∫

Br

φ|Dv|(1) d x

≤ lim
ϵ→0

cδ||Dϕ||L∞(Br )

∫

Br

φ|Dv|(|Dv − Dvϵ|) d x +δ

∫

Br

φ|Dv|(1) d x

≤ lim
ϵ→0

cδ||Dϕ||L∞(Br )

∫

Br

|V (Dv)− V (Dvϵ)|2 d x +δ

∫

Br

φ(|Dv|) d x ,

where we used Lemma 2.5 , Young’s inequality at (27) and Lemma 2.6. Since V (Dvϵ)→ V (Dv) strongly in L2
loc(BR), we get

lim
ϵ→0

Iϵ2 ≤ δ
∫

Br

φ(|Dv|) d x

and then limϵ→0 Iϵ2 = 0 follows letting δ→ 0. Therefore we obtain






div a(x , Dv) = 0 in BR

v = u on ∂ BR

and then the conclusion follows observing that v = u a.e. in BR, since the solution of previous problem is unique.
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