Analysis of High-Dimensional Signal Data by Manifold Learning and Convolution Transforms

Mijail Guillemard and Armin Iske
University of Hamburg

Alba di Canazei, 6-9 September 2010

Application from Neuro and Bioscience

- Electromyogram (EMG) Signal Analysis

Objectives and Problem Formulation

- Manifold Learning and Convolution Transforms

Some more Background

- Dimensionality Reduction: PCA, MDS, and Isomap
- Differential Geometry: Curvature Analysis

Numerical Examples

- Parameterization of Scale- and Frequency-Modulated Signals
- Manifold Evolution under Wave Equation
- Geometrical and Topological Distortions through Convolutions

EMG Signal Analysis in Neuro and Bioscience

- An EMG signal is an electrical measurement combining multiple action potentials propagating along motor neural cells.
- EMG signal analysis provides ...
... physiological information about muscle and nerve interactions.
- Applications: diagnosis of neural diseases, athletic performance analysis.

Goal: Develop fast and accurate methods to EMG signal analysis.

Tools:

- Dimensionality Reduction;
- Manifold Learning.

Peggy busy weight lifting.

Collaborators:

Deutscher Olympia-Stützpunkt Rudern, Hamburg
Prof. Klaus Mattes (Bewegungs- und Trainingswissenschaft, UHH)

Action Potential and Surface EMG

Manifold Learning by Dimensionality Reduction.

Input data: $X=\left\{x_{1}, \ldots, x_{m}\right\} \subset \mathcal{M} \subset \mathbb{R}^{n}$;
Hypothesis:

- $Y=\left\{y_{1}, \ldots, y_{m}\right\} \subset \Omega \subset \mathbb{R}^{d}, d \ll n$;
- nonlinear embedding map $\mathcal{A}: \Omega \rightarrow \mathbb{R}^{n}, X=\mathcal{A}(Y)$;

Task: Recover Y (and Ω) from X.
$\mathbb{R}^{d} \supset \Omega \supset Y \xrightarrow{\mathcal{A}} X \subset \mathcal{M} \subset \mathbb{R}^{n}$

Objectives and Method Description

\bullet

$$
\begin{gathered}
X=\left\{x_{1}, \ldots, x_{m}\right\} \subset \mathcal{M} \subset \mathbb{R}^{n} \\
\Omega \subset \mathbb{R}^{d} \stackrel{\mathcal{A}}{\longrightarrow} \mathcal{M} \subset \mathbb{R}^{n} \\
\downarrow^{T} \\
\Omega^{\prime} \subset \mathbb{R}^{d} \stackrel{\mathcal{P}}{\longleftrightarrow} \mathcal{M}_{T} \subset \mathbb{R}^{n}
\end{gathered}
$$

$T \quad \begin{gathered}\text { Signal Transformation } \\ \text { (Wavelets, Fourier,...) }\end{gathered}$
\mathcal{P} Dimensionality Reduction

Manifold Learning Techniques

Geometry-based Dimensionality Reduction Methods.

- Principal Component Analysis (PCA)
- Multidimensional Scaling (MDS)
- Isomap
- Supervised Isomap
- Local Tangent Space Alignment (LTSA)
- Riemannian Normal Coordinates (RNC, 2005)

Principal Component Analysis (PCA)

Problem:

Given points $X=\left\{x_{k}\right\}_{k=1}^{m} \subset \mathbb{R}^{n}$, find closest hyperplane $H \subset \mathbb{R}^{n}$ to X, i.e., find orthogonal projection $P: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, with $\operatorname{rank}(P)=p<n$, minimizing

$$
d(P, X)=\sum_{k=1}^{m}\left\|x_{k}-P\left(x_{k}\right)\right\|^{2}
$$

Theorem: Let $X=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{n \times m}$ be scattered with zero mean,

$$
\frac{1}{m} \sum_{k=1}^{m} x_{k}=0
$$

Then, for an orthogonal projection $P: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, with $\operatorname{rank}(P)=p<n$, are equivalent:
(a) The projection P minimizes the distance

$$
d(P, X)=\sum_{k=1}^{m}\left\|x_{k}-P\left(x_{k}\right)\right\|^{2} .
$$

(b) The projection P maximizes the variance

$$
\operatorname{var}(P(X))=\sum_{k=1}^{m}\left\|P\left(x_{k}\right)\right\|^{2}
$$

(c) The matrix representation of the projection P is spanned by p eigenvectors of the p largest eigenvalues of the covariance matrix $X X^{T} \in \mathbb{R}^{n \times n}$.

Proof: By the Pythagoras Theorem, we have

$$
\left\|x_{k}\right\|^{2}=\left\|x_{k}-P\left(x_{k}\right)\right\|^{2}+\left\|P\left(x_{k}\right)\right\|^{2} \quad \text { for } k=1, \ldots, m
$$

and so

$$
d(P, X)=\sum_{k=1}^{m}\left\|x_{k}\right\|^{2}-\operatorname{var}(P(X))
$$

Therefore, minimizing $d(P, X)$ is equivalent to maximizing $\operatorname{var}(P(X))$, i.e., characterizations (a) and (b) are equivalent.

To study property (c), let $v_{1}, \ldots, v_{p} \subset \mathbb{R}^{n}$ denote an orthonormal set of vectors, such that

$$
P\left(x_{k}\right)=\sum_{i=1}^{p}<v_{i}, x_{k}>v_{i}
$$

and therefore

$$
\operatorname{var}(P(X))=\sum_{k=1}^{m}\left\|P\left(x_{k}\right)\right\|^{2}=\sum_{k=1}^{m} \sum_{i=1}^{p}\left|\left\langle v_{i}, x_{k}\right\rangle\right|^{2}
$$

Principal Component Analysis (PCA)

Now,

$$
\begin{aligned}
\sum_{k=1}^{m}\left|<v_{i}, x_{k}>\right|^{2} & =\sum_{k=1}^{m}<v_{i}, x_{k}><x_{k}, v_{i}> \\
& =\left\langle v_{i}, \sum_{k=1}^{m} x_{k}<x_{k}, v_{i}>\right\rangle \\
& =\left\langle v_{i}, \sum_{k=1}^{m} x_{k} \sum_{j=1}^{n} x_{j k} v_{j i}\right\rangle
\end{aligned}
$$

For the covariance matrix

$$
S=X X^{T}=\left(\sum_{k=1}^{m} x_{\ell k} x_{j k}\right)_{1 \leq \ell, j \leq n}
$$

we obtain

$$
\left(S v_{i}\right)_{\ell}=\sum_{j=1}^{n} \sum_{k=1}^{m} x_{\ell k} x_{j k} v_{j i}=\sum_{k=1}^{m} x_{\ell k} \sum_{j=1}^{n} x_{j k} v_{j i}
$$

Therefore,

$$
\sum_{k=1}^{m}\left|<v_{i}, x_{k}>\right|^{2}=<v_{i}, S v_{i}>
$$

and so

$$
\operatorname{var}(P(X))=\sum_{k=1}^{m}\left\|P\left(x_{k}\right)\right\|^{2}=\sum_{i=1}^{p}<v_{i}, S v_{i}>
$$

Now, maximizing $\operatorname{var}(P(X))$ is equivalent to select p eigenvectors v_{1}, \ldots, v_{p} corresponding to the p largest eigenvalues of S.
The latter observation relies on the following
Lemma: Let $S \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then, the function

$$
W(v)=<v, S v>\quad \text { for } v \in \mathbb{R}^{n} \text { with }\|v\|=1
$$

attains its maximum at an eigenvector of S corresponding to the largest eigenvalue of S.
Proof: Exercise.

Conclusion.

In order to compute P minimizing $d(P, X)$, perform the following steps
(a) Compute the singular value decomposition of X, so that $X=U D V^{T}$, with a diagonal matrix D containing the singular values of X, and U, V unitary matrices.
(b) So obtain

$$
X X^{T}=U\left(D D^{T}\right) U^{T}
$$

the eigendecomposition of the covariance matrix $X X^{\top}$.
(c) Take the p (orthonormal) eigenvectors v_{1}, \ldots, v_{p} in U corresponding to the p largest singular values in $D D^{T}$, and so obtain the required projection

$$
P(x)=\sum_{i=1}^{p}<x, v_{i}>v_{i} .
$$

Multidimensional Scaling (MDS)

Problem (MDS):

Given distance matrix

$$
D_{X}=\left(\left\|x_{i}-x_{j}\right\|^{2}\right)_{1 \leq i, j \leq m} \in \mathbb{R}^{m \times m}
$$

of $X=\left(x_{1} \ldots x_{m}\right) \in \mathbb{R}^{n \times m}$, find $Y=\left(y_{1} \ldots y_{m}\right) \in \mathbb{R}^{p \times m}$ minimizing

$$
d(Y, D)=\sum_{i, j=1}^{m}\left(d_{i j}-\left\|y_{i}-y_{j}\right\|^{2}\right)
$$

Multidimensional Scaling (MDS)

Solution to Multidimensional Scaling Problem.

Theorem: Let $D=\left(\left\|x_{i}-x_{j}\right\|^{2}\right)_{1 \leq i, j \leq m} \in \mathbb{R}^{m \times m}$ be a given distance matrix of $X=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{n \times m}$ with

$$
\frac{1}{m} \sum_{i=1}^{m} x_{i}=0
$$

Then, the matrix X can (up to orthogonal transformation) be recovered from D by

$$
Y=\operatorname{diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{m}}\right) U^{\top},
$$

where $\lambda_{1} \geq \ldots \geq \lambda_{m} \geq 0$ and $U \in \mathbb{R}^{m \times n}$ are the corresponding eigenvalues and eigenvectors of the matrix

$$
X X^{T}=-\frac{1}{2} J D J \quad \text { with } J=I-(1 / m) e e^{T}
$$

where $e=(1, \ldots, 1)^{T} \in \mathbb{R}^{m}$.

Multidimensional Scaling (MDS)

Proof (sketch): Note that

$$
d_{i j}=\left\|x_{i}-x_{j}\right\|^{2}=\left(x_{i}, x_{i}\right)-2\left(x_{i}, x_{j}\right)+\left(x_{j}, x_{j}\right)
$$

This implies the relation

$$
D=A e^{T}-2 X X^{T}+e A^{T}
$$

for $A=\left[\left(x_{1}, x_{1}\right), \ldots,\left(x_{m}, x_{m}\right)\right]^{T} \in \mathbb{R}^{m}$. Now regard
$J=I_{m}-(1 / m) e e^{T} \in \mathbb{R}^{m \times m}$. Since $J e=0$, the above relation implies

$$
X X^{T}=-\frac{1}{2} J D J .
$$

Therefore, the eigendecomposition of $X X^{T}=U \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{m}\right) U^{T}$ allows us to recover X, up to orthogonal transformation, by

$$
Y=\operatorname{diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{m}}\right) U^{T} .
$$

Dimensionality Reduction by Isomap

From Multidimensional Scaling to Isomap.
Example: Regard the Swiss roll data, sampled from the surface

$$
f(u, v)=(u \cos (u), v, u \sin (u)) \quad \text { for } u \in[3 \pi / 2,9 \pi / 2], v \in[0,1] .
$$

$$
D_{i j}>d_{i j}
$$

Dimensionality Reduction by Isomap

Isomap Strategy.

- Neighbourhood graph construction.

Define a graph where each vertex is a data point, and each edge connects two points satisfying an ϵ-radius or k-nearest neighbour criterion.

- Geodesic distance construction.

Compute the geodesic distance between each point pair (x, y) by using the length of shortest path from x to y in the graph.

- d-dimensional embedding.

Use the geodesic distances for computing a d-dimensional embedding as in the MDS algorithm.

Dimensionality Reduction by Isomap

Swiss Roll Dataset \mathbb{R}^{3}

PCA projection \mathbb{R}^{2}

Isomap projection: Eigenvectors

Curvature Analysis for Curves

Curvature of Curves.

- For a curve $r: I \rightarrow \mathbb{R}^{n}$ with arc-length parametrization:

$$
s(t)=\int_{a}^{t}\left\|r^{\prime}(x)\right\| d x
$$

its curvature is

$$
\kappa(s)=\left\|r^{\prime \prime}(s)\right\|
$$

- For a curve $r: I \rightarrow \mathbb{R}^{n}$ with arbitrary parametrization we have

$$
\kappa^{2}(r)=\frac{\|\ddot{r}\|^{2}\|\dot{r}\|^{2}-\langle\ddot{r}, \dot{r}\rangle^{2}}{\left(\|\dot{r}\|^{2}\right)^{3}}
$$

Computation of the Scalar Curvature for Manifolds.

Metric Tensor: $g_{i j}(p)=\left\langle\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right\rangle$
Christoffel symbols: $\Gamma_{i j}^{k}=\frac{1}{2} \sum_{\ell=1}^{m}\left(\frac{\partial g_{j \ell}}{\partial x_{i}}+\frac{\partial g_{i \ell}}{\partial x_{j}}-\frac{\partial g_{i j}}{\partial x_{\ell}}\right) g^{\ell k}$
Curvature Tensor: $\quad R^{\ell}{ }_{i j k}=\sum_{h=1}^{m}\left(\Gamma_{j k}^{h} \Gamma_{i h}^{\ell}-\Gamma_{i k}^{h} \Gamma_{j h}^{\ell}\right)+\frac{\partial \Gamma_{j k}^{\ell}}{\partial x_{i}}-\frac{\partial \Gamma_{i k}^{\ell}}{\partial x_{j}}$
Ricci Tensor : $\quad R_{i j k \ell}=\sum_{h=1}^{m} R_{i j k}^{h} g_{\ell h}, \quad R_{i j}=\sum_{k, \ell=1}^{m} g^{k \ell} R_{k i j \ell}=\sum_{k=1}^{m} R_{k i j}^{k}$
Scalar Curvature : $\kappa=\sum_{i, j=1}^{m} g^{i j} R_{i j}$

Curvature Distortion and Convolution

- Regard the convolution map T on manifold \mathcal{M},
- $\mathcal{M}_{T}=\{T(x), x \in \mathcal{M}\} \quad T(x)=x * h, \quad h=\left(h_{1}, \ldots, h_{m}\right)$

$$
T=\left(\begin{array}{cccc}
h_{1} & 0 & \ldots & 0 \\
h_{2} & h_{1} & \ldots & 0 \\
h_{3} & h_{2} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
h_{m} & h_{m-1} & \ldots & h_{1} \\
0 & h_{m} & \ldots & h_{2} \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & h_{m}
\end{array}\right)
$$

- Curvature (for curves):

$$
\mathrm{K}_{T}^{2}(r)=\frac{\|T \ddot{r}\|^{2}\|T \dot{r}\|^{2}-\langle T \ddot{r}, T \dot{r}\rangle^{2}}{\left(\|T \dot{r}\|^{2}\right)^{3}}
$$

Modulation Maps and Modulation Manifolds

- A modulation map is defined for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \Omega$, and $\left\{t_{i}\right\}_{i=1}^{n} \subset[0,1]:$

$$
\mathcal{A}: \Omega \rightarrow \mathcal{M} \quad \rightsquigarrow \quad \mathcal{A}_{\alpha}\left(t_{i}\right)=\sum_{k=1}^{d} \phi_{k}\left(\alpha_{k} t_{i}\right) \text { for } 1 \leq i \leq n,
$$

$\left(\Omega \subset \mathbb{R}^{d}\right.$ and $\mathcal{M} \subset \mathbb{R}^{n}$ manifolds, $\left.\operatorname{dim}(\Omega)=\operatorname{dim}(\mathcal{M}), d<n\right)$.

- Example: Scale modulation map

$$
\mathcal{A}_{\alpha}\left(t_{i}\right)=\sum_{k=1}^{d} \exp \left(\alpha_{k}\left(t_{i}\right)-b_{k}\right)^{2} \quad \text { for } 1 \leq i \leq n
$$

- Example: Frequency modulation map

$$
\mathcal{A}_{\alpha}\left(t_{i}\right)=\sum_{k=1}^{d} \sin \left(\alpha_{k} t_{i}+b_{k}\right) \quad \text { for } 1 \leq i \leq n
$$

Numerical Example 1: Curvature Distortion

Low dimensional Parameterization of Scale Modulated Signals.

$$
\begin{aligned}
& X=\left\{f_{\alpha^{t}}=\sum_{i=1}^{3} e^{-\alpha_{i}(t)\left(-b_{i}\right)^{2}}, \alpha \in \Omega\right\} \\
& \Omega=\left\{\alpha^{t}=\left(\alpha_{1}(t), \alpha_{2}(t), \alpha_{3}(t)\right), \quad t \in\left[t_{0}, t_{1}\right]\right\}
\end{aligned}
$$

Numerical Example 1: Curvature Distortion

Low dimensional Parameterization of Scale Modulated Signals.

$$
V_{8} \oplus W_{8} \oplus W_{16} \oplus W_{32}=V_{64}
$$

$\Omega \subset \mathbb{R}^{3}$

$X \subset \mathbb{R}^{64}$

$T(X) \subset \mathbb{R}^{64}$

Numerical Example 1: Curvature Distortion Evolution

Manifold Evolution under a PDE

$$
\begin{aligned}
& \text { Wave Equation } \quad \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \quad(\mathrm{WE}) \\
& U_{t}=\left\{u_{\alpha}(t, x), u_{\alpha} \text { solution of (WE) with initial condition } f_{\alpha}, \alpha \in \Omega_{0}\right\}
\end{aligned}
$$

$\left\{u_{\alpha_{0}}(t, x),(t, x) \in\left[t_{0}, t_{1}\right] \times\left[x_{0}, x_{1}\right]\right\}$

$X_{0} X_{t}$

Example 2: Curvature Distortion - Frequency Modulation

Frequency Modulation.

$$
\begin{aligned}
& \mathcal{A}: \Omega \subset \mathbb{R}^{d} \rightarrow \mathcal{M} \subset \mathbb{R}^{n} \\
& \alpha_{1}(u, v)=(R+r \cos v) \cos u \\
& \alpha_{2}(u, v)=(R+r \cos v) \sin u \quad \xrightarrow{\mathcal{A}} \mathcal{A}_{\alpha}\left(t_{i}\right)=\sum_{k=1}^{3} \sin \left(\left(\alpha_{k}^{0}+\gamma \alpha_{k}\right) t_{i}\right) \\
& \alpha_{3}(u, v)=r \sin v
\end{aligned}
$$

Example 2: Curvature Distortion - Frequency Modulation *

Torus Deformation.

$$
\begin{array}{rlrl}
\mathcal{A}: \Omega \subset \mathbb{R}^{d} \rightarrow \mathcal{M} \subset \mathbb{R}^{n} & \mathcal{P}: \mathcal{M} \subset \mathbb{R}^{n} \rightarrow \Omega^{\prime} \subset \mathbb{R}^{3} \\
& \text { Modulation Map } & & \text { PCA 3D Projection : } \mathcal{P}(\mathcal{M})=\Omega^{\prime}
\end{array}
$$

Torus $\Omega \subset \mathbb{R}^{3}$

Scalar Curvature of $\mathcal{M} \subset \mathbb{R}^{256}$

$\mathcal{P}(\mathcal{M}):$ PCA 3D Projection of $\mathcal{M} \subset \mathbb{R}^{256}$

Scalar Curvature of $\mathcal{P}(\mathcal{M}) \subset \mathbb{R}^{3}$

Example 2: Curvature Distortion - Frequen PCA Distortion for high frequency bandwidths γ.

$$
\mathcal{A}_{\alpha}\left(t_{i}\right)=\sum_{k=1}^{3} \sin \left(\left(\alpha_{k}^{0}+\gamma \alpha_{k}\right) t_{i}\right)
$$

Example 3: Topological Distortion

Torus (Genus 1 and Genus 2).

Relevant Literature.

- M. Guillemard and A. Iske (2010)

Curvature Analysis of Frequency Modulated Manifolds in
Dimensionality Reduction. Calcolo.
Published online, 21st Sept. 2010, DOI: 10.1007/s10092-010-0031-8.

- M. Guillemard and A. Iske (2009)

Analysis of High-Dimensional Signal Data by Manifold Learning and Convolutions. In: Sampling Theory and Applications (SampTA'09), L. Fesquet and B. Torrésani (eds.), Marseille, May 2009, 287-290.

- Further up-to-date material, including slides and code, are accessible through our homepages
http://www.math.uni-hamburg.de/home/guillemard/ and http://www.math.uni-hamburg.de/home/iske/.

