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Introduction

1 Introduction

Digital Image Compression: Basic Steps

(1) Data reduction from input image;

(2) Encoding of the reduced data at the sender;

(3) Transmission of the encoded data from the sender to the receiver;

(4) Decoding of the transmitted data at the receiver;

(5) Data reconstruction.

Original Image.

0101100011010110010 . . .

−→
Reconstruction.
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Introduction

Image Representation.

• A digital image I is a rectangular grid of pixels, X.

• Each pixel x ∈ X bears a greyscale luminance I(x).

• We regard the image as a function, I : [X] → [0, 1, . . . , 2r − 1],

where the convex hull [X] of X is the image domain.

image domain [X].

I
−→

image I(X).
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Introduction

Image Approximation.
INPUT: The image I = {(x, I(x)) : x ∈ X} is given by discrete pixel values in X.

OUTPUT: Reconstructed image Ĩ = {(x, Ĩ(x)) : x ∈ X}.

≈

AIM. Increase Peak Signal to Noise Ratio (PSNR)

PSNR = 10 ∗ log10

(

2r × 2r

η̄2(I, Ĩ)

)

,

as much as possible, where

η̄2(I, Ĩ) =
1

|X|

∑

x∈X

|I(x) − Ĩ(x)|2

denotes the mean square error (MSE).
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Methods for Image Compression

2 Methods for Image Compression

Wavelets: The standard (EBCOT, JPEG2000)

Wavelet Image Approximation Scheme.

• The image is expanded in a fixed orthonormal basis of wavelets.

• The expansion coefficients below a given threshold are set to zero.

A mildly nonlinear approximation scheme.
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Geometric Methods for Image Compression

Some recent highly nonlinear approximation schemes ...

... for capturing the image geometry.

• Bandelets: LePennec & Mallat (2005);

• Brushlets: Coifman & Meyer (1997);

• Curvelets: Candès & Donoho (2000, 2004/2005);

• Contourlets: Do & Vetterli (2005);

• Directionlets: Velisavljević, Beferull-Lozano, Vetterli & Dragotti (2006);

• Shearlets: Guo, Kutyniok, Labate, Lim (2006);

• Wedgelets: Donoho (1999); Romberg, Wakin & Baraniuk (2002);

• The Easy Path Wavelet Transform (EPWT): Plonka(2009),

Plonka, Tenorth & I.(2010), Plonka, Tenorth & Roşca (2009);

• Nonlinear edge-adapted multiscale decomposition: Cohen & Matei (2001);

• Adaptive approximation by anisotropic triangulations:

– Generic triangulations and simulated annealing: Lehner, Umlauf, Hamann (2007)

– Adaptive thinning algorithms: Demaret, Dyn & I. (2006), Demaret & I. (2006)

– Anisotropic geodesic triangulations: Bougleux, Peyré & L. Cohen (2009)

– Greedy triangle bisections: A. Cohen, Dyn, Hecht & Mirebeau (2010)

DRWA2010 Alba di Canazei, 6-9 September 2010 Armin Iske 6



Linear Splines over Triangulations

3 Linear Splines over Triangulations

Definition. A triangulation of a planar point set Y = {y1, . . . , yN} is a

collection T (Y) = {T }T∈T (Y) of triangles in the plane, such that

(T1) the vertex set of T (Y) is Y;

(T2) any pair of two distinct triangles in T (Y) intersect at most

at one common vertex or along one common edge;

(T3) the convex hull [Y] of Y coincides with the area covered

by the union of the triangles in T (Y).

A triangulation of pixels.
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Linear Splines over Triangulations

Linear Splines over Triangulations.

Triangulation of pixels.
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Linear spline over triangulation.
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Linear Splines over Triangulations

Approximation Spaces.

• Given any triangulation T (Y) of Y, we denote by

SY =
{
s : s ∈ C([Y]) and s

∣

∣

T
linear for all T ∈ T (Y)

}
,

the spline space containing all continuous functions over [Y] whose

restriction to any triangle in T (Y) is linear.

• Any element in SY is referred to as a linear spline over T (Y).

• For given function values {I(y) :y ∈ Y}, there is a unique linear spline,

L(Y, I) ∈ SY , which interpolates I at the points of Y, i.e.,

L(Y, I)(y) = I(y), for all y ∈ Y.

DRWA2010 Alba di Canazei, 6-9 September 2010 Armin Iske 9



Examples

Example 1: Geometrical Image PQuad.

Image PQuad

of size (512 × 512).

Adaptive Triangulation

with 800 vertices.

Reconstruction

at PSNR 42.85 db.
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Examples

Example 2: Geometrical Image Game.

Image Game

of size (512 × 512).

Adaptive Triangulation

with 6000 vertices.

Reconstruction

at PSNR 36.54 db.
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Examples

Example 3: Multiscale Image Aerial.

Image Aerial

of size (512 × 512).

Adaptive Triangulation

with 16000 vertices.

Reconstruction

at PSNR 30.33 db.
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Examples

Example 4: Multiscale Image Boat.

Image Boat

of size (512 × 512).

Adaptive Triangulation

with 7000 vertices.

Reconstruction

at PSNR 31.83 db.
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Approximation over Anisotropic Triangulations

4 Approximation over Anisotropic Triangulations

Goal: On input image I = {(x, I(x)) : x ∈ X},

• determine a good adaptive spline space SY , where Y ⊂ X;

• determine from SY the unique best approximation L∗(Y, I) ∈ SY satisfying
∑

x∈X

|L∗(Y, I)(x) − I(x)|2 = min
s∈SY

∑

x∈X

|s(x) − I(x)|2.

• Encode the linear spline L∗ ∈ SY ;

• Decode L∗ ∈ SY , and so obtain the reconstructed image

Ĩ = {(x, L(Y, Ĩ)(x)) : x ∈ X}, where L(Y, Ĩ) ≈ L∗(Y, I).

OBS! Key Step: Construction of anisotropic triangulation T (Y) for Y ⊂ X.

• One possible approach is by adaptive thinning (AT).

• In AT, we take the Delaunay triangulation D(Y) of Y for SY ,
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Basic Technique for Proving Error Estimates

The Bramble-Hilbert Lemma.

Recall classical error estimates from finite element methods (FEM).

Bramble-Hilbert: For any image f from Sobolev space W2,2(T), T ∈ T (Y), we

obtain the basic error estimate

‖f − ΠSY
f‖L2(T) ≤ |f|W2,2(T), for f ∈ W2,2(T),

where ΠSY
f is the orthogonal L2-projection of f onto SY .
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Delaunay Triangulations

5 Delaunay Triangulations

Definition. The Delaunay triangulation D(X) of a discrete planar point set

X is a triangulation of X, such that the circumcircle for each of its triangles does

not contain any point from X in its interior.

Two triangulations of a convex quadrilateral, T (left) and T̃ (right).
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Delaunay Triangulations

Properties of Delaunay Triangulations.
• Uniqueness.

Delaunay triangulation D(X) is unique, if no four points in X are co-circular.

• Complexity.

For any point set X, its Delaunay triangulation D(X) can be computed in

O(N log N) steps, where N = |X|.

• Local Updating.

For any X and x ∈ X, the Delaunay triangulation D(X \ x) of the point set

X \ x can be computed from D(X) by retriangulating the cell C(x) of x.

y

Removal of the node y, and retriangulation of its cell C(y).
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Adaptive Thinning

6 Adaptive Thinning

Popular Example: Test Image Fruits.

Original Image (512 × 512).

Delaunay Triangulation.

4044 significant pixels.

Image Reconstruction.
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Adaptive Thinning

Adaptive Thinning Algorithm.

INPUT. I = {0, 1, . . . , 2r − 1}X, pixels and luminances, where

X set of pixels, r number of bits for representation of luminances.

(1) Let XN = X;

(2) FOR k = 1, . . . , N − n

(2a) Find a least significant pixel x ∈ XN−k+1;

(2b) Let XN−k = XN−k+1 \ x;

• OUTPUT: Data hierarchy

Xn ⊂ Xn+1 ⊂ · · · ⊂ XN−1 ⊂ XN = X

of nested subsets of X.
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Adaptive Thinning

Controlling the Mean Square Error.

• For a given mean square error (MSE), η̄∗, the adaptive thinning algorithm

can be changed in order to terminate when for the first time, the MSE value

corresponding to the current linear spline L(Xp, I) is above η̄∗, for some Xp

in the data hierarchy, n = p a posteriori.

• We take as the final approximation to the image the linear spline

L∗(Xp+1, I), and so we let Y = Xp+1.

• Observe that L∗(Xp+1, I) satisfies

∑

x∈X

|L∗(Xp+1, I)(x) − I(x)|2
/

|Xp+1| ≤ η̄∗,

as desired.

DRWA2010 Alba di Canazei, 6-9 September 2010 Armin Iske 20



Pixel Significance Measures

7 Pixel Significance Measures

Quality Measure: Current ℓ2-Square Error.

η(Y; X) =
∑

x∈X

|L(I, Y)(x) − I(x)|2, for Y ⊂ X.

Anticipated Error for the Greedy Removal of one Pixel.

e(y) = η(Y \ y; X), for y ∈ Y.

Definition. (Adaptive Thinning Algorithm AT).

For Y ⊂ X, a point y∗ ∈ Y is said to be least significant in Y, iff it satisfies

e(y∗) = min
y∈Y

e(y).
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Pixel Significance Measures

Aim: Compute anticipated error locally.

η(Y \ y; X) = η(Y \ y; X \ C(y)) + η(Y \ y; X ∩ C(y))

= η(Y; X \ C(y)) + η(Y \ y; X ∩ C(y))

= η(Y; X) + η(Y \ y; X ∩ C(y)) − η(Y; X ∩ C(y)).

where C(y) is the cell of y in the Delaunay triangulation D(Y) of Y.

Therefore, minimizing e(y) is equivalent to minimizing

eδ(y) = η(Y \ y; X ∩ C(y)) − η(Y; X ∩ C(y)), for y ∈ Y.

Proposition. For Y ⊂ X, a point y∗ ∈ Y is, according to the criterion AT,

least significant in Y, iff it satisfies

eδ(y∗) = min
y∈Y

eδ(y).
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Pixel Significance Measures

Greedy Two-Point-Removal.

Anticipated Error for the Removal of two Points.

e(y1, y2) = η(Y \ {y1, y2}; X) for y1, y2 ∈ Y,

can be rewritten as e(y1, y2) = η(Y; X) + eδ(y1, y2), where

eδ(y1, y2) = η(Y \ {y1, y2}; X ∩ (C(y1) ∪ C(y2))) − η(Y; X ∩ (C(y1) ∪ C(y2))),

which can for [y1, y2] /∈ D(Y) be simplified as

eδ(y1, y2) = eδ(y1) + eδ(y2).

Definition. (Adaptive Thinning Algorithm AT2).

For Y ⊂ X, a point pair y∗
1, y∗

2 ∈ Y is said to be least significant in Y, iff

eδ(y∗
1, y∗

2) = min
y1,y2∈Y

eδ(y1, y2).
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Implementation of Adaptive Thinning

8 Implementation of Adaptive Thinning.

Efficient Implementation of Algorithm AT.

Initialization.

• Compute Delaunay triangulation D(X);

• Compute eδ(x) for all x ∈ X and store nodes of D(X) in a Heap.

Removal Step. For current Y ⊂ X

• Pop root y∗ ∈ Y from Heap, update Heap;

• Remove y∗ from D(Y) and compute DY\y∗ ;

• Reattach historical points in C(y∗) ∩ (X \ Y);

• Attach y∗ to new triangle in C(y∗);

• Update eδ(y) for neighbours of y∗ and update Heap.

Total Complexity. O(N log(N)) operations.
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Implementation of Adaptive Thinning

Efficient Implementation of Algorithm AT2.

• Due to the representation

eδ(y1, y2) = eδ(y1) + eδ(y2), for [y1, y2] /∈ D(Y),

the maintenance of significances {eδ(y1, y2) : {y1, y2} ⊂ Y} can be reduced

to maintenance of {eδ(y1, y2) : [y1, y2] ∈ D(Y)} and {eδ(y) : y ∈ Y}.

• For efficient implementation of AT2 we use two different priority queues,

– HeapY for significances eδ(y) of pixels y ∈ Y;

– HeapE for significances eδ(y1; y2) of edges [y1; y2] ∈ D(Y).

• Each priority queue, HeapY and HeapE, contains a least significant element

at its head, and is updated after each pixel removal.

• The resulting algorithm has also complexity O(N log N).
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Implementation of Adaptive Thinning

Further Computational Details.

• We do not remove corner points from X, so that the image domain [X] is

invariant during the performance of adaptive thinning.

Uniqueness of Delaunay triangulation.

• Recall that the Delaunay triangulation D(Y) of Y ⊂ X, is unique, provided

that no four points in Y are co-circular.

• Since neither X nor its subsets satisfy this condition, we apply an efficient

method, termed simulation of simplicity (Edelsbrunner & Mücke, 1990),

which assures uniqueness (by using lexicographical order of vertices).

• Unlike in previous perturbation methods, the simulation of simplicity

method allows us to work with integer arithmetic rather than with floating

point arithmetic.
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Local Optimization by Exchange

9 Local Optimization by Exchange

Definition: For any Y ⊂ X, let Z = X \ Y. A point pair (y, z) ∈ Y × Z satisfying

η((Y ∪ z) \ y; X) < η(Y; X)

is said to be exchangeable. A subset Y ⊂ X is said to be locally optimal

in X, iff there is no exchangeable point pair (y, z) ∈ Y × Z.

Algorithm (Exchange)
INPUT: Y ⊂ X;

(1) Let Z = X \ Y;

(2) WHILE (Y not locally optimal in X)

(2a) Locate an exchangeable pair (y, z) ∈ Y × Z;

(2b) Let Y = (Y \ y) ∪ z and Z = (Z \ z) ∪ y;

OUTPUT: Y ⊂ X, locally optimal in X.
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Local Optimization by Exchange

Characterization of Exchangeable Point Pairs.
Let Z = X \ Y, for any Y ⊂ X, and recall

η(Y \ y; X) = η(Y; X) + eδ(y; Y), for y ∈ Y,

where eδ(y; Y) = η(Y \ y; X ∩ C(y; Y)) − η(Y; X ∩ C(y; Y)).

Letting first Y = Y ∪ z, and then y = z, this implies

η((Y ∪ z) \ y; X) = η(Y ∪ z; X) + eδ(y; Y ∪ z)

η(Y; X) = η(Y ∪ z; X) + eδ(z, Y ∪ z).

Therefore, (y, z) ∈ Y × Z are exchangeable, iff

eδ(z; Y ∪ z) > eδ(y; Y ∪ z),

which simplifies to

eδ(z; Y ∪ z) > eδ(y; Y),

in case C(y; Y) = C(y; Y ∪ z), i.e., [y; z] /∈ D(Y ∪ z).
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Implementation of Exchange

Efficient Implementation of Exchange.

• Due to the swapping criterion

eδ(z; Y ∪ z) > eδ(y; Y), for [y; z] /∈ D(Y ∪ z),

the localization of exchangeable point pairs can efficiently be accomplished

by maintenance of three different priority queues,

– HeapY for significances eδ(y; Y) of pixels y ∈ Y;

– HeapZ for significances eδ(z; Y ∪ z) of pixels z ∈ Z;

– HeapE for significances σ(y, z) = eδ(z; Y ∪ z) − eδ(y; Y ∪ z) of edges

[y; z] ∈ D(Y ∪ z).

• The priority queue HeapY contains a least significant element at its head;

the head of HeapZ and HeapE contains a most significant element.

• Each of the three priority queues is updated after each pixel exchange.

• The resulting complexity for one pixel exchange is O(log N).
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Image Compression

10 Image Compression

• Our compression method replaces the image I by its linear spline

approximation L∗(Y, I), where Y ⊂ X are the significant pixels.

• In order to code L∗(Y, I), we code the information

{(y, I∗(y)) :y ∈ Y}.

Quantization.

• Apply uniform quantization to the optimal luminances I∗(y) = L∗(Y, I)(y),

• so obtain quantized symbols {Q(I∗(y)) :y ∈ Y},

• corresponding to quantized luminances {̃I(y)) :y ∈ Y}.
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Image Compression

11 Theoretical Coding Costs

OBSERVE! Due to the uniqueness of the Delaunay triangulation,

no connectivity coding is required!

• We are only concerned with coding the elements of the set

{(y, Q(I∗(y))) :y ∈ Y} ∈ Is
n,

where, with n = |Y|,

Is
n =

{
{0, 1, . . . , 2s − 1}Z : Z ⊂ X and |Z| = n

}
.

• The number of elements in Is
n is

(

|X|
n

)

× 2s×n.

• If we assume that every element of Is
n has the same probability of

occurrence, then the theoretical coding cost is

log2

((

|X|

n

))

+ s × n.
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Scattered Data Coding

12 Scattered Data Coding

OBSERVE! We can reduce the theoretical coding costs by taking advantage

of the geometric structure of the image as follows.

The elements of {(i, j, Q(I∗(i, j))) : (i, j) ∈ Y} are coded by decomposing their

bounding cell

Ω = [0..2p − 1] × [0..2q − 1] × [0..2s − 1]

recursively, where [0..2s − 1] is the range for the quantized symbols.

Splitting of the cell Ω into eight subcells in three stages.
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Scattered Data Coding

(1) Coding of Scattered Pixels.

• Coding of pixels in Y relies on a recursive splitting of the pixel domain

Ω = [X].

• For the sake of simplicity, let us assume that Ω is a square domain of the

form Ω = [0, 2q − 1] × [0, 2q − 1].

• In the splitting, a square subdomain ω ⊂ Ω (initially ω = Ω) is split

horizontally into two rectangular subdomains of equal size. A rectangular

subdomain is split vertically into two square subdomains of equal size.

• The splitting terminates at subdomains which are either empty, i.e., not

containing any pixel from Y, or atomic, i.e., of size 1 × 1.
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Scattered Data Coding

(1) Coding of Scattered Pixels.

• This recursive splitting can be represented by a binary tree, whose nodes

correspond to the subdomains. The root of the tree corresponds to Ω, and

its leaves correspond to empty or atomic subdomains.

• In each node of the tree, with a corresponding subdomain ω, we store the

number |ω| of pixels from Y contained in ω, i.e., |ω| = |Y ∩ ω|.

• Note that for a parent node ω, and its two children nodes, ω1 and ω2, we

have the relation |ω| = |ω1| + |ω2|. This relation allows a non-redundant

representation of the binary tree.

• The bitstream, representing the tree, is constructed by a Huffman code.
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Scattered Data Coding

(2) Coding of Quantized Symbols.

• To code the quantized symbols in QY , we first split the image domain Ω

into a small number of square subdomains of equal size.

• For each subdomain, the pixels from Y contained in it are ordered linearly,

such that close pixels in the image domain are close in this ordering.

• The quantized symbol of any pixel in this ordering is coded relative to the

quantized symbol of its predecessor, except for that of the first pixel.

• The coding is done by using a Huffman code.
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Image Reconstruction

13 Image Reconstruction at the Decoder

Reconstruction of the compressed image from information

{(y, Q(I∗(y))) :y ∈ Y}

in four steps:

(1) Compute Delaunay triangulation D(Y) of Y;

(2) Construct unique linear spline L(Y, Ĩ) ∈ SY satisfying

L(Y, Ĩ)(y) = Ĩ(y), for all y ∈ Y,

from quantized luminance values {̃I(y) :y ∈ Y};

(3) Obtain reconstructed image by

Ĩ = {(x, L(Y, Ĩ)(x)) : x ∈ X}.
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First Comparisons with JPEG2000

14 First Comparisons with JPEG2000

Preliminary Remarks.

• We compare the performance of our compression method AT2 with that of

EBCOT, which is the basic algorithm in JPEG2000.

• In each comparison, the compression rate, in bits per pixel (bpp), is fixed.

• The quality of the resulting reconstructions is measured

by their PSNR values, and by their visual quality.
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First Comparisons with JPEG2000

Geometric Test Image Chessboard. AT versus AT2.

Original Image.

JPEG2000

AT

AT2

Delaunay triangulation.

Delaunay triangulation.
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First Comparisons with JPEG2000

Geometric Test Image Chessboard.

Original Image

Chessboard

of size (128 × 128).

Reconstruction by

JPEG2000 at 0.23 bpp

PSNR 18.68 db.

Reconstruction by

AT2 at 0.23 bpp

PSNR 45.15 db.
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First Comparisons with JPEG2000

Geometric Real Image Reflex.

Original Image

Reflex

of size (128 × 128).

Reconstruction by

JPEG2000 at 0.251 bpp

PSNR 28.74 db.

Reconstruction by

AT2 at 0.251 bpp

PSNR 42.86 db.
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More Recent Comparisons with JPEG2000

15 More Recent Comparisons with JPEG2000

Current Version (AT2009):
• L. Demaret, A. Iske, W. Khachabi (2009)

Contextual image compression from adaptive sparse data representations.

In: Signal Processing with Adaptive Sparse Structured Representations.

Workshop Proceedings, Saint-Malo (France), 6.-9. April 2009.

Previous Version (AT2006):
• L. Demaret, A. Iske (2006)

Adaptive image approximation by linear splines over locally optimal Delaunay triangulations.

IEEE Signal Processing Letters 13(5), 281-284.

• L. Demaret, N. Dyn, A. Iske (2006)

Image compression by linear splines over adaptive triangulations.

Signal Processing 86(7), July 2006, 1604–1616.
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Comparison between JPEG2000 and AT2009

Comparison between JPEG2000 and AT2009.

Original Image

Cameraman

of size (256 × 256).

Reconstruction by

JPEG2000 at 3.247 kB

PSNR 29.84 db.

Reconstruction by

AT2009 at 3.233 kB

PSNR 30.66 db.
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Comparison between JPEG2000 and AT2009

Rate-Distortion Curves for JPEG2000 and AT.
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Asymptotic Behaviour of N-term Approximations

Asymptotic Behaviour of N-term Approximations.
Theorem (Birman & Solomjak 1967): Let α ∈ (0, 2] and p ≥ 1 satisfy

α > 2/p − 1. Then, for any f ∈ Wα,p([0, 1]2) we have

EN(f) = O(N−α) for N → ∞

where

EN(f) = inf
{
‖f − f̂(QN)‖2

L2([0,1]2) :QN ∈ Q with |QN| = N
}

.

Corollary (Demaret & I. 2010): Let α ∈ (0, 2] and p ≥ 1 satisfy

α > 2/p − 1. Then, for any f ∈ Wα,p([0, 1]2) we have

EN(f) = O(N−α) for N → ∞

where

EN(f) = inf
{
‖f − f̂(DN)‖2

L2([0,1]2) :DN ∈ D with |DN| = N
}

.
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Video Compression: Test Case Suzie

Video Compression: Test Case Suzie.
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Video Compression

Video Compression: Preliminary Remarks.

• Natural videos are composed of a superposition of moving objects ...

• ... usually resulting from anisotropic motions;

• a video may be regarded as a sequence of consecutive natural still images ...

• ... or — a video may be regarded as a 3d scalar field;

• it is desirable to work with sparse representations of video data;

• ...

• Adaptive Thinning (AT) extracts significant video pixels ...

• ... to obtain a sparse representation of the video ...

• ... relying on linear splines over anisotropic tetrahedralizations.
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Representation of Video Data

Representation of Video Data.

• A digital video V is a rectangular 3d grid of pixels, X.

• Each pixel x ∈ X bears a greyscale luminance V(x).

• We regard the video as a trivariate function,

V : [X] → {0, 1, . . . , 2r − 1}

where the convex hull [X] of X is the video domain.

INPUT: The video is given by its restriction to the pixels in X,

V
∣

∣

X
= {(x, V(x)) : x ∈ X}.

GOAL: Approximation of V from discrete data V
∣

∣

X
.
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Linear Splines over Tetrahedralizations

Linear Splines over Tetrahedralizations.

• Given any tetrahedralizations T (Y) of Y, we denote by

SY =
{
s : s ∈ C([Y]) and s

∣

∣

T
linear for all T ∈ T (Y)

}
,

the spline space containing all continuous functions over [Y] whose

restriction to any tetrahedron in T (Y) is linear.

• Any element in SY is referred to as a linear spline over T (Y).

• For given function values {V(y) :y ∈ Y}, there is a unique linear spline,

L(Y, V) ∈ SY , which interpolates V at the points of Y, i.e.,

L(Y, V)(y) = V(y), for all y ∈ Y.
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Delaunay Tetrahedralizations

Basic Features of Delaunay Tetrahedralizations.
• Uniqueness.

Delaunay tetrahedralization D(X) is unique,

if no five points in X are co-spherical.

• Complexity.

For any point set X, its Delaunay tetrahedralization D(X)

can be computed in O(N log N) steps, where N = |X|.

• Local Updating.

For any X and x ∈ X, the Delaunay tetrahedralization D(X \ x) of the point set

X \ x can be computed from D(X) by re-tetrahedralization of the cell C(x) of x.

Removal of the node x and re-tetrahedralization of its cell C(x).
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Numerical Simulation

Numerical Simulation for Test Case Suzie.
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Numerical Simulation

Test Case Suzie: Frame 0000.

Original Frame Suzie.

Delaunay tetrahedralization.

708 significant pixels.

Reconstruction by AT at 34.58 dB.
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Numerical Simulation

Test Case Suzie: Frame 0001.

Original Frame Suzie.

Delaunay tetrahedralization.

118 significant pixels.

Reconstruction by AT at 35.15 dB.
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Numerical Simulation

Test Case Suzie: Frame 0002.

Original Frame Suzie.

Delaunay tetrahedralization.

287 significant pixels.

Reconstruction by AT at 35.18 dB.
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Numerical Simulation

Test Case Suzie: Frame 0003.

Original Frame Suzie.

Delaunay tetrahedralization.

338 significant pixels.

Reconstruction by AT at 34.91 dB.
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Numerical Simulation

Test Case Suzie: Frame 0004.

Original Frame Suzie.

Delaunay tetrahedralization.

398 significant pixels.

Reconstruction by AT at 34.98 dB.
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Numerical Simulation

Test Case Suzie: Frame 0005.

Original Frame Suzie.

Delaunay tetrahedralization.

448 significant pixels.

Reconstruction by AT at 34.99 dB.
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Numerical Simulation

Test Case Suzie: Frame 0006.

Original Frame Suzie.

Delaunay tetrahedralization.

424 significant pixels.

Reconstruction by AT at 34.96 dB.
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Numerical Simulation

Test Case Suzie: Frame 0007.

Original Frame Suzie.

Delaunay tetrahedralization.

460 significant pixels.

Reconstruction by AT at 34.92 dB.
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Numerical Simulation

Test Case Suzie: Frame 0008.

Original Frame Suzie.

Delaunay tetrahedralization.

534 significant pixels.

Reconstruction by AT at 35.11 dB.
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Numerical Simulation

Test Case Suzie: Frame 0009.

Original Frame Suzie.

Delaunay tetrahedralization.

523 significant pixels.

Reconstruction by AT at 34.82 dB.
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Numerical Simulation

Test Case Suzie: Frame 0010.

Original Frame Suzie.

Delaunay tetrahedralization.

539 significant pixels.

Reconstruction by AT at 34.89 dB.
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Numerical Simulation

Test Case Suzie: Frame 0011.

Original Frame Suzie.

Delaunay tetrahedralization.

534 significant pixels.

Reconstruction by AT at 34.95 dB.
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Numerical Simulation

Test Case Suzie: Frame 0012.

Original Frame Suzie.

Delaunay tetrahedralization.

513 significant pixels.

Reconstruction by AT at 35.34 dB.
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Numerical Simulation

Test Case Suzie: Frame 0013.

Original Frame Suzie.

Delaunay tetrahedralization.

432 significant pixels.

Reconstruction by AT at 35.30 dB.
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Numerical Simulation

Test Case Suzie: Frame 0014.

Original Frame Suzie.

Delaunay tetrahedralization.

364 significant pixels.

Reconstruction by AT at 35.49 dB.
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Numerical Simulation

Test Case Suzie: Frame 0015.

Original Frame Suzie.

Delaunay tetrahedralization.

311 significant pixels.

Reconstruction by AT at 35.68 dB.
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Numerical Simulation

Test Case Suzie: Frame 0016.

Original Frame Suzie.

Delaunay tetrahedralization.

285 significant pixels.

Reconstruction by AT at 35.82 dB.
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Numerical Simulation

Test Case Suzie: Frame 0017.

Original Frame Suzie.

Delaunay tetrahedralization.

293 significant pixels.

Reconstruction by AT at 36.32 dB.
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Numerical Simulation

Test Case Suzie: Frame 0018.

Original Frame Suzie.

Delaunay tetrahedralization.

289 significant pixels.

Reconstruction by AT at 36.08 dB.
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Numerical Simulation

Test Case Suzie: Frame 0019.

Original Frame Suzie.

Delaunay tetrahedralization.

307 significant pixels.

Reconstruction by AT at 36.25 dB.
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Numerical Simulation

Test Case Suzie: Frame 0020.

Original Frame Suzie.

Delaunay tetrahedralization.

292 significant pixels.

Reconstruction by AT at 36.26 dB.
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Numerical Simulation

Test Case Suzie: Frame 0021.

Original Frame Suzie.

Delaunay tetrahedralization.

293 significant pixels.

Reconstruction by AT at 36.02 dB.
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Numerical Simulation

Test Case Suzie: Frame 0022.

Original Frame Suzie.

Delaunay tetrahedralization.

326 significant pixels.

Reconstruction by AT at 36.06 dB.
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Numerical Simulation

Test Case Suzie: Frame 0023.

Original Frame Suzie.

Delaunay tetrahedralization.

341 significant pixels.

Reconstruction by AT at 36.08 dB.
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Numerical Simulation

Test Case Suzie: Frame 0024.

Original Frame Suzie.

Delaunay tetrahedralization.

311 significant pixels.

Reconstruction by AT at 36.24 dB.
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Numerical Simulation

Test Case Suzie: Frame 0025.

Original Frame Suzie.

Delaunay tetrahedralization.

321 significant pixels.

Reconstruction by AT at 36.16 dB.
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Numerical Simulation

Test Case Suzie: Frame 0026.

Original Frame Suzie.

Delaunay tetrahedralization.

320 significant pixels.

Reconstruction by AT at 35.95 dB.
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Numerical Simulation

Test Case Suzie: Frame 0027.

Original Frame Suzie.

Delaunay tetrahedralization.

273 significant pixels.

Reconstruction by AT at 35.60 dB.
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Numerical Simulation

Test Case Suzie: Frame 0028.

Original Frame Suzie.

Delaunay tetrahedralization.

179 significant pixels.

Reconstruction by AT at 35.48 dB.
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Numerical Simulation

Test Case Suzie: Frame 0029.

Original Frame Suzie.

Delaunay tetrahedralization.

669 significant pixels.

Reconstruction by AT at 35.00 dB.
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Numerical Simulation

Performance Check: Data Size and Approximation.
Number of significant pixels:

Total: 11,430; minimal: 118; maximal: 708; average: 381 pixels.

PSNR value:

Overall: 35.45 dB; minimal: 34.58 dB; maximal: 36.32 dB; average: 35.49 dB.

Number of significant pixels. PSNR values.
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