Faculty

of Informatics

Subdivision Schemes for Geometric Modelling

Kai Hormann

University of Lugano

Faculty of Informatics

- Sep 5 Subdivision as a linear process
 - basic concepts, notation, subdivision matrix
- Sep 6 The Laurent polynomial formalism
 - algebraic approach, polynomial reproduction
- Sep 7 Smoothness analysis
 - Hölder regularity of limit by spectral radius method
- Sep 8 Subdivision surfaces

overview of most important schemes & properties

Faculty of Informatics

Università

della Svizzera italiana

The functional setting

• initial data $f^0 = (f_i^0)_{i \in \mathbb{Z}}$

$$\bullet \mathsf{mask} \ \ \boldsymbol{a} = (a_i)_{i \in \mathbb{Z}}$$

- refinement rule $f_i^{j+1} = \sum_k a_{i-2k} f_k^j$
- Parameter values $(t_i^j)_{i\in\mathbb{Z},j\in\mathbb{N}}$
- piecewise linear functions F^j with $F^j(t_i^j) = f_i^j$
- limit function $S^{\infty}_{a}f^{0} = \lim_{j \to \infty} F^{j}$
- consider initial data $\delta^0 = (\delta_{i,0})_{i \in \mathbb{Z}} = (\dots, 0, 1, 0, \dots)$
- basic limit function $\phi_a = S_a^\infty \delta^0$
- by linearity of the scheme $S_a^{\infty} f^0 = \sum_k \phi_a (\cdot k) f_k^0$

Faculty

of Informatics

Basic limit function

Faculty of Informatics

Convergence

- if the sequence $(F^j)_{j \in \mathbb{N}}$ of piecewise linear functions converges (uniformly) for any initial data, then the scheme S_a is called *convergent*
 - the limit is necessarily a continuous function
- necessary conditions for S_{a} to be convergent
 - even/odd coefficients of the mask sum to 1
 - $\Leftrightarrow \qquad a(z) = (1+z)b(z) \qquad \text{and} \qquad b(1) = 1$
 - 1 is the single dominant eigenvalue of the local subdivision matrix

Convergence

Example

Faculty

of Informatics

- scheme with mask a = [-7, 7, 16, 16, 7, -7]/16
- even/odd coefficients sum to 1
 local subdivision matrix
 eigenvalues: 1, ⁷/₈, ¹/₂ ± ⁱ/₄√10
 S = $\begin{pmatrix} 7 & 16 & -7 & 0 \\ -7 & 16 & 7 & 0 \\ 0 & 7 & 16 & -7 \\ 0 & -7 & 16 & 7 \end{pmatrix}$
- necessary conditions for convergence satisfied
- still, the scheme does not converge more analysis needed!

Convergence

Theorem

Faculty

of Informatics

the scheme S_a converges, if and only if the scheme S_b is contractive, i.e. $S_b^{\infty} f^0 = 0$ for any initial data

- remember: S_b is the scheme for the differences
- the scheme S_b is contractive, if

$$\max_{i \in \mathbb{Z}} |f_i^{j+1}| \le \mu \max_{i \in \mathbb{Z}} |f_i^j|, \qquad \mu < 1$$

and that is the case if

$$||b|| = \max\left(\sum_{i} |b_{2i}|, \sum_{i} |b_{2i+1}|\right) < 1$$

Contractivity

Examples

Faculty of Informatics

- general primal 3-point $a = [w, \frac{1}{2}, 1-2w, \frac{1}{2}, w]$
 - difference scheme $b = [w, \frac{1}{2} w, \frac{1}{2} w, w]$
 - $-\|b\| = |w| + |\frac{1}{2} w| < 1$ for $w \in (-\frac{1}{4}, \frac{3}{4})$
 - S_b is contractive, hence the scheme converges
- scheme with mask a = [-7, 7, 16, 16, 7, -7]/16
 - difference scheme b = [-7, 14, 2, 14, -7]/16
 - $||b|| = \max(7+2+7, 14+14)/16 = 7/4 > 1$
 - S_b is not contractive, but ...

Contractivity

Example

Faculty

of Informatics

- scheme with mask a = [-1, 1, 8, 8, 1, -1]/8
 - difference scheme b = [-1, 2, 6, 2, -1]/8
 - $-\|b\| = \max(1+6+1, 2+2)/8 = 1$
 - S_b is not contractive, but ...
- consider 2 steps of the scheme, i.e. the scheme S_b^2 with symbol $b(z)b(z^2)$
 - mask $b^2 = [1, -2, -8, 2, 7, 16, 32, 16, 7, 2, -8, -2, 1]/64$
 - $\|b^2\| = \max(1+7+7+1, 2+16+2, 8+32+8)/64 < 1$
 - S_b^2 is contractive, hence the scheme converges

Convergence

Theorem

Faculty

of Informatics

the scheme S_a converges, if and only if the scheme S_b is *contractive*

• the scheme S_b is contractive, if $||b^{\ell}|| < 1$ for some $\ell > 0$, with

$$||b^{\ell}|| = \max\left\{\sum_{i} |b_{k-2^{\ell}i}^{\ell}| : 0 \le k < 2^{\ell}\right\}$$

where b_i^{ℓ} are the coefficients of the scheme S_b^{ℓ} with symbol $b^{\ell}(z) = b(z)b(z^2) \cdots b(z^{2\ell-1})$

Smoothness

Theorem

Faculty

of Informatics

if the scheme S_b converges, then the limit curves of the scheme S_a with symbol

$$a(z) = \left(\frac{1+z}{2}\right)^m b(z)$$

are C^m -continuous

• S_b is the scheme for the *m*-th *divided differences* and

$$(S_a^{\infty}f^0)^{(m)} = S_b^{\infty}(\Delta^m f^0)$$

Smoothness

Example

Faculty

of Informatics

4-point scheme

- symbol: $a(z) = \frac{1+z}{2}b(z), \quad b(z) = \frac{-1+4z-z^2}{8z^3}(1+z)^3$
- mask of S_b : b = [-1, 1, 8, 8, 1, -1]/8
- this scheme converges (see above)
- the limit curves of the 4-point scheme are C^1 -continuous
- to check C^2 -continuity, consider $a(z) = \frac{(1+z)^3}{4}c(z)$
 - but $c = [-1, 3, 3, -1]/4 \implies ||c|| = 1$

and $c^2 = [1, -3, -6, 10, 6, 6, 10, -6, -3, 1]/16 \implies ||c^2|| = 1$

- likewise for $c^{\ell} \Rightarrow S_c$ not contractive \Rightarrow no C^2 -continuity

Hölder regularity

Definition

Faculty

of Informatics

a function ϕ is called *Hölder regular of order* $n + \alpha$ ($n \in \mathbb{N}$, $0 < \alpha \le 1$), if it is n times continuously differentiable and $\phi^{(n)}$ is Lipschitz of order α , i.e.

$$\phi^{(n)}(x+h) - \phi^{(n)}(x)| \le c |h|^{\alpha}$$

for all x and h and some constant c

- remember: a function that is Lipschitz of order 1 is not necessarily differentiable
- Hölder regularity of order n+1 is weaker than being n+1 times differentiable

Theorem

Faculty

of Informatics

Università

della

Svizzera italiana

> the scheme S_a with symbol $a(z) = \left(\frac{1+z}{2}\right)^m b(z)$ generates limit curves with Hölder regularity $r \ge m - \log_2(||b^{\ell}||) / \ell$ for any ℓ

Examples

4-point scheme
$$a(z) = \left(\frac{1+z}{2}\right)^4 \frac{-1+4z-z^2}{z^2}$$

 $-m=4, b=[-1,4,-1] \Rightarrow r \ge 4-\log_2(4)=2$

• cubic B-spline scheme $a(z) = \left(\frac{1+z}{2}\right)^4 \frac{2}{z^2}$

-m=4, $b=[2] \Rightarrow r \ge 4 - \log_2(2^\ell)/\ell = 3$

Lower bound on Hölder regularity

Example

Faculty

of Informatics

general primal 3-point

$$a(z) = \left(\frac{1+z}{2}\right)^2 \frac{4w + (2-8w)z + 4wz^2}{z^2}$$

$$\bullet m=2, \ell=1, b=[4w, 2-8w, 4w] \Rightarrow r \ge 2-\log_2(\|b\|)$$

Faculty

suppose the mask a is supported on [0, N], i.e. $a_i = 0$ for i < 0 and i > N

- all masks are of this kind after an index shift
- refine the initial data $f^0 = (..., 0, \underline{1}, 0, ...)$
 - remember: $f_i^{j+1} = \sum_k a_{i-2k} f_k^j$
 - hence, f^1 is supported on [0, N]
 - likewise, f^j is supported on $[0, (2^j-1)N]$
- assume primal parameterization $t_i^j = i/2^j$
 - the support of the basic limit function ϕ_{a} is [0, N]

della

Svizzera italiana

• for arbitrary initial data f^0 , the limit function is

$$S_a^{\infty} f^0 = \sum_k \phi_a (\cdot - k) f_k^0$$

- assume the support of ϕ_a is [0, N], then the values of the limit function $S^{\infty}_{a} f^{0}$
 - on [0,1] are determined by the N control points $f_{-N+1}^0, f_{-N+2}^0, \dots, f_0^0$
 - on [0, $\frac{1}{2}$] are determined by $f_{-N+1}^1, f_{-N+2}^1, \ldots, f_0^1$ • on [½,1] are determined by $f_{-N+2}^1, f_{-N+3}^1, \dots, f_1^1$

Support

Example

Faculty

cubic B-spline scheme with N=4

• $u^0 = (f_{-3}^0, \dots, f_0^0)$ determines $S_a^\infty f^0$ on [0,1] • $A_0 u^0$ determines the values on $[0, \frac{1}{2}]$ $A_1 u^0$ determines the values on [1/2,1]

Faculty

of Informatics

suppose the mask *a* of a convergent scheme is *supported* on [0, *N*]

- consider the local $N \times N$ subdivision matrices A_0, A_1
- take any $x \in [0,1]$ with binary representation

$$x = 0.i_1i_2i_3i_4...$$
 with $i_k \in \{0,1\}$

- then the limit value $S^{\infty}_{a}f^{0}(x)$ is given (N times) by

$$\dots A_{i_4} A_{i_3} A_{i_2} A_{i_1} u^0$$

with $u^0 = (f^0_{-N+1}, \dots, f^0_0)$

Joint spectral radius

Definition

Faculty

of Informatics

the *joint spectral radius* of two matrices A_0, A_1 is

$$\rho(A_0, A_1) = \limsup_{k \to \infty} \left(\max\left\{ \|A_{i_k} \cdots A_{i_2} A_{i_1}\|_{\infty}^{1/k} : i_k \in \{0, 1\} \right\} \right)$$

- is bounded by the spectral radii and the norms of A_0 and A_1

 $\max\{\rho(A_0), \rho(A_1)\} \le \rho(A_0, A_1) \le \max\{\|A_0\|_{\infty}, \|A_1\|_{\infty}\}$

- does not dependent on the chosen matrix norm
- is usually very hard to determine exactly

Hölder regularity

Theorem

Faculty

of Informatics

the scheme S_a with symbol $a(z) = \left(\frac{1+z}{2}\right)^m b(z)$ generates limit curves with Hölder regularity $r = m - \log_2(\mu)$, where μ is the joint spectral radius of the local matrices B_0, B_1 from the scheme S_b

- in practice, the lower and upper bounds on μ are used to get upper and lower bounds on r
- the lower bound then is the same as before, because $\|\boldsymbol{b}^k\| = \max\left\{\|B_{i_k}\cdots B_{i_2}B_{i_1}\|_{\infty} : i_k \in \{0,1\}\right\}$

Hölder regularity

Example

Faculty of Informatics

cubic B-spline scheme $a(z) = \left(\frac{1+z}{2}\right)^4 \frac{2}{z^2}$

$$b=[2] \Rightarrow B_0=B_1=(2) \Rightarrow \mu=2 \Rightarrow r=4-\log_2(2)=3$$

- scheme gives C^2 limit curves, whose second derivatives are Lipschitz of order 1; sometimes called $C^{3-\epsilon}$
- 4-point scheme $a(z) = \left(\frac{1+z}{2}\right)^4 \frac{-1+4z-z^2}{z^2}$

$$-b=[-1,4,-1] \Rightarrow B_0=\begin{pmatrix} 4\\ -1 & -1 \end{pmatrix}, \quad B_1=\begin{pmatrix} -1 & -1\\ 4 \end{pmatrix}$$

- $-||B_0|| = ||B_1|| = \rho(B_0) = \rho(B_2) = 4 = \mu \implies r = 4 \log_2(4) = 2$
- scheme gives $C^{3-\epsilon}$ limit curves

Hölder regularity

Example

Faculty of Informatics

- dual 4-point scheme
 - evaluate local cubic interpolant in a dual fashion
 - *a* = [-5, -7, 35, 105, 105, 35, -7, -5]/128
 - divide m=5 times by $(1+z)/2 \Rightarrow b=[-5, 18, -5]/4$

$$B_{0} = \begin{pmatrix} \frac{9}{2} \\ -\frac{5}{4} & -\frac{5}{4} \end{pmatrix}, \quad B_{1} = \begin{pmatrix} -\frac{5}{4} & -\frac{5}{4} \\ & \frac{9}{2} \end{pmatrix}$$

- $-||B_0|| = ||B_1|| = \rho(B_0) = \rho(B_1) = 4.5 = \mu \implies r = 5 \log_2(4.5)$
- scheme gives $C^{2.83}$ limit curves

basic limit function ϕ_a and support size

- if all but N+1 consecutive mask coefficients are zero, then N is the support size of the mask and the basic limit function
- a scheme S_a converges if the difference scheme S_b is contractive
 - the norm of b or the ℓ -iterated scheme b^{ℓ} is less than one
- a scheme is C^m-continuous, if the scheme for the m-th divided differences converges

Faculty

of Informatics

- the norm of b^{ℓ} leads to a lower bound on the Hölder regularity of the limit functions
- Iower and upper bound are given by joint spectral radius analysis
 - given a scheme S_a , divide a(z) by as many factors (1+z)/2 as possible, say m such factors
 - for the remaining scheme S_b with support size N, consider the local $N \times N$ subdivision matrices B_0, B_1
 - determine the joint spectral radius $\mu = \rho(B_0, B_1)$
 - Hölder regularity of limit curves is $r = m \log_2(\mu)$