Subdivision Schemes for Geometric Modelling

Kai Hormann

University of Lugano

Outline

- Sep 5 - Subdivision as a linear process
- basic concepts, notation, subdivision matrix

Sep 6 - The Laurent polynomial formalism

- algebraic approach, polynomial reproduction

Sep 7 - Smoothness analysis

- Hölder regularity of limit by spectral radius method
- Sep 8 - Subdivision surfaces
overview of most important schemes \& properties

Lane-Riesenfeld algorithm

multiplying the symbol by $(1+z) / 2$ increases

 the smoothness of the limit curves by 1geometrically, this averages the control points

Lane-Riesenfeld algorithm

each refinement step first inserts edge midpoints then applies $m-1$ averaging steps symbol for these schemes: $a(z)=\left(\frac{1+z}{2}\right)^{m-1} \frac{(1+z)^{2}}{2}$ regularity of the limit curves: $r=m+1-\log _{2}(2)=m$

- limit curves are uniform B-splines of degree m

Tensor-product schemes

extend this idea to quadrilateral meshes

first insert edge and face midpoints
splits the quadrilateral into four new quadrilaterals then apply averaging steps
each averaging step averages in two directions

Doo-Sabin subdivision

Example

- 1 averaging step dual scheme

4 new points per face, discard old points

- 4 stencils for the new points
$\frac{1}{16}\left[\begin{array}{ll}9 & 3 \\ 3 & 1\end{array}\right], \quad \frac{1}{16}\left[\begin{array}{ll}3 & 9 \\ 1 & 3\end{array}\right], \quad \frac{1}{16}\left[\begin{array}{ll}3 & 1 \\ 9 & 3\end{array}\right], \quad \frac{1}{16}\left[\begin{array}{ll}1 & 3 \\ 3 & 9\end{array}\right]$
tensor products of the stencils $[3,1] / 4$ and $[1,3] / 4$ from Chaikin's scheme, e.g. $\frac{1}{16}\left[\begin{array}{ll}9 & 3 \\ 3 & 1\end{array}\right]=\frac{1}{4}\left[\begin{array}{l}3 \\ 1\end{array}\right] \otimes[3,1] / 4$

Example

for a regular quad mesh, this gives tensor-product
 quadratic B-splines
C^{1} limit surfaces
a general quad mesh has extraordinary vertices
where not 4 , but 3,5 , or even more faces meet non-quadrilateral faces after one refinement step special rules and analysis needed

Doo-Sabin subdivision

Example

general stencil for a new point in a face with n vertices

$$
\alpha_{0}=\frac{1}{4}+\frac{5}{4 n}
$$

$$
\alpha_{i}=\frac{3+2 \cos (2 \pi i / n)}{4 n}, \quad i=1, \ldots, n-1
$$

note: stencil coefficients sum to 1
reduces to the regular stencil above for $n=4$

- limit surfaces are C^{1}-continuous

Doo-Sabin subdivision

Example

duality of the scheme
valence- n vertex $\rightarrow n$-gon, edge $\rightarrow 4$-gon, n-gon $\rightarrow n$-gon all vertices are regular (valence 4) after first refinement number of irregular faces remains the same

Catmull-Clark subdivision

Example

- 2 averaging steps - primal scheme

- new vertex (\odot), edge (\diamond), and face (\square) points stencils
regular setting: tensor product of cubic B-spline stencils

Catmull Clark

extend Lane-Riesenfeld to triangle meshes

- first insert edge midpoints
splits the triangles into four new triangles
then apply averaging steps
each averaging step averages in three directions

Loop subdivision

Example

- 1 averaging step
- primal scheme

- new vertex (\bullet) and edge (\diamond) points
- stencils

$$
\alpha=1-n \beta
$$

$\beta=\frac{\frac{5}{8}-\left(\frac{3}{8}+\frac{1}{4} \cos \frac{2 \pi}{n}\right)^{2}}{n}$

Loop subdivision

Butterfly subdivision

extend idea of the 4-point scheme to meshes

 keep old points, insert a new point for each edge
Example

- Butterfly scheme
- stencil for the new point
 derived from fitting a local interpolating bivariate cubic polynomial (only 8 instead of 10 degrees of freedom because of symmetry)

Butterfly scheme

" "refine-and-smooth" algorithm by Lane and Riesenfeld gives the B-spline curve schemes
idea can be extended to surface schemes

- Doo-Sabin $\rightarrow C^{1}$ surfaces
- Catmull-Clark $\rightarrow C^{1}$ surfaces (C^{2} in regular region)
= Loop $\quad \rightarrow C^{1}$ surfaces (C^{2} in regular region)
interpolatory schemes, based on local polynomial interpolation and evaluation
Butterfly
$\rightarrow C^{1}$ surfaces (after minor modification)
N. Dyn, D. Levin
- Subdivision Schemes in Geometric Modelling Acta Numerica, Vol. 11, 2002, pp. 73-144
A. Iske, E. Quak, M.S. Floater
- Tutorials on Multiresolution in Geometric Modelling Chapters 1-4 (N. Dyn, M. Sabin), Springer 2002
M. Sabin

Analysis and Design of Univariate Subdivision Schemes Springer 2010
J. Peters, U. Reif

- Subdivision Surfaces

Analysis and Design of Univariate

Jöty Peters-Ulich Reif
Subdivision Surfaces

Springer 2008
L.-E. Andersson, N. F. Stewart

- Mathematics of Subdivision Surfaces

SIAM 2010

Q Strioper

Subdivision Schemes

24 swione

