Subdivision Schemes for Geometric Modelling

Kai Hormann

University of Lugano

Outline

- Sep 5 - Subdivision as a linear process
- basic concepts, notation, subdivision matrix

Sep 6 - The Laurent polynomial formalism

- algebraic approach, polynomial reproduction

Sep 7 - Smoothness analysis

- Hölder regularity of limit by spectral radius method
- Sep 8 - Subdivision surfaces
overview of most important schemes \& properties

polygon subdivision

- even stencil [1] odd stencil [1,1]/2 interpolatory C^{0} limit curve (piecewise linear)
cubic B -spline subdivision
even stencil [1,6,1]/8 odd stencil [1,1]/2 approximating C^{2} limit curve (piecewise cubic)

4-point scheme

- even stencil [1] odd stencil [$-1,9,9,-1$]/16 interpolatory C^{1} limit curve (non-polynomial)

primal schemes

- even and odd stencil are both symmetric
- even stencil: modify old points
odd stencil: insert new points (between old points) point \rightarrow point, edge \rightarrow point
dual schemes
- insert two new points (between old points) discard old points
point \rightarrow edge, edge \rightarrow edge

Chaikin's corner cutting

Example

$$
p_{2 i}^{j+1}=\frac{3}{4} p_{i}^{j}+\frac{1}{4} p_{i+1}^{j}, \quad p_{2 i+1}^{j+1}=\frac{1}{4} p_{i}^{j}+\frac{3}{4} p_{i+1}^{j}
$$

even stencil [3,1]/4 odd stencil [1,3]/4
invariant neighbourhood size: 2

- local subdivision matrix eigenvalues: $1,1 / 2$

$$
S=\left(\begin{array}{ll}
\frac{3}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{3}{4}
\end{array}\right)
$$

- limit stencil [1,1]/2
note: even/odd stencil are symmetric to each other

refinement rules

even stencil $\left[\ldots, \alpha_{2}, \alpha_{1}, \alpha_{0}, \alpha_{-1}, \alpha_{-2}, \ldots\right]$
odd stencil $\quad\left[\ldots, \beta_{2}, \beta_{1}, \beta_{0}, \beta_{-1}, \beta_{-2}, \ldots\right]$
rules $\quad p_{2 i}^{j+1}=\sum_{k} \alpha_{k} p_{i-k}^{j}, \quad p_{2 i+1}^{j+1}=\sum_{k} \beta_{k} p_{i-k}^{j}$
combine stencils into subdivision mask

$$
\begin{aligned}
\boldsymbol{a} & =\left[\ldots, \alpha_{2}, \beta_{1}, \alpha_{1}, \beta_{0}, \alpha_{0}, \beta_{-1}, \alpha_{-1}, \beta_{-2}, \alpha_{-2}, \ldots\right] \\
& =\left[\ldots, a_{4}, a_{3}, a_{2}, a_{1}, a_{0}, a_{-1}, a_{-2}, a_{-3}, a_{-4}, \ldots\right]
\end{aligned}
$$

- one single refinement rule $p_{i}^{j+1}=\sum_{k} a_{i-2 k} p_{k}^{j}$

Masks of the schemes so far

polygon subdivision

$$
a=[1,2,1] / 2
$$

Chaikin's corner cutting

$$
a=[1,3,3,1] / 4
$$

cubic B-spline scheme

$$
a=[1,4, \underline{6}, 4,1] / 8
$$

4-point scheme

$$
a=[-1,0,9,16,9,0,-1] / 16
$$

Laurent polynomials

Definition

given a sequence $\boldsymbol{c}=\left\{c_{i}: i \in \mathbb{Z}\right\}$, we call

$$
c(z)=\sum_{i \in \mathbb{Z}} c_{i} z^{i}
$$

the z-transform of c

- if \boldsymbol{c} is finitely supported, then $c(z)$ is a Laurent polynomial
- for a subdivision scheme with mask \boldsymbol{a}, we call the Laurent polynomial $a(z)$ the symbol of the scheme

Symbols of the schemes so far

polygon subdivision

$$
\boldsymbol{a}=[1,2,1] / 2 \quad a(z)=\frac{1}{2 z}(1+z)^{2}
$$

Chaikin's corner cutting

$$
\boldsymbol{a}=[1, \underline{3}, 3,1] / 4 \quad a(z)=\frac{1}{4 z^{2}}(1+z)^{3}
$$

cubic B-spline scheme

$$
\boldsymbol{a}=[1,4,6,4,1] / 8 \quad a(z)=\frac{1}{8 z^{2}}(1+z)^{4}
$$

4-point scheme

$$
\begin{aligned}
\boldsymbol{a}=[-1,0,9,16,9,0,-1] / & 16 \\
& a(z)=\frac{-1+4 z-z^{2}}{16 z^{3}}(1+z)^{4}
\end{aligned}
$$

Symbols and convergence

necessary condition for convergence

 coefficients of even/odd stencil sum to 1$$
\sum_{i \in \mathbb{Z}} \alpha_{i}=\sum_{i \in \mathbb{Z}} a_{2 i}=1, \quad \sum_{i \in \mathbb{Z}} \beta_{i}=\sum_{i \in \mathbb{Z}} a_{2 i+1}=1
$$

equivalent to

$$
a(-1)=0, \quad a(1)=2
$$

implies

$$
a(z)=(1+z) b(z), \quad b(1)=1
$$

Subdivision in terms of symbols

consider the z-transform $p^{j}(z)$ of the data $\left\{p_{i}^{j}\right\}$ at level j, then the refinement rule

$$
p_{i}^{j+1}=\sum_{k} a_{i-2 k} p_{k}^{j}
$$

can be written as

$$
p^{j+1}(z)=a(z) p^{j}\left(z^{2}\right)
$$

very neat and compact way of writing the rule

- note: we are not interested in the polynomials as such, but rather in their coefficients

Subdivision of differences

let Δ denote the (finite) difference operator on sequences

$$
\Delta \boldsymbol{c}=\left\{c_{i}-c_{i-1}: i \in \mathbb{Z}\right\}
$$

if $a(z)=(1+z) b(z)$ is the symbol of a convergent subdivision scheme, then $b(z)$ is the symbol of the scheme for the differences

$$
\Delta p_{i}^{j+1}=\sum_{k} b_{i-2 k} \Delta p_{k}^{j}
$$

Subdivision of differences

Example

- cubic B-spline scheme
$a(z)=\frac{1}{8 z^{2}}(1+z)^{4}=(1+z) b(z), \quad b(z)=\frac{1}{8 z^{2}}(1+z)^{3}$
corresponding scheme for the differences mask $b=[1,3,3,1] / 8$
$\begin{aligned} & \text { local subdivision matrix } \\ & \text { eigenvalues: } 1 / 2,1 / 4\end{aligned} \quad S=\left(\begin{array}{ll}\frac{3}{8} & \frac{1}{8} \\ \frac{1}{8} & \frac{3}{8}\end{array}\right)$
eigenvalues: $1 / 2,1 / 4$
maps differences (edge vectors) to 0
can we conclude that the scheme converges?

Symbols and masks

multiplying a symbol by $(1+z)$

- write down the mask

$$
[1,2,3,-1]
$$

- write it again, shifted to the left $[1,2,3,-1]$ add both rows [1,3,5,2,-1]
dividing a symbol by ($1+z$)
check, if sum of odd/even coefficients is the same write down the mask

$$
[1,4,6,4,1] / 8
$$

copy first coefficient, then take differences

$$
[1,3,3,1] / 8
$$

Definition

a sequence $\boldsymbol{c}=\left\{c_{i}: i \in \mathbb{Z}\right\}$ is called polynomial of degree d, if there exists some polynomial π of degree d such that $c_{i}=\pi(i)$ for all $i \in \mathbb{Z}$

Examples

- (... $3,3,3,3, \ldots)$ is of degree 0
" (..., $-2,1,4,7, \ldots$) is of degree 1
= if \boldsymbol{c} is polynomial of degree d, then

$$
\Delta^{d+1} \boldsymbol{c}=\mathbf{0} \quad \Leftrightarrow \quad(1-z)^{d+1} c(z)=0
$$

Symbols and masks

multiplying a symbol by ($1-z$)

- write down the mask

$$
[1,-2,3,-1]
$$

- write it negated, shifted to left $[-1,2,-3,1]$ add both rows

$$
[-1,3,-5,4,-1]
$$

dividing a symbol by $(1-z)$
check, if coefficients add to zero write down the mask
copy first coefficient negated, then take differences

$$
\left[\begin{array}{c}
1,-4,6,-4,1] / 8 \\
{[-1,3,-3,1] / 8}
\end{array}\right.
$$

suppose the initial data \boldsymbol{p}^{0} is polynomial of degree d and the symbol of the scheme is

$$
a(z)=(1+z)^{d+1} b(z)
$$

then the refined data \boldsymbol{p}^{j} at any level j is polynomial of degree d, and so is the limit curve
in fact, condition (\star) is necessary and sufficient for the scheme being able to generate polynomials of degree d

Example

cubic B-spline scheme $\quad a=[1,4,6,4,1] / 8$ symbol $a(z)=\frac{1}{8 z^{2}}(1+z)^{4}$ generates polynomials up to degree 3 initial data $\quad p^{0}=(\ldots, 9,4,1,0,1,4,9, \ldots)$

- refined data $\boldsymbol{p}^{1}=(\ldots, 10,5,2,1,2,5,10, \ldots) / 4$

$$
p^{2}=(\ldots, 14,9,6,5,6,9,14, \ldots) / 16
$$

limit curve is a quadratic polynomial, but not the one from which the initial data was sampled no polynomial reproduction

The functional setting

initial data $f^{0}=\left(f_{i}^{0}\right)_{i \in \mathbb{Z}}$
mask $\boldsymbol{a}=\left(a_{i}\right)_{i \in \mathbb{Z}}$
refinement rule

$$
f_{i}^{j+1}=\sum_{k} a_{i-2 k} f_{k}^{j}
$$

parameter values $\left(t_{i}^{j}\right)_{i \in \mathbb{Z}, j \in \mathbb{N}}$ piecewise linear functions

$$
F^{j} \text { with } F^{j}\left(t_{i}^{j}\right)=f_{i}^{j}
$$

limit function

$$
S_{a}^{\infty} f^{0}=\lim _{j \rightarrow \infty} F^{j}
$$

primal parameterization

$$
t_{i}^{j}=i / 2^{j}
$$

for primal schemes with odd symmetry

$$
a_{-i}=a_{i}
$$

dual parameterization

$$
t_{i}^{j}=\frac{1}{2}+\left(i-\frac{1}{2}\right) / 2^{j}
$$

- for dual schemes with even symmetry

$$
a_{-i}=a_{i-1}
$$

Linear reproduction

Example

Chaikin's corner cutting $\quad a=[1, \underline{3}, 3,1] / 4$ initial data $f_{i}^{0}=\pi\left(t_{i}^{0}\right)$, for $\pi(x)=x$ piecewise linear functions F^{j} with $F^{j}\left(t_{i}^{j}\right)=f_{i}^{j}$ does the scheme reproduce π, i.e. $\lim _{j \rightarrow \infty} F^{j}=\pi$? primal parameterization

$$
t_{i}^{j}=i / 2^{j} \quad \Rightarrow \quad\left(\lim _{j \rightarrow \infty} F^{j}\right)(x)=x+\frac{1}{2}
$$

dual parameterization

$$
t_{i}^{j}=\frac{1}{2}+\left(i-\frac{1}{2}\right) / 2^{j} \quad \Rightarrow \quad\left(\lim _{j \rightarrow \infty} F^{j}\right)(x)=x
$$

for any scheme that generates linear functions

- with symbol $a(z)=(1+z)^{2} b(z)$
- let $\tau=a^{\prime}(1) / 2$
attach data f_{i}^{j} to parameter $t_{i}^{j}=-\tau+(i+\tau) / 2^{j}$ then the scheme also reproduces linear functions

Examples

cubic B-spline scheme $\quad a^{\prime}(1)=0 \Rightarrow t_{i}^{j}=i / 2^{j}$

- Chaikin's corner cutting

$$
a^{\prime}(1)=-1 \Rightarrow t_{i}^{j}=\frac{1}{2}+\left(i-\frac{1}{2}\right) / 2^{j}
$$

reproduction of degree d requires generation of degree d
generation of degree d is equivalent to

$$
a(z)=(1+z)^{d+1} b(z) \Leftrightarrow \text { zero of order } d+1 \text { at } z=-1
$$

Theorem

the subdivision scheme with symbol $a(z)$ reproduces polynomials of degree d w.r.t. the parameterization with $\tau=a^{\prime}(1) / 2$, if and only if

$$
a^{(k)}(-1)=0, \quad a^{(k)}(1)=2 \prod_{j=0}^{k-1}(\tau-j), \quad k=0, \ldots, d
$$

Polynomial reproduction

Examples

polygon subdivision $a=[1,2,1] / 2$
linear reproduction w.r.t. primal parameterization
Chaikin's corner cutting $\quad a=[1, \underline{3}, 3,1] / 4$
linear reproduction w.r.t. dual parameterization general primal 3-point $\quad \boldsymbol{a}=[w, 1 / 2,1-2 w, 1 / 2, w]$
linear reproduction w.r.t. primal parameterization an unsymmetric scheme $a=[-1,0,6,8,3] / 8$ quadratic reproduction w.r.t. primal parameterization note: this is an interpolating scheme!

Approximation order

a scheme that reproduces polynomials of degree d has approximation order $d+1$

given a sufficiently smooth function F

- take the initial data $f_{i}^{0}=F(i h)$
then

$$
\left\|F-S_{a}^{\infty} \boldsymbol{f}^{0}\right\| \leq C h^{d+1}
$$

the constant C does not depend on h
combining even/odd stencils into the mask - one common subdivision rule
use z-transform to turn mask into the symbol

- formally, the symbol is a Laurent polynomial
- transform data in the same way
" yields an algebraic way to describe subdivison
" necessary convergence condition: $a(-1)=0, a(1)=2$
hands-on rules for multiplying and dividing masks by $(1+z)$ and by ($1-z$)
polynomial generation of degree d

$$
\begin{aligned}
& a(z)=(1+z)^{d+1} b(z) \\
\Leftrightarrow & a^{(k)}(-1)=0 \text { for } k=0, \ldots, d
\end{aligned}
$$

polynomial reproduction of degree d

- requires polynomial generation of degree d depends on the correct parameterization

$$
t_{i}^{j}=-\tau+(i+\tau) / 2^{j} \quad \text { with } \quad \tau=a^{\prime}(1) / 2
$$

correct values of the d derivatives of a at $z=1$

$$
a^{(k)}(1)=2 \prod_{j=0}^{k-1}(\tau-j) \quad \text { for } \quad k=0, \ldots, d
$$

