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Abstract

The dynamical functional particle method (DFPM) is a method for solving equations by using a damped
second order dynamical system. The dynamical system is solved by a symplectic method that is espe-
cially tailored for conservative systems. In this work we have extended DFPM to convex optimization
problems with constraints. The method is tested on linear eigenvalue problems with normalization and
orthogonallity constraints as well as some simple nonlinear convex optimization problems.

1 Introduction
Consider the problem of solving a system of nonlinear equations

F(v) = 0, F :Rn→Rn. (1)

The idea behind the dynamical functional particle method (DFPM), [5], is to solve (1) through a damped second order dynamical
system of the form

ü+ηu̇= F(u) (2)

such that limt→t∗ F(u) = 0, t∗ ≤∞. The parameter η > 0 is the damping parameter that can be chosen in order to get fast
convergence. It can be proven that if there is a convex potential V (u) such that F = −∇V then DFPM will converge to the
minimum of V , i.e., the solution of

min
u∈Rn

V (u),

or when ∇V = −F = 0, see [5] and [7]. What makes DFPM using (2) especially appealing is the use of symplectic methods [6]
since for a conservative system these methods will approximately retain the total energy of the system. This means that for a
damped system a symplectic method will approximately follow the exact decay of the energy .

In [3] it is shown that DFPM using a symplectic Euler for finding the extreme states of linear and nonlinear Schrödinger
equations is faster for very large problems than other competing methods. The results also shows that DFPM is as fast or faster
than other methods for finding the smallest (or largest) eigenvalues of a linear eigenvalue problem. Further motivation for using
DFPM is given in [2] where it is shown that the method is competitive with the best iterative methods for solving linear systems
of equations. We stress that DFPM is very versatile and not restricted to linear problems. Indeed, in [8] we used DFPM to solve a
highly nonlinear Schrödinger equation with nonlinear constraints and showed that it is a very interesting alternative to the so
called imaginary time approach.

In this paper we will generalise DFPM to include constraints, i.e.,

minu∈Rn V (u)
s.t g(u) = 0 (3)

where g : Rn→ Rm, m< n. We will assume that (3) is convex. Problems of the form (3) have been solved in the context of the
nonlinear Schrödinger describing Bose-Einstein condensate [8]. However, the approach in this paper is different since we do
not use projection to satisfy the constraints but instead solve additionally damped dynamical equations, see next section. We
will use symplectic Euler and show how the time step and damping parameter can be chosen in order to get an optimal local
convergence rate. Based on our earlier successfull results for non-constrained problems we strongly believe that DFPM for (3)
will be competitive to other methods. However, in this paper we restrict ourselves to small problems to show the properties of the
proposed method and leave a more extensive comparative test for future research.

The outline of the paper is the following. In Section 2 we derive DFPM for solving (3) and then use a linear analysis to give a
necessary condition for asymptotic convergence. We then show how a Symplectic Euler can be used applied to a simple nonlinear
problem with nonlinear constraints. In Section 3 we apply DFPM, the linear analysis, symplectic Euler and optimal parameters to
the linear eigenvalue problem with norm and orthogonality constraints and give some numerical tests.
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2 DFPM using damped constraints
Define the Lagrange function of (3) as

L(u,µ) = V (u) + g(u)Tµ= V (u) +
m
∑

j=1

g j(u)µ j ,

where µ= (µ1(u), . . . ,µm(u))
T is a vector with the Lagrange parameters. The first order condition for a minimum is

∇u L(u,µ) =∇V (u) +∇g(u)µ= 0, g(u) = 0 (4)

where ∇g(u) = (∇g1(u), . . . ,∇gm(u)). Here, we define gradients as column vectors and for m> 1 the Jacobian ∇g is the matrix
with the columns ∇g j(u). We will formulate DFPM for solving (3) based on the dynamical system

ü+ηu̇= −∇V (u)−∇g(u)µ (5)

together with the constraints g(u) = 0. A well known approach to solve (5) is to use projection, i.e., at every time step k of the
numerical scheme projection is used such that the iterate uk implies g(uk) = 0. For some simple constraints such as linear and
quadratic constraints there are methods tailored for staying at the manifold but generally it is necessary to solve a nonlinear
system of equations at each time step, for details see [6] Chapter IV.4 and references therein. We refer also to [8] where DFPM is
applied to the nonlinear Schrödinger equation including quadratic constraints (normalization and angular momentum).

However, the method of projection is rather restrictive depending on the type of constraints and we would like to avoid
the additional iterations for the projection. Therefore, we instead introduce the approach of satisfying the constraints by an
additional damped dynamical system

g̈i +η ġi = −ki gi , ki > 0. (6)
The equations in (6) are used to derive explicit expressions of µ in (5), see the next section. In other words, the idea is to
approach the manifold dynamically and not inforcing the constraints at every time step.

We use (6) to find explicit expressions for the Lagrange parameters µ introduced in the introduction. We have

ġi =∇gT
i u̇, g̈i = u̇T∇2 gi u̇+∇gT

i ü

and inserting this and the expression for ü in (5) in (6) gives

u̇T∇2 gi u̇+∇gT
i (−ηu̇−∇V −∇giµ) +η∇gT

i u̇= −ki gi

or
∇gT

i (u)∇gi(u)µ= ki gi(u)−∇gi(u)
T∇V (u) + u̇T∇2 gi(u)u̇, i = 1, . . . , m. (7)

The equations in (7) can be gathered together into a system

∇g(u)T∇g(u)µ(u, u̇) = K g(u)−∇g(u)T∇V (u) + h(u, u̇), (8)

K = diag(k1, . . . , kn), hi(u, u̇) = u̇T∇2 gi u̇
where a unique solution exists if ∇g has full rank. Solving for µ gives

µ(u, u̇) = −(∇g(u)T∇g(u))−1K g(u) + (∇g(u)T∇g(u))−1∇g(u)T∇V (u)+
+(∇g(u)T∇g(u))−1h(u, u̇), (9)

where the second term is ∇g(u)+∇V (u). If we assume that u→ u∗, t →∞ the two last terms tends to zero, i.e., µ(u, u̇)→
∇g(u∗)+∇V (u∗). Furthemore, we note that the last term tends to zero to second order in u̇. Moreover, ∇V (u) +∇g(u)µ→
(I −∇g(u∗)∇g(u∗)+)∇V (u∗),i.e., the projected gradient.

2.1 Linear stability analysis

Let us formulate DFPM for our problem as
ü+ηu̇= −∇V −∇gµ(u, u̇). (10)

where µ(u, u̇) is given by the solution of the system in (8). We can write (10) as the system

u̇= v

v̇ = −∇V −∇gµ(u, v)−ηv
(11)

with corresponding Jacobian

J(u, v) =

�

0 I
−∇2V (u)−

∑n
j=1∇

2 g j(u)µ j(u, v)−∇g(u)∇uµ(u, v)T −v∇vµ(u, v)T −ηI

�

. (12)

At the stationary point we have
µ(u∗, 0) = (∇gT∇g)−1∇gT∇V,

giving

J(u∗, 0) =

�

0 I
−∇2V (u∗)−

∑n
j=1∇

2 g j(u∗)µ j(u∗, 0)−∇g∇uµ(u∗, 0)T −ηI

�

and we conclude that the method is asymptotically stable if the eigenvalues of

B =∇2V (u∗) +
n
∑

j=1

∇2 g j(u
∗)µ j(u

∗, 0) +∇g(u∗)∇uµ(u
∗, 0)T (13)

are all positive.
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2.2 Symplectic Euler

What makes DFPM using (5),(6) especially appealing is the use of symplectic methods [6] since for a conservative system these
methods will approximately retain the total energy of the system. This means that for a damped system a symplectic method will
approximately follow the exact decay of the energy (decay because of dissipation).

It is straight forward to apply a symplectic Euler [6] method to the system (11). We assume that we have a constant time step
∆t and for simplicity a constant damping parameter η. Using (11) the symplectic Euler reads

uk+1 = uk +∆t vk
vk+1 = vk +∆t (−∇V (uk+1)−∇g(uk+1)µ(uk+1, vk)−ηvk)

(14)

Close to the stationary solution u= u∗, v∗ = 0 the convergenc of (14) will be determined by the linear system

ẅ+ηẇ= −Bw

with B given in (13). Assume that the matrix B has eigenvalues λi(B)> 0 and the dynamical system is asymptotically convergent.
From a linear analysis of the Symplectic Euler method, see [2], we get that the number of iterations until convergence is

n∝

√

√

√λmax (B)
λmin(B)

. (15)

if parameters are chosen optimally as

ηopt =
2
p

λmin(B)λmax (B)
p

λmin(B) +
p

λmax (B)
,∆topt =

2
p

λmin(B) +
p

λmax (B)
. (16)

It is not possible to find parameters optimally as in (16) for the general formulation of DFPM in (5) since the eigenvalues of B are
only accessible for specific problems settings. However, it should be possible to iteratively choose the damping and time step
according to some merit function used in Lagrange Multiplier Methods, see [1] but this will be future research. For the linear
eigenvalue problem we discuss the problem of optimal parameter choice further in Section 3.3.

2.3 Nonlinear optimization example

We consider the simple nonlinear problem

minu∈R4 V (u) = eu2
1+u2

2+u2
3+u2

4

s.t g1 = u3 − e−u1−u2 = 0, g2 = u4 − e−u2−u3 = 0.
(17)

The solution u∗ = (0.21859539,0.37508690,0.55228984,0.39559008)T is found both by using DFPM and Matlabs function
fmincon. The eigenvalues of B in (13) where calculated using the numerical solution and the parameters was then chosen as
k1 = k2 = 1,η = ηopt where ∆t =∆topt where ηopt ,∆opt are given by (29). The initial guess in DFPM was chosen with uniformly
distributed elements in [0, 1]. The convergence is shown in Figure 1. We note that convergence does not imply that the norm of

0 5 10 15 20
Iterations

10-5

10-4

10-3

10-2

10-1

100

‖∇L(uk, vk)‖
|g1(uk)|
|g2(uk)|
‖u− u∗‖

Figure 1: Convergence for problem (17) with η and ∆t chosen optimally according to (29).

the Lagrangian is monotonically decreasing. Indeed, the global convergence properties of DFPM using damped constraints shown
here are not known.
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3 Non-defect linear eigenvalue problems
Consider the eigenvalue problem

Au= λu, uT u= 1, (18)

where A∈ Rn×n is assumed to be positive definite. Assume that the eigenvalues are distinct (non-defect eigenvalue problem) and
sorted as 0< λ1 < λ2 < · · ·< λn then the solution of

minu∈Rn V (u) = 1
2 uT Au

s.t g(u) = 1
2 (u

T u− 1) = 0
(19)

is the eigenvector u1 corresponding to the smallest eigenvalue λ1. Furthermore,

λ1 = uT
1 Au1.

3.1 First eigenvalue using orthogonality constraint

We follow the general approach and from (18) we define the corresponding Lagrange function

L(u,µ) =
1
2

uT Au+µ
1
2
(uT u− 1).

where
∇Lu(u,µ) = Au+µu= 0.

Using the idea of damped constraints we formulate DFPM as

ü+ηu̇= −Au−µu (20)

g̈ +η ġ = −kg, (21)

where k > 0. We have
∇g = u,∇2 g = I ,∇V = Au

that inserted in (7) gives

uT uµ= k
1
2
(uT u− 1)− uT Au+ u̇T u̇

or

µ(u, u̇) =
1

uT u
(−uT Au+ k

1
2
(uT u− 1) + u̇T u̇).

Note that µ(u)→−λ1 if g(u)→ 0, u̇→ 0. From (20) we get

ü+ηu̇= −Au−µ(u, u̇)u

that we may write as a system
u̇= v

v̇ = −Au−µ(u, v)u−ηv
(22)

At a stationary point we have u= u1, u̇= v = 0,µ= −λ1 which is, of course, the solution of the original eigenvalue problem.
Theorem 3.1. DFPM given by (20), (21) is asymptotically convergent to the eigenvector u1 and µ1(u1, 0) = −λ1 in (9). Furthermore,
the matrix B in (13) has positive eigenvalues k,λ2 −λ1,λ3 −λ1, . . . ,λn −λ1.

Proof. We need to show that (22) is stable at u= u1, v = 0. Therefore, we consider the Jacobian of the right hand side in (22)

J(u, v) =
�

0 I
−A−µI − u∇uµ

T −ηI − v∇vµ
T

�

where

∇uµ=
1

uT u
(−2Au+ ku− 2uµ),∇vµ=

1
uT u
(2v)

and
∇uµ(u1) = ku1,∇v(u1) = 0

which gives

J(u1, 0) =
�

0 I
−A+λ1 I − ku1uT

1 −ηI .

�

(23)

Since the damped linear system
ü+ηu̇= (−A+λ1 I − (k+λ1)u1uT

1 )u
has the corresponding Jacobian as in (23) DFPM will converge locally if the eigenvalues of

B = A−λ1 I + ku1uT
1

are positive. Let A= UΛU T be a similarity transformation of A where U T U = I and Λ= diag(λ1, . . . ,λn). Then we have

U T BU = diag(λ1, . . . ,λn)−λ1 I + kU T u1(U
T u1)

T

and since U T u1 = e1
U T BU = diag(k,λ2 −λ1, . . . ,λn−1 −λ1,λn −λ1)

i.e., we have derived the eigenvalues of B where λ(B)> 0 and that DFPM is locally asympototic convergent.
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3.2 Finding the whole spectrum

Assume that we know the eigenvalues λ1, . . . ,λm−1 and the normalized eigenvectors u1, . . . , um−1 and want to find λm and
corresponding eigenvector um. The unknown eigenvalue and eigenvector is given by the minimization problem

minu∈Rn V (u) = 1
2 uT Au

s.t uT
1 u= 0, . . . , uT

m−1u= 0, (uT u− 1)/2= 0. (24)

From (5) we get DFPM as

ü+ηu̇= −Au+
m−1
∑

i=1

µiui +µmu (25)

g̈i +η ġi = −ki gi , i = 0, . . . , m− 1 (26)

where gm = (uT u− 1)/2= 0, gi = uT
i u= 0, i = 1, . . . , m− 1 giving ∇gm = u, ∇gi = ui , i = 1, . . . , m− 1.

Theorem 3.2. DFPM given by (25), (26) is asymptotically convergent to the eigenvector um and µm(um, 0) = −λm in (9). Furthermore,
the matrix B in (13) has positive eigenvalues k1, . . . , km−1, km,λm+1 −λm,λm+2 −λm, . . . ,λn −λm.

Proof. We want to show that DFPM in this case is asymptotically stable and therefore we need to find the Jacobian

J(u, v) =

�

0 I
−∇2V −

∑n
j=1∇

2 g jµ j(u, v)−∇g∇uµ
T −v∇vµ

T −ηI

�

.

and evaluate it at the stationary point u = um, v = 0. The difficult part is to find the derivative ∇uµ and thus we first consider the
expression for µ. It is easy to see that

∇g = (u1, . . . , um−1, u) = (U , u) ∈ Rn×m

with an obvious definition of U giving

∇gT∇g =
�

U T

uT

�

(U , u) =
�

I U T u
uT U uT u

�

with an inverse

(∇gT∇g)−1 =
1

uT u− uT UU T u

�

uT uI + U T uuT U −U T u
−uT U 1

�

.

Furthermore, from (9) we have

µ= −(∇gT∇g)−1K g + (∇gT∇g)−1∇gT∇V + (∇gT∇g)−1h,

where
K = diag(k1, . . . , km), hi = −u̇T∇2 gi u̇

which in this case looks like

µ=
1

uT u− uT UU T u

�

uT uIm−1 + U T uuT U −U T u
−uT U 1

��

−K g +
�

U T

uT

�

Au+ h(u, u̇)
�

,

hi(u, u̇) = 0, i = 1, . . . , m− 1, hm = −u̇T u̇.

We now derive ∇uµ(um, 0). At the stationary point we have g(um) = 0, U T um = 0, U T Au= Λm−1U T um = 0 and taking this into
account by dropping all terms zero at um we do an implicit derivation and get

uT u∇uµ+ 2µuT = −K∇gT +
∂

∂ u

�

uT uI −U T u
−uT U 1

��

U T

uT

�

Au

or

uT u∇uµ+ 2µuT = −K
�

U T

uT

�

+
∂

∂ u

�

uT uI −U T u
−uT U 1

��

U T Au
uT Au

�

=

−K
�

U T

uT

�

+
∂

∂ u

�

uT uU T Au− uT AuU T u
−uT UU T Au+ uT Au

�

=

−K
�

U T

uT

�

+
�

uT uU T A− uT AuU T

2uT A

�

.

At the stationary point we have uT Au= λm, U T A= diag(λ1, . . . ,λm−1)U T ,Au= λmum,uT u= 1 giving

uT u∇uµ+ 2µuT = −K
�

U T

uT

�

+
�

uT uU T A− uT AuU T

2uT A

�

and inserting u= um

∇uµ(um, 0) = −K
�

U T

uT
m

�

+
�

Λm−1U T −λmU T

2λmuT
m

�

− 2µ(um, 0)uT
m.
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Since ∇g(um) = (U , um) we get

∇g(um)∇uµ(um, 0)T = − (U , um)K
�

U T

uT
m

�

+ (U , um)
�

Λm−1U T −λmU T

2λmuT
m

�

− 2 (U , um)µ(um, 0)uT
m

or with µ(um, 0)T = (0m−1,λm)

∇g(um)∇uµ(um, 0)T = − (U , um)K
�

U T

uT
m

�

+ UΛm−1U T −λmUU T + 2λmumuT
m − 2λmumuT

m =

− (U , um)K
�

U T

uT
m

�

+ UΛm−1U T −λmUU T .

Furthermore,
n
∑

j=1

∇2 g j(um)µ j(um, 0) =∇2 gm(um)µm(um, 0) = −λm I

giving the matrix of interest

B = A+ (U , um)K
�

U T

uT
m

�

− UΛm−1U T +λmUU T +λm I .

A similarity transformation with Q =
�

U , Ū
�

gives

QT BQ = Λ+
�

U T

Ū T

�

(U , um)K
�

U T

uT
m

�

�

U , Ū
�

−
�

U T

Ū T

�

UΛm−1U T
�

U , Ū
�

+

λm

�

U T

Ū T

�

UU T
�

U , Ū
�

−λm I .

or

QT BQ = Λ+
�

Im−1 0
0 Ū T um

�

K
�

Im−1 U T

0 uT
mŪ

�

−
�

Im−1
0

�

Λm−1 (Im−1, 0)+

λm

�

Im−1
0

�

(Im−1, 0)−λm I .

Using Ū T um = e1 we get

QT BQ = Λ+
�

Im−1 0
0 e1

��

Km−1 0
0 km

��

Im−1 U T

0 eT
1

�

−
�

Λm−1 0
0 0

�

+

λm

�

Im−1 0
0 0

�

−λm I

or

QT BQ = Λ+
�

Km−1 0
0 kme1eT

1

�

−
�

Λm−1 0
0 0

�

+λm

�

Im−1 0
0 0

�

−λm I

which can be simplified to

QT BQ = diag (k1, . . . , km−1, km,λm+1 −λm,λm+2 −λm, . . . ,λn −λm) (27)

showing that λ(B)> 0 and that DFPM is locally asymptotic convergent and the eigenvlaues of B.

3.3 Optimal parameter choice

Consider the matrix in (27), i.e., the eigenvalues of B. From (15) we see that in order not to slow down the convergence the
damping paramaeters ki should satisfy

λmin(B)< ki < λmax (B), i = 1, . . . , m

and with this choice the optimal parameters are determined by the remaining λi(B) = λi −λm, i = m+ 1, . . . , n. Again, from the
linear analysis we get

n∝
√

√ λn −λm

λm+1 −λm
(28)

and the optimal parameter choice is

ηopt =
2
p

(λm+1 −λm)(λn −λm)
p

λm+1 −λm +
p

λn −λm

,∆topt =
2

p

λm+1 −λm +
p

λn −λm

. (29)

Calculating the optimal parameters require the eigenvalues λm+1,λm,λn of A which obviously are not possible to find exactly in
general. However, in many applications A is attained from a discretization procedure and the size is depending on some parameter
h where smaller h will give a larger size of A. Therefore, an approximation of the eigenvalues can be efficiently extrapolated for
some larger h and used to get approximate damping and time step parameters, see [2]. If extrapolation is not applicable and A
has known properties such as diagonally dominance, perturbation analysis is an option [2].
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3.4 Numerical tests

We have chosen to show how DFPM works for the linear eigenvalue problem with norm constraint and orthogonality constraint.
The purpose of these tests is not to show the efficiency of the method, which can be seen in [8, 2], only to give some examples of
the general approach using damped constraint equations. The parameters in the method as well as the time step of the symplectic
method are chosen more or less optimal and it is left for future research to derive efficient ways of adaptively calculate these
parameters during the iterations. The problem we solve numerically is

minu∈Rn V (u) = 1
2 uT Au

s.t g1 = uT
1 u= 0, g2 = (uT u− 1)/2= 0. (30)

where A ∈ R100×100 is randomly chosen as symmetric positive definite and the eigenvector u1 corresponding to the smallest
eigenvalue is numerically calculated in Matlab for convenience (could of course be found by DFPM). The parameters k1 = k2 =
2.4409,η= ηopt and ∆t =∆topt where ηopt ,∆opt are given by (29). The convergence is shown in Figure 2.

0 20 40
Iterations

10-8

10-6

10-4

10-2

100

102

‖∇L(uk, vk)‖
|g1(uk)|
|g2(uk)|
|uTAu− λ2|

Figure 2: Convergence for problem (30) with η and ∆t chosen optimally according to (29).

We remark that there are starting points that do not give convergence. Further, we see that the error in the eigenvalue is
very much more accurate than the norm of the Lagrangian which is consistent with the behaviour of other methods for finding
eigenvalues, see [4].
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