## Subdivision Schemes for Geometric Modelling

## Kai Hormann

University of Lugano

## Outline

- Sep 5 - Subdivision as a linear process
- basic concepts, notation, subdivision matrix

Sep 6 - The Laurent polynomial formalism algebraic approach, polynomial reproduction

Sep 7 - Smoothness analysis

- Hölder regularity of limit by spectral radius method
- Sep 8 - Subdivision surfaces
overview of most important schemes \& properties


## The functional setting

initial data $\boldsymbol{f}^{0}=\left(f_{i}^{0}\right)_{i \in \mathbb{Z}}$
mask $\boldsymbol{a}=\left(a_{i}\right)_{i \in \mathbb{Z}}$
refinement rule $f_{i}^{j+1}=\sum_{k} a_{i-2 k} f_{k}^{j}$
parameter values $\left(t_{i}^{j}\right)_{i \in \mathbb{Z}, j \in \mathbb{N}}$
piecewise linear functions $F^{j}$ with $F^{j}\left(t_{i}^{j}\right)=f_{i}^{j}$

- limit function $S_{a}^{\infty} f^{0}=\lim _{j \rightarrow \infty} F^{j}$
consider initial data $\delta^{0}=\left(\delta_{i, 0}\right)_{i \in \mathbb{Z}}=(\ldots, 0,1,0, \ldots)$
basic limit function $\phi_{a}=S_{a}^{\infty} \boldsymbol{\delta}^{0}$
by linearity of the scheme $S_{a}^{\infty} f^{0}=\sum_{k} \phi_{a}(\cdot-k) f_{k}^{0}$


## Basic limit function

## Examples

polygon subdivision

Chaikin's corner cutting
cubic B-spline scheme
interolating 4-point scheme


## Convergence

if the sequence $\left(F^{j}\right)_{j \in \mathbb{N}}$ of piecewise linear functions converges (uniformly) for any initial data, then the scheme $S_{a}$ is called convergent - the limit is necessarily a continuous function necessary conditions for $S_{a}$ to be convergent even/odd coefficients of the mask sum to 1 $\Leftrightarrow \quad a(z)=(1+z) b(z) \quad$ and $\quad b(1)=1$

- 1 is the single dominant eigenvalue of the local subdivision matrix


## Convergence

## Example

- scheme with mask $a=[-7,7,16,16,7,-7] / 16$
$\begin{aligned} & \text { = even/odd coefficients sum to } 1 \\ & \text { = local subdivision matrix } \\ & \quad \text { eigenvalues: } 1, \frac{7}{8}, \frac{1}{2} \pm \frac{i}{4} \sqrt{10}\end{aligned} \quad S=\left(\begin{array}{cccc}7 & 16 & -7 & 0 \\ -7 & 16 & 7 & 0 \\ 0 & 7 & 16 & -7 \\ 0 & -7 & 16 & 7\end{array}\right)$
- necessary conditions for convergence satisfied
- still, the scheme does not converge
more analysis needed!


## Convergence

## Theorem

the scheme $S_{a}$ converges, if and only if the scheme $S_{b}$ is contractive, i.e. $S_{b}^{\infty} f^{0}=0$ for any initial data remember: $S_{b}$ is the scheme for the differences the scheme $S_{b}$ is contractive, if

$$
\max _{i \in \mathbb{Z}}\left|f_{i}^{j+1}\right| \leq \mu \max _{i \in \mathbb{Z}}\left|f_{i}^{j}\right|, \quad \mu<1
$$

and that is the case if

$$
\|\boldsymbol{b}\|=\max \left(\sum_{i}\left|b_{2 i}\right|, \sum_{i}\left|b_{2 i+1}\right|\right)<1
$$

## Contractivity

## Examples

general primal 3-point $\boldsymbol{a}=[w, 1 / 2,1-2 w, 1 / 2, w]$ difference scheme $\boldsymbol{b}=[w, 1 / 2-w, 1 / 2-w, w]$

$$
\|\boldsymbol{b}\|=|w|+|1 / 2-w|<1 \quad \text { for } \quad w \in(-1 / 4,3 / 4)
$$

$S_{b}$ is contractive, hence the scheme converges scheme with mask $a=[-7,7,16,16,7,-7] / 16$ difference scheme $b=[-7,14,2,14,-7] / 16$ $\|b\|=\max (7+2+7,14+14) / 16=7 / 4>1$ $S_{b}$ is not contractive, but ...

## Contractivity

## Example

scheme with mask $a=[-1,1,8,8,1,-1] / 8$ difference scheme $b=[-1,2,6,2,-1] / 8$
$\|b\|=\max (1+6+1,2+2) / 8=1$
$S_{b}$ is not contractive, but ...
consider 2 steps of the scheme, i.e. the scheme $S_{b}^{2}$ with symbol $b(z) b\left(z^{2}\right)$
mask $b^{2}=[1,-2,-8,2,7,16,32,16,7,2,-8,-2,1] / 64$
$\left\|\boldsymbol{b}^{2}\right\|=\max (1+7+7+1,2+16+2,8+32+8) / 64<1$
$S_{b}^{2}$ is contractive, hence the scheme converges

## Convergence

## Theorem

the scheme $S_{a}$ converges, if and only if the scheme $S_{b}$ is contractive
the scheme $S_{b}$ is contractive, if $\left\|\boldsymbol{b}^{\ell}\right\|<1$ for some $\ell>0$, with

$$
\left\|\boldsymbol{b}^{\ell}\right\|=\max \left\{\sum_{i}\left|b_{k-2^{\ell} i}^{\ell}\right|: 0 \leq k<2^{\ell}\right\}
$$

where $b_{i}^{\ell}$ are the coefficients of the scheme $S_{b}^{\ell}$ with symbol $b^{\ell}(z)=b(z) b\left(z^{2}\right) \cdots b\left(z^{2 \ell-1}\right)$

## Smoothness

## Theorem

if the scheme $S_{b}$ converges, then the limit curves of the scheme $S_{a}$ with symbol

$$
a(z)=\left(\frac{1+z}{2}\right)^{m} b(z)
$$

are $C^{m}$-continuous
$S_{b}$ is the scheme for the $m$-th divided differences and

$$
\left(S_{\boldsymbol{a}}^{\infty} \boldsymbol{f}^{0}\right)^{(m)}=S_{\boldsymbol{b}}^{\infty}\left(\Delta^{m} \boldsymbol{f}^{0}\right)
$$

## Example

- 4-point scheme
symbol: $a(z)=\frac{1+z}{2} b(z), \quad b(z)=\frac{-1+4 z-z^{2}}{8 z^{3}}(1+z)^{3}$
mask of $S_{b}: \quad b=[-1,1,8,8,1,-1] / 8$
this scheme converges (see above)
the limit curves of the 4 -point scheme are $C^{1}$-continuous
to check $C^{2}$-continuity, consider $a(z)=\frac{(1+z)^{3}}{4} c(z)$ but $c=[-1,3,3,-1] / 4 \Rightarrow\|c\|=1$ and $c^{2}=[1,-3,-6,10,6,6,10,-6,-3,1] / 16 \Rightarrow\left\|c^{2}\right\|=1$
likewise for $\boldsymbol{c}^{\ell} \Rightarrow S_{c}$ not contractive $\Rightarrow$ no $C^{2}$-continuity


## Definition

a function $\phi$ is called Hölder regular of order $n+\alpha$ ( $n \in \mathbb{N}, 0<\alpha \leq 1$ ), if it is $n$ times continuously differentiable and $\phi^{(n)}$ is Lipschitz of order $\alpha$, i.e.

$$
\left|\phi^{(n)}(x+h)-\phi^{(n)}(x)\right| \leq c|h|^{\alpha}
$$

for all $x$ and $h$ and some constant $c$

- remember: a function that is Lipschitz of order 1 is not necessarily differentiable
- Hölder regularity of order $n+1$ is weaker than being $n+1$ times differentiable


## Lower bound on Hölder regularity

## Theorem

the scheme $S_{a}$ with symbol $a(z)=\left(\frac{1+z}{2}\right)^{m} b(z)$ generates limit curves with Hölder regularity $r \geq m-\log _{2}\left(\left\|\boldsymbol{b}^{\ell}\right\|\right) / \ell$ for any $\ell$

## Examples

4-point scheme $a(z)=\left(\frac{1+z}{2}\right)^{4} \frac{-1+4 z-z^{2}}{z^{2}}$

$$
m=4, \boldsymbol{b}=[-1,4,-1] \Rightarrow r \geq 4-\log _{2}(4)=2
$$

cubic B-spline scheme $a(z)=\left(\frac{1+z}{2}\right)^{4} \frac{2}{z^{2}}$

$$
m=4, b=[2] \Rightarrow r \geq 4-\log _{2}\left(2^{\ell}\right) / \ell=3
$$

## Lower bound on Hölder regularity

## Example

general primal 3-point

$$
\begin{aligned}
& \quad a(z)=\left(\frac{1+z}{2}\right)^{2} \frac{4 w+(2-8 w) z+4 w z^{2}}{z^{2}} \\
& m=2, \ell=1, \boldsymbol{b}=[4 w, 2-8 w, 4 w] \Rightarrow r \geq 2-\log _{2}(\|\boldsymbol{b}\|) \\
& m=2, \ell=2, \\
& b^{2}=\left[16 w^{2}, 8 w(1-4 w),\right. \\
& \left.8 w(1-2 w), 4(1-4 w)^{2}, \ldots\right] \\
& \Rightarrow r \geq 2-\log _{2}\left(\left\|b^{2}\right\|\right) / 2 \\
& \text { larger } \ell, \ldots
\end{aligned}
$$

- suppose the mask $\boldsymbol{a}$ is supported on $[0, N]$, i.e. $a_{i}=0$ for $i<0$ and $i>N$
all masks are of this kind after an index shift
refine the initial data $f^{0}=(\ldots, 0,1,0, \ldots)$
- remember: $f_{i}^{j+1}=\sum_{k} a_{i-2 k} f_{k}^{j}$
- hence, $f^{1}$ is supported on $[0, N]$
- likewise, $f^{j}$ is supported on $\left[0,\left(2^{j}-1\right) N\right]$
assume primal parameterization $t_{i}^{j}=i / 2^{j}$ the support of the basic limit function $\phi_{a}$ is $[0, N]$


## Support

for arbitrary initial data $f^{0}$, the limit function is

$$
S_{\boldsymbol{a}}^{\infty} \boldsymbol{f}^{0}=\sum_{k} \phi_{\boldsymbol{a}}(\cdot-k) f_{k}^{0}
$$

assume the support of $\phi_{a}$ is $[0, N]$, then the values of the limit function $S_{\boldsymbol{a}}^{\infty} \boldsymbol{f}^{0}$

- on $[0,1]$ are determined by the $N$ control points

$$
f_{-N+1}^{0}, f_{-N+2}^{0}, \ldots, f_{0}^{0}
$$

= on $[0,1 / 2]$ are determined by $f_{-N+1}^{1}, f_{-N+2}^{1}, \ldots, f_{0}^{1}$
on $[1 / 2,1]$ are determined by $f_{-N+2}^{1}, f_{-N+3}^{1}, \ldots, f_{1}^{1}$

## Support

## Example

cubic B-spline scheme with $N=4$


- $u^{0}=\left(f_{-3}^{0}, \ldots, f_{0}^{0}\right)$ determines $S_{a}^{\infty} f^{0}$ on $[0,1]$
$A_{0} u^{0}$ determines the values on [ $0,1 / 2$ ]
$A_{1} u^{0}$ determines the values on $[1 / 2,1]$
suppose the mask $a$ of a convergent scheme is supported on [ $0, N$ ]
" consider the local $N \times N$ subdivision matrices $A_{0}, A_{1}$ take any $x \in[0,1]$ with binary representation

$$
x=0 . i_{1} i_{2} i_{3} i_{4} \ldots \quad \text { with } i_{k} \in\{0,1\}
$$

then the limit value $S_{\boldsymbol{a}}^{\infty} \boldsymbol{f}^{0}(x)$ is given ( $N$ times) by

$$
\ldots A_{i_{4}} A_{i_{3}} A_{i_{2}} A_{i_{1}} u^{0}
$$

with $u^{0}=\left(f_{-N+1}^{0}, \ldots, f_{0}^{0}\right)$

## Joint spectral radius

## Definition

the joint spectral radius of two matrices $A_{0}, A_{1}$ is
$\rho\left(A_{0}, A_{1}\right)=\limsup _{k \rightarrow \infty}\left(\max \left\{\left\|A_{i_{k}} \cdots A_{i_{2}} A_{i_{1}}\right\|_{\infty}^{1 / k}: i_{k} \in\{0,1\}\right\}\right)$

- is bounded by the spectral radii and the norms of $A_{0}$ and $A_{1}$
$\max \left\{\rho\left(A_{0}\right), \rho\left(A_{1}\right)\right\} \leq \rho\left(A_{0}, A_{1}\right) \leq \max \left\{\left\|A_{0}\right\|_{\infty},\left\|A_{1}\right\|_{\infty}\right\}$
- does not dependent on the chosen matrix norm
- is usually very hard to determine exactly


## Theorem

the scheme $S_{a}$ with symbol $a(z)=\left(\frac{1+z}{2}\right)^{m} b(z)$ generates limit curves with Hölder regularity $r=m-\log _{2}(\mu)$, where $\mu$ is the joint spectral radius of the local matrices $B_{0}, B_{1}$ from the scheme $S_{b}$

- in practice, the lower and upper bounds on $\mu$ are used to get upper and lower bounds on $r$ the lower bound then is the same as before, because $\left\|\boldsymbol{b}^{k}\right\|=\max \left\{\left\|B_{i_{k}} \cdots B_{i_{2}} B_{i_{1}}\right\|_{\infty}: i_{k} \in\{0,1\}\right\}$


## Hölder regularity

## Example

- cubic B-spline scheme $a(z)=\left(\frac{1+z}{2}\right)^{4} \frac{2}{z^{2}}$
$\boldsymbol{b}=[2] \Rightarrow B_{0}=B_{1}=(2) \Rightarrow \mu=2 \Rightarrow r=4-\log _{2}(2)=3$
scheme gives $C^{2}$ limit curves, whose second derivatives are Lipschitz of order 1 ; sometimes called $C^{3-\epsilon}$
4-point scheme $a(z)=\left(\frac{1+z}{2}\right)^{4} \frac{-1+4 z-z^{2}}{z^{2}}$

$$
\begin{aligned}
& \boldsymbol{b}=[-1,4,-1] \Rightarrow B_{0}=\binom{4}{-1}, \quad B_{1}=\binom{-1-1}{4} \\
& \left\|B_{0}\right\|=\left\|B_{1}\right\|=\rho\left(B_{0}\right)=\rho\left(B_{2}\right)=4=\mu \Rightarrow \quad r=4-\log _{2}(4)=2
\end{aligned}
$$

scheme gives $C^{3-\epsilon}$ limit curves

## Hölder regularity

## Example

 dual 4-point schemeevaluate local cubic interpolant in a dual fashion

$$
a=[-5,-7,35,105,105,35,-7,-5] / 128
$$

divide $m=5$ times by $(1+z) / 2 \Rightarrow \boldsymbol{b}=[-5,18,-5] / 4$

$$
B_{0}=\left(\begin{array}{cc}
\frac{9}{2} & \\
-\frac{5}{4} & -\frac{5}{4}
\end{array}\right), \quad B_{1}=\left(\begin{array}{cc}
-\frac{5}{4} & -\frac{5}{4} \\
& \frac{9}{2}
\end{array}\right)
$$

$$
\left\|B_{0}\right\|=\left\|B_{1}\right\|=\rho\left(B_{0}\right)=\rho\left(B_{1}\right)=4.5=\mu \quad \Rightarrow \quad r=5-\log _{2}(4.5)
$$

scheme gives $C^{2.83}$ limit curves

- basic limit function $\phi_{a}$ and support size
- if all but $N+1$ consecutive mask coefficients are zero, then $N$ is the support size of the mask and the basic limit function
a scheme $S_{a}$ converges if the difference scheme $S_{b}$ is contractive
the norm of $b$ or the $\ell$-iterated scheme $\boldsymbol{b}^{\ell}$ is less than one
a scheme is $C^{m}$-continuous, if the scheme for the $m$-th divided differences converges
" the norm of $\boldsymbol{b}^{\ell}$ leads to a lower bound on the Hölder regularity of the limit functions
lower and upper bound are given by joint spectral radius analysis
given a scheme $S_{a}$, divide $a(z)$ by as many factors $(1+z) / 2$ as possible, say $m$ such factors
for the remaining scheme $S_{b}$ with support size $N$, consider the local $N \times N$ subdivision matrices $B_{0}, B_{1}$ determine the joint spectral radius $\mu=\rho\left(B_{0}, B_{1}\right)$
- Hölder regularity of limit curves is $r=m-\log _{2}(\mu)$

