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A numerical approach for a special crack problem

Peter Junghanns a · Robert Kaiser a
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Abstract

A collocation-quadrature method is proposed and studied for the numerical solution of a singular integral
equation concerned with the two-dimensional elasticity problem of a crack at a circular cavity surface.
These investigations are based on an C∗-algebra approach presented in a recent paper [5] on the numerical
solution of an integral equation for the notched half-plane problem.

1 Introduction
In [11, (37.5)], the integral equation
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v0(s) ds = f0(t) + C , 1< t < 1+ 2L , (1)

is given for studying the crack problem, which considers a circular hole of radius 1 and radial cut of length 2L at the surface of
this hole in an elastic plane, which is subjected at infinity to tensile forces P perpendicular to the cut. Here,

k0(t, s) =
(t − s)(t2 − 1)

ts(ts− 1)3
−

1
s3(ts− 1)

−
1

ts2
and f0(t) = P

�

1
4t3
+

1
4t
−

t
2

�

(2)

P

P

10
t

1+2L

The unknown function v0(t) of equation (1) measures the normal displacement of the face of the cut and has to satisfy the
condition

v0(1+ 2L) = 0 . (3)

Also the constant C ∈ R is unknown. In case of L = 0.5 , equation (1) takes the form (cf. also [2, (14.7)])
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y − x

+ k0(1+ x , 1+ y)
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v(y) d y = f0(1+ x) + C , 0< x < 1 , (4)

together with the condition
v(1) = 0 , (5)
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where v(x) = v0(1+ x) and
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For the general case L > 0 , we get
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−1
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1
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+ kL
0 (x , y)

�

v(y) d y = f L
0 (x) + C , −1< x < 1 , (6)

together with (5), v(x) = v0(1+ L(1+ x)) , and

kL
0 (x , y) = L k0(1+ L(1+ x), 1+ L(1+ y)) , f L

0 (x) = f0(1+ L(1+ x)) .

It turns out that the unknown constant C in (1) leads to problems in handling this operator equation as well analytically as
numerically (cf. also the discussion in Section 4). For that reason, in Section 2 we transform equation (1) into an integral
equation the unknown function of which is the derivative of the normal displacement function. In Section 3 we propose a
collocation-quadrature method for the numerical solution of this integral equation and study the stability of this method, basing
on a C∗-algebra approach for an integral equation of the notched half-plane problem presented in [5]. Section 4 contains a
discussion of the numerical results obtained with the method of the present paper in comparison with results available from the
literature. In Section 5, we give the technical proof of Lemma 2.2.

Note, that we do not loose information on the solution of (1) by transforming this equation into an equivalent one for
the derivative of the normal displacement function v0(t) . Of course, v0(t) can be recovered from its derivative by integration.
Moreover, the important stress intensity factor at t = 1+ 2L can also be computed directly from v′0(t) (cf. (34)).

2 The integral equation for the derivative of the displacement
By elementary calculations one can see that, for t, s > 1 and for
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we have
∂ k0(t, s)
∂ t

=
∂ek0(t, s)
∂ s

and ek0(t, 1) =
1

1− t
. (8)

We assume that the homogeneous equation (6) (i.e., f L
0 (x) + C ≡ 0) has only the trivial solution in the space

⋂

1<p<∞
Lp(−1,1) .

Then, the following lemma holds ([2, Section 14, 2o and Theorem 14.1]).

Lemma 2.1. Equation (6) has a unique solution v ∈
⋂

1<p<∞
Lp(−1, 1) . This solution satisfies (5) and possesses a generalized derivative

v′ ∈
⋃

1<p<∞
Lp(−1,1) , where both v(x) and v′(x) are bounded in a neighbourhood of x = −1 and belong to C∞(−1,1) . Moreover,

p
1− x v′(x) is locally Hölder continuous in each point of (−1,1] with Hölder exponent 1

2 .

The proof of the following lemma is given in the appendix Section 5.

Lemma 2.2. For x > 0 , y ≥ 0 , and the function ek0(x , y) in (7), the repesentation
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1
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6x
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+
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holds with a bounded and continuously differentiable function h : (0,∞)× [0,∞) −→ R .

Taking into account Lemma 2.1 and the formula ([12, Chapter II, Lemma 6.1])
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Consequently, instead of (6) we can consider the integral equation
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u0(y) d y = g L
0 (x) , −1< x < 1 , (10)

where g L
0 (x) = f ′0 (1+ L(1+ x)) ,

ekL
0 (x , y) = −Lek0(1+ L(1+ x), 1+ L(1+ y)) , and u0(x) = v′0(1+ L(1+ x)) .

Exploring (9), equation (10) takes the form
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−1< x < 1 , where
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We write (11) as
(A0 +H0)u0 = g L

0 , (13)

where
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By using [2, Theorem 9.1], it was already mentioned in [1, Corollary 2.3] that the operator

A0 : L2
ϕ
→ L2

ϕ
(14)

is a bounded and invertible one, where ϕ(x) =
p

1− x2 . Here, for a Jacobi weight ρ(x) = vα,β (x) := (1− x)α(1+ x)β , by L2
ρ

there is denoted the Hilbert space of all (classes of) functions which are square integrable w.r.t. the weight ρ(x) , equipped with
the inner product and the respective norm

〈 f , g〉ρ :=

∫ 1

−1

f (x)g(x)ρ(x) d x and ‖ f ‖ρ :=
q

〈 f , f 〉ρ .

Let us denote the associated normalized orthogonal polynomial (with positive leading coefficient) of degree n by pρn (x) . Due to
Lemma 2.1, the solution of (11) can be written in the form

u0(x) =
eu0(x)p
1− x

with a bounded and locally Hölder continuous function eu0 : (−1, 1] −→ C , which is infinitely differentiable on (−1, 1) . For that
reason we are interested in approximate solutions of (11) of the form

pn(x)p
1− x

, (15)

where pn(x) is an algebraic polynomial of degree less than n . The results on the stability of polynomial collocation methods
[8, 6] (cf. also [9, 10, 4]) and collocation-quadrature methods [7] for Cauchy singular integral equations with additional fixed
singularities of Mellin-type like in (11) do not cover the case (15), since in all these mentioned papers the approximate solution
is of the form (1− x)γ(1+ x)δpn(x) with γ 6= 0 and δ 6= 0 . Hence, we follow the approach described in [1, Section 2] and [5,

Section 1] and use the isometrical isomorphism J0 : L2
ϕ
−→ L2

µ
, f 7→

p
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,

to get the following equation equivalent to (13),
(A+H)u= g (16)

with A= J0A0J −1
0 : L2

µ
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µ
, H = J0H0J −1

0 : L2
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µ
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µ

, and u= J0u0 . It follows
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0(x , y) , g(x) =
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1+ x g L

0 (x) . (17)
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In the following lemma we collect some mapping properties of the operators involved in equation (16). For this, as usual by
C[−1, 1]we denote the Banach space of all continuous functions f : [−1, 1] −→ C equipped with the supremum norm ‖ f ‖∞ . Note
that the operator A is the operator of an integral equation for the notched half-plane problem, for which a collocation-quadrature
method (which we introduce in the following section) is studied in [5]. This enables us to use the results from [5] to study the
properties of this numerical method applied to equation (16).

Lemma 2.3. With the above notations the following holds.

(a) The operator A : L2
µ
−→ L2

µ
is bounded and invertible.

(b) The operators H : L2
µ
−→ C[−1,1] and H : L2

µ
−→ L2

µ
are compact.

Proof. Assertion (a) is a consequence of the already mentioned boundedness and invertibility of the operator (14). Since the
function [−1,1]2 −→ R , (x , y) 7→

p
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0(x , y) is continuous (see Lemma 2.2), the estimates
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∞
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show that the set
¦

Hu : u ∈ L2
µ
, ‖u‖µ ≤ 1

©

is a uniformly bounded and equicontinuous set of functions. Hence, H : L2
µ
−→ C[−1, 1]

is compact together with H : L2
µ
−→ L2

µ
in virtue of the continuous imbedding C[−1, 1] ⊂ L2

µ
. tu

3 A collocation-quadrature method

Here, we describe a collocation-quadrature method for the operator equation (16). Let xσkn = cos
2k− 1

2n
π , k = 1, . . . , n , n ∈ N

denote the Chebyshev nodes of first kind and

�

Lσn f
�

(x) =
n
∑

k=1

f (xσkn)`
σ
kn(x)

the respective interpolation polynomial of a function f : (−1,1) −→ C , where `σkn(x) are the usual fundamental Lagrange
interpolation polynomials w.r.t. these nodes. Moreover, let Mσ

n = νL
σ
nµI be the weighted interpolation operator given by

�

Mσ
n f
�

(x) = ν(x)
�

Lσnµ f
�

(x)

with ν(x) =

√
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the Chebyshev weight of third kind. Finally, let Ln : L2
µ
−→ L2

µ
denote the orthogonal projection

Ln f =
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∑

j=0




f ,ep j

�

µ
ep j ,

where epn = νpνn , n= 0,1, . . . forms a complete orthonomal system in L2
µ

. In its image space imLn we look for an approximate
solution un by solving

(An +Hn)un =Mσ
n g , (18)

where the operators An =Mσ
n

�
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n

�

Ln and Hn =Mσ
n H

0
nLn are defined by

(Sun) (x) =
1
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�

1+ x
1+ .

�

un

1+ .

�

(y)σ(y) d y ,

�

H0
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and σ(x) =
1

p
1− x2

. Note that, for the quadrature operators we have, for example,

�

H0
nun

�

(x) =
1
n

n
∑

k=1

ϕ(xσkn)h
L(x , xσkn)un(x

σ
kn) .

It is well known that, in the investigation of numerical methods for operator equations, the stability of the respective operator
sequence plays an essential role. The sequence (An +Hn) in (18) is called stable (in L2

µ
) if, for all sufficiently large n , the

operators An +Hn : im Ln −→ im Ln are invertible and if the norms




(An −Hn)
−1 Ln







L(L2
µ)

are uniformly bounded. Note that, if

the method is stable and if (An +Hn)Ln converges strongly to A+H ∈ L(L2
µ
) , then the operator A+H is injective. If additionally

the image of A+H equals L2
µ

, then




g −Mσ
n g






µ
−→ 0 implies the L2

µ
-convergence of the solution un of (18) to the (unique)

solution u ∈ L2
µ

of (16).
To investigate the stability of the operator sequence in (18) we follow the C∗-algebra approach already used in, for example,

[4, 6, 7] (cf. also [8, 9, 10]). Moreover, in [5] a collocation-quadrature method for the numerical solution of an integral equation
for the notched half plane problem was studied with the help of this approach. We will consider the operator sequence under
consideration as an element of a C∗-algebra, which we describe in the following. For this, by `2 we denote the Hilbert space of all

square summable sequences ξ=
�

ξ j

� ∞
j=0

, ξ j ∈ C with the inner product 〈ξ,η〉=
∞
∑

j=0
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µ
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∞
j=0 7→ (ξ0, · · · ,ξn−1, 0, . . . ) ,

and
Vn : imLn −→ imPn , un 7→

�π

n

Æ

1− xσ1n un(x
σ
1n), . . . ,

π

n

Æ

1− xσnn un(x
σ
nn), 0, . . .

�

,

eVn : imLn −→ imPn , un 7→
�π

n

Æ

1− xσnn u(xσnn), . . . ,
π

n

Æ

1− xσ1n u(xσ1n), 0, . . .
�

.

Let T = {1,2, 3,4} , set

X(1) = X(2) = L2
µ
, X(3) = X(4) = `2, L(1)n = L(2)n = Ln, L(3)n = L(4)n = Pn,

and define E (t)n : imLn −→ X(t)n := imL(t)n for t ∈ T by

E (1)n = Ln, E (2)n =Wn, E (3)n = Vσn , E (4)n = eVσn .

Here and at other places, we use the notion Ln, Wn, . . . instead of Ln|im Ln
, Wn|im Ln

, . . . , respectively. All operators E (t)n , t ∈ T
are unitary with the inverses
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E (1)n
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�−1
= E (2)n ,
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�−1
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where, for ξ ∈ imPn ,
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n
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π
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π
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e`σkn ,

and where
e`σkn(x) =

ν(x)
ν(xτkn)

`σkn(x) , k = 1, . . . , n ,

are the weighted fundamental interpolation polynomials. It is easily seen that, for all indices r, t ∈ T with r 6= t , the operators

E (r)n

�

E (t)n

�−1
L(t)n (19)

as well as their adjoints converge weakly to zero (cf., for example, the proof of [4, Lemma 2.1]). Now we can introduce the algebra
of operator sequences we are interested in. By F we denote the set of all sequences (An) of linear operators An : im Ln −→ im Ln
for which the strong limits

W t(An) := lim
n→∞

E (t)n An

�

E (t)n

�−1
L(t)n

and
(W t(An))

∗ = lim
n→∞

�

E (t)n An

�

E (t)n

�−1
L(t)n

�∗
, t ∈ T ,

exist. If F is provided with the supremum norm ‖(An)‖F := supn≥1 ‖AnLn‖L(L2
ν)

and with the operations (An)+ (Bn) := (An+Bn),
(An)(Bn) := (AnBn) , and (An)∗ := (A∗n), then F becomes a C∗-algebra with the identity element (Ln) . Furthermore, we introduce
the set J ⊂ F of all sequences of the form

�

4
∑

t=1

�

E (t)n

�−1
L(t)n TtE (t)n + Cn

�

,

where the linear operators Tt : X(t) −→ X(t) are compact and where the sequence (Cn) ∈ F belongs to the closed ideal G of all
sequences from F tending to zero in norm, i.e., lim

n→∞
‖CnLn‖L(L2

ν)
= 0 . From [13, 14, Theorem 10.33] (see also [3, Theorem 6.1])

we infer the following proposition.
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Proposition 3.1. The set J forms a two-sided closed ideal in the C∗-algebra F. Moreover, a sequence (An) ∈ F is stable if and only if
the operators W t(An) : X(t) −→ X(t), t ∈ T and the coset (An) + J ∈ F/J are invertible.

Let A0 denote the smallest C∗-subalgebra of F containing all sequences from J and all sequences (An) with

An =Mσ
n (aI + bS +B0

n)Ln ,

where a, b are piecewise continuous functions on [−1, 1] , where I : L2
µ
−→ L2

µ
is the identity operator, and where S as well as B0

n

are defined after (18). Then, the following is proved in [5, Theorem 3.12].

Proposition 3.2. A sequence (An) ∈ A0 is stable in L2
µ

if and only if all limit operators W t (An) : X(t) −→ X(t) , t = 1,2,3,4 are
invertible.

The following statement we infer from [5, Section 4].

Lemma 3.3. Let An be the operators in (18), i.e., An =Mσ
n (S +B0

n)Ln . Then, the limit operators W1 (An) , W2 (An) : L2
µ
−→ L2

µ

and W3 (An) : `2 −→ `2 are invertible, and the fourth limit operator W4 (An) : `2 −→ `2 is Fredholm with index 0 .

Now, we are turning to study the remaining part of the operator sequence involved in equation (18), namely (Hn) . First, we
remark that (see [4, Corollary 3.3])

lim
n→∞





 f −Lσn f






ν
= 0 for all f ∈ Cγ,δ , (20)

where 0 ≤ γ < 1
4 , 0 ≤ δ < 3

4 , where again ν = µ−1 , and where Cγ,δ denotes the Banach space consisting of all continuous
functions f : (−1,1) −→ C for which vγ,δ f : [−1,1] −→ C is continuous with

�

vγ,δ f
�

(1) = 0 if γ > 0 and
�

vγ,δ f
�

(−1) = 0 if
δ > 0 . The norm in Cγ,δ is defined by

‖ f ‖γ,δ,∞ :=




vγ,δ f






∞ .

Furthermore (see [5, Corollary 2.12]),

lim
n→∞





 f −Mσ
n f






µ
= 0 for all f ∈ Cα,β , (21)

where 0≤ α < 3
4 and 0≤ β < 1

4 .

Lemma 3.4. Assume that the function [−1,1]2 −→ C , (x , y) 7→ r(x , y)vα,β (y) is continuous, where 0 ≤ α < 1
4 and 0 ≤ β < 3

4 .
Then,

lim
n→∞

sup
�



Lσn r(x , .)− r(x , .)






ν
: −1≤ x ≤ 1

	

= 0 .

Proof. Fix γ,δ ∈ R such that α < γ < 1
4 and β < δ < 3

4 . By assumption r x ∈ Cγ,δ , where r x (y) = r(x , y) , and

lim
x→x0
‖r x − r x0‖γ,δ,∞ = 0 for all x0 ∈ [−1, 1] .

Suppose that the assertion of the lemma is not true. Then, there is an ε > 0 and a sequence n1 < n2 < . . . of natural numbers
satisfying

sup
n







Lσnk
r x − r x










ν
: −1≤ x ≤ 1

o

≥ 2ε for all k ∈ N .

Hence, for every k ∈ N , there is an xk ∈ [−1,1] such that







Lσnk
r xk − r xk










ν
≥ ε , and we can assume that xk −→ x∗ if k −→∞ .

By (20), M := sup
n





Lσn






Cγ,δ→L2
ν

: n ∈ N
o

<∞ and

M0 :=

√

√

√

∫ 1

−1

(1− x)−
1
2−2γ(1+ x)

1
2−2δ d x <∞ .

Moreover, there is a k0 ∈ N such that







Lσnk
r x∗ − r x∗










ν
<
ε

3
and





r xk − r x∗






γ,δ,∞ <
ε

3min {M0, M}
for all k ≥ k0 .

It follows, for k ≥ k0 ,

ε ≤







Lσnk
r xk − r xk










ν
≤








Lσnk
(r xk − r x∗)










ν
+







Lσnk
r x∗ − r x∗










ν
+




r x∗ − r xk






ν

≤ M




r xk − r x∗






γ,δ,∞ +
ε

3
+M0





r xk − r x∗






γ,δ,∞ < ε ,

which is a contradiction. tu

Lemma 3.5. The sequence (Hn) belongs to the ideal J of the algebra F . In particular, W1 (Hn) =H and W t (Hn) = 0 for t = 2, 3, 4 .
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Proof. Due to Ln −→ I strongly in L2
µ

, due to (21), and due to Lemma 2.3,(b), the sequence
�

LnHLn −Mσ
n HLn

�

belongs to the
ideal G . Since, for un = ν pn ∈ im Ln , ϕun = (1+ .)pn is a polynomial of degree at most n , we have

�

H0
nun

�

(x) =
1
π

∫ 1

−1

�

Lσn hL(x , .)
�

(y)pn(y)ν(y) d y

and consequently, again using (21),




Mσ
n HLnun −Hnun







µ
≤





Mσ
n







C→L2
µ





Hun −H0
nun







∞

≤ c sup

¨

∫ 1

−1

�

�hL(x , y)−
�

Lσn hL(x , .)
�

(y)
�

� |pn(y)|ν(y) d y : −1≤ x ≤ 1

«

≤ c sup
�





�

hL(x , .)−Lσn hL(x , .)
�





ν
: −1≤ x ≤ 1

	

‖pn‖ν ≤ cn ‖un‖µ ,

where lim
n→∞

cn = 0 in virtue of the continuity of hL(x , y)
p

1+ y on [−1,1]2 (cf. Lemma 2.2, (12), and (17)) and Lemma 3.4.

Hence, also
�

Mσ
n HLn −Hn

�

belongs to the ideal G . Now, the assertion follows by using the compactness of H , the strong
convergence of Ln , and the weak convergences of the operators (19) and their adjoints implying (LnHLn) ∈ J together with
W1 (Hn) =H and W t (Hn) = 0 for t = 2,3, 4 . tu

Combining Proposition 3.2, Lemma 3.3, and Lemma 3.5, we get the following stability result.

Proposition 3.6. The sequence (An +Hn) of the operators in the collocation-quadrature method (18) is stable in L2
µ

, if and only if
the homogeneous equation (A+H)u= 0 has only the trivial solution in L2

µ
and if also the operator

−S+H : `2 −→ `2 (22)

has a trivial null space, where

S=
�

1− (−1) j−k

j − k
−

1− (−1) j+k+1

j + k+ 1

� ∞

j,k=0

and H=

�

h

�

( j + 1
2 )

2

(k+ 1
2 )2

�

2

k+ 1
2

� ∞

j,k=0

.

Proof. Due to Proposition 3.2, the stability of the operator sequence (An +Hn) is equivalent to the invertibility of all limit
operators W t (An +Hn) . Since the first operator equals W1 (An +Hn) =A+H (see Lemma 3.5 and [5, Prop. 2.17]) and since
Lemma 2.3 is in force, the invertibility of this operator is equivalent to the triviality of its null space. Moreover, by Lemma
3.3 and Lemma 3.5, the second and third limit operators are invertible. The fourth limit operator equals (see [5, Prop. 2.17])
π−1(−S+H) : `2 −→ `2 and is Fredholm with index zero (see [5, Section 4]), and the proposition is proved. tu
Remark 1. Here, we focus on the use of the Chebyshev nodes of first kind as collocation nodes, since it is obvious from the results
of [5, Section 4] that the collocation-quadrature method based on the Chebyshev nodes of third kind is unstable. For Chebyshev
nodes of second and fourth kind, we are not able to prove that the respective operator sequences belong to the corresponding
algebra F .

4 Computational aspects and numerical results
Before presenting numerical results obtained by applying the method introduced in Section 3, let us discuss the method and
results given in [11] for equation (1) resp. (6). KALANDIYA [11, Section 37] applies directly a collocation-quadrature method to
equation (6) after multiplying the unknown function by

p

1+ y and the equation by
p

1+ x . Hence, the mentioned method is
applied to (cf. [11, (37.8)])

1
π

∫ 1

−1

�

1
y − x

+ k∗(x , y)
�

v∗(y) d y = f∗(x) + C
p

1+ x , −1< x < 1 , (23)

where

k∗(x , y) =
1

p

1+ y

�

p
1+ x kL

0 (x , y)−
1

p

1+ y +
p

1+ x

�

, f∗(x) =
p

1+ x f L
0 (x) ,

and v∗(x) =
p

1+ x v(x) with v(x) and f L
0 (x) from (6). An approximate solution vn(x) for v∗(x) is searched for in the form (cf.

[11, (37.9),(37.10)])

vn(x) =
n
∑

k=1

ξkn
e`
ϕ

kn(x) , (24)

where e`ϕkn(x) =
ϕ(x)`ϕkn(x)

ϕ(xϕkn)
and where `ϕkn(x) =

Un(x)
(x − xϕkn)U ′n(x

ϕ

kn)
with Un(cosθ) =

sin nθ
sin s

are the fundamental Lagrange

interpolation polynomials w.r.t. the Chebyshev nodes xϕkn = cos
kπ

n+ 1
, k = 1, . . . , n of second kind. The integral operator with the
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kernel function k∗(x , y) is approximated with the help of the Gaussian rule w.r.t. the xϕkn’s. After substituting vn(x) into (23) and
collocating at xϕjn , j = 1, . . . , n one obtains (by using relation (27) below) a system of linear equations

n
∑

k=1

α jkξkn −
Ç

1+ xϕjn C = f∗(x
ϕ

jn) , j = 1, . . . , n , (25)

where (cf. [11, (37.11)] and also [9, (3.10)])

α jk =

�

1− (−1) j+k

xϕkn − xϕjn
+ k∗(x

ϕ

jn, xϕkn)

�

ϕ(xϕkn)

n+ 1
j, k = 1, . . . , n . (26)

The first addend in the brackets equals 0 in case of j = k . If one considers equation (23) in the space L2
σ

with σ(x) = (1− x2)−
1
2

again being the Chebyshev weight of first kind, then from the well-known relation

1
π

∫ 1

−1

ϕ(y)Un(y)
y − x

d y = −Tn+1(x) , −1< x < 1 , n= 0, 1,2, . . . , (27)

where the Chebyshev polynomials of second kind Un(x) =
s

π

2
pϕn (x) are already mentioned after equation (24) and where Tn(x)

with Tn(cosθ ) =
s

π

2
pσn (cosθ ) = cos nθ , n≥ 1 , are the Chebyshev polynomials of first kind, one can conclude the following: If

(v∗, C) ∈ L2
σ
×R is a solution of (23) then

∫ 1

−1

�

f∗(x) + C
p

1+ x −
1
π

∫ 1

−1

k∗(x , y)v∗(y) d y

�

σ(x) d x = 0 . (28)

KALANDIYA uses this condition (cf. [11, (37.129,(37.13)]) to get a additional equation to the system (25) by discretizing (28) with
the help of the Gaussian rule w.r.t. the Chebyshev nodes of first kind and with the help of the already mentioned discretization of
the integral operator with the kernel function k∗(x , y) . Finally, KALANDIYA ends up with a system

Anξn = ηn (29)

of linear equations, where ξn =
�

ξkn

�n+1

k=1
is the vector of the function values ξkn = vn(x

ϕ

kn) , k = 1, . . . , n , and the approximate

value ξn+1,n of C , where ηn =
�

η jn

�n+1

j=1
with η jn = f∗(x

ϕ

jn) , j = 1, . . . , n , and ηn+1,n =
1
n

n
∑

k=1

f∗(x
σ
kn) , and where the system

matrix An =
�

α jk

� n+1

j,k=1
is given by (26) and by

αn+1,k =
1

n(n+ 1)

n
∑

j=1

k∗(x
σ
jn, xϕkn)ϕ(x

ϕ

kn) , αk,n+1 = −
q

1+ xϕkn , k = 1, . . . , n ,

as well as αn+1,n+1 = −
2
p

2
π

. But, condition (28) is an artifical one, since one can only say that this condition is satisfied if

(v∗, C) ∈ L2
σ
×R is a solution of (23). One cannot use it as a solvability condition for equation (23). Moreover, one should note

that, due to the considerations by DUDUCHAVA [2, Section 14], the operator defined by the left hand side of (6) has Fredholm
index 0 in the space L2

ν
, where ν(x) = v−

1
2 , 1

2 (x) , which means that the operator given by the left hand side of (23) has Fredholm
index 0 in L2

σ
. These problems are also confirmed by the numerical results, which we present in Table 2 below. In particular, one

is interested in the computation of a normalized stress intensity factor, which is independent of P (cf. (2)) and is given in case of
P = 1 by the formula (cf. [11, (36.35)])

δ =
1
L

lim
x→1−0

v∗(x)p
1− x

. (30)

Using (24), δ is approximated by (cf. [11, (37.16),(36.35)])

δn =
p

2
L

n
∑

k=1

ξkn`
ϕ

kn(1)

ϕ(xϕkn)
=
p

2
L

n
∑

k=1

(−1)k+1ξkn

√

√

√
1+ xϕkn

1− xϕkn

=
p

2
L

n
∑

k=1

(−1)k+1ξkn cot
kπ

2(n+ 1)
. (31)

KALANDIYA [11, p. 257] presents the following results:

L 10.0 5.0 1.0 0.2 0.04 0.01
δ 1.1338 1.2006 1.6281 2.9460 4.3970 4.9063

Table 1: [11, p. 257]

From Table 2 we observe that the results of Table 1 are obviously obtained for n = 40 and that the computed approximate values
for δ strongly depend on n , which indicates instability of the method (cf. also Table 3).
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L
n

40 80 160 320 640 1280

0.01 4.9064 4.8802 4.8571 4.8369 4.8192 4.8036
0.04 4.3970 4.3714 4.3486 4.3287 4.3113 4.2960
0.20 2.9461 2.9237 2.9037 2.8862 2.8709 2.8574
1.00 1.6281 1.6130 1.5994 1.5876 1.5773 1.5683
5.00 1.2006 1.1908 1.1816 1.1737 1.1669 1.1610

10.00 1.1338 1.1253 1.1172 1.1102 1.1042 1.0991

Table 2: δn from (31) obtained by KALANDIYA’s method (29)

Since the L2
σ

-norm of vn = ϕ pn is equal to
√

√

√

∫ 1

−1

p

1− x2 |pn(x)|
2 d x =

√

√

√ π

n+ 1

n
∑

k=1

�

ϕ(xϕkn)
�2 �
�pn(x

ϕ

kn)
�

�

2
=

√

√

√ π

n+ 1

n
∑

k=1

|ξkn|
2 ,

the condition numbers of the matices An in (29) should be bounded if the collocation-quadrature method, represented by (29), is
stable in L2

σ
. Unfortunately, the results shown in Table 3 imply that this is not the case.

L
n

40 80 160 320 640 1280

0.01 2.06E04 1.42E05 1.02E06 7.47E06 5.55E07 4.15E08
0.04 1.94E04 1.34E05 9.62E05 7.05E06 5.23E07 3.91E08
0.20 1.58E04 1.09E05 7.76E05 5.67E06 4.20E07 3.14E08
1.00 1.05E04 7.21E04 5.13E05 3.73E06 2.76E07 2.05E08
5.00 6.36E03 4.36E04 3.09E05 2.24E06 1.64E07 1.22E08

10.00 4.96E03 3.41E04 2.42E05 1.75E06 1.18E07 9.48E07

Table 3: cond(An) for An from (29)

In the Tables 4 and 5 we present the numerical results obtained by applying the collocation-quadrature method described in
Section 3 to equation (16), i.e., to the equation (cf. (10), (16), and (17))

1
π

∫ 1

−1

�

1
y − x

+ekL(x , y)
�

u(y) d y = g(x) , −1< x < 1 , (32)

with

ekL(x , y) =
1

p

1+ y

�

p
1+ x ekL

0 (x , y)−
1

p

1+ y +
p

1+ x

�

, g(x) =
p

1+ x g L
0 (x) ,

and u(x) =
p

1+ x u0(x) . The respective system
Bnξn = ηn (33)

of linear equations with the system matrix Bn = Sn +Kn and the right hand side ηn is given by

Sn =





√

√

√

1− xσjn
1− xσkn

�

Se`σkn

�

(xσjn)





n

j,k=1

,

Kn =





√

√

√

1− xσjn
1− xσkn

��

B0
n +H0

n

�

e`σkn

�

(xσjn)





n

j,k=1

=





1
n

√

√

√

1− xσjn
1− xσkn

ϕ(xσkn)ek
L(xσjn, xσkn)





n

j,k=1

=
h 1

n

q

1− xσjn
Æ

1+ xσkn
ekL(xσjn, xσkn)

i n

j,k=1
,

and ηn =
� Æ

1− xσjn g(xσjn)
� n

j=1
. To use, for example, the matrix Sn instead of the matrix S0n =

�

�

Se`σkn

�

(xσjn)
� n

j,k=1
is

motivated by the following fact. The matrix Sn +Kn is equal to the operator E (3)n (An +Hn)
�

E (3)n

�−1
: im Pn −→ im Pn . Hence,

since E (3)n : im Ln −→ im Pn is a unitary operator, the sequence of the matrices Sn +Kn is stable if and only if the sequence of
the operators An +Hn in (18) is stable in L2

σ
. This means, that in case of stability the matrix Sn +Kn is a preconditioning of the

matrix S0n +K
0
n .

To compute δ in (30) in terms of the solution u(x) of equation (32) we proceed as follows. By definition of v∗(x) we have,
with v(x) from (6) and u(x) from (32),

δ =
p

2
L

lim
x→1−0

v(x)
p

1− x
= −

2
p

2
L

lim
x→1−0

v′(x)
p

1− x = −2 lim
x→1−0

u(x)
p

1− x , (34)
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since v′(x) = L v′0(1+ L(1+ x)) = L u0(x) =
L u(x)
p

1+ x
with v0(x) from (1) and u0(x) from (10). Hence, with the help of the

solution ξn =
�

ξkn

� n

k=1
=
�
p

1− xσkn un(xσkn)
� n

k=1
and the representation un(x) =

√

√1+ x
1− x

pn(x) , we can approximate δ by

δn =
p

2 pn(1) = −2
p

2
n
∑

k=1

pn(x
σ
kn)`

σ
kn(1) = −

2
p

2
n

n
∑

k=1

(−1)k+1pn(x
σ
kn)

√

√

√

1+ xσkn

1− xσkn

=
2
p

2
n

n
∑

k=1

(−1)k
ξkn

p

1− xσkn

. (35)

L
n

40 80 160 320 640 1280

0.01 4.5604 4.5607 4.5607 4.5607 4.5607 4.5608
0.04 4.0615 4.0618 4.0618 4.0618 4.0618 4.0618
0.20 2.6663 2.6664 2.6665 2.6665 2.6665 2.6665
1.00 1.4575 1.4576 1.4576 1.4576 1.4576 1.4576
5.00 1.1021 1.1021 1.1021 1.1021 1.1021 1.1021

10.00 1.0527 1.0527 1.0527 1.0527 1.0527 1.0527

Table 4: δn from (35)

L
n

40 80 160 320 640 1280

0.01 2.84 3.04 3.20 3.33 3.45 3.55
0.04 2.78 2.99 3.16 3.30 3.42 3.52
0.20 2.60 2.83 3.03 3.19 3.32 3.44
1.00 2.56 2.88 3.15 3.37 3.56 3.71
5.00 2.81 3.32 3.76 4.12 4.43 4.68

10.00 2.96 3.59 4.13 4.60 4.98 5.30

Table 5: cond(Bn) for Bn from (33)

Conclusion. From Table 5 we can conclude that the condition on the null space of the operator A+H and condition (22) in
Proposition 3.6 seem to be satisfied and the collocation-quadrature method (18) is stable in L2

µ
. The approximate values for δ

given in Table 4 differ from the values given in Tables 1 and 2, but do almost not depend on n . Hence, one can assume that the
values of δ given in Table 4 are more realistic than the values given in Tables 1 and 2.

In [11, p. 257] it is claimed that δ↘ 1 for L↗∞ . This is confirmed by the values presented in Table 6, which are obtained
by (33) and (35) for n= 500 .

L 10.0 100.0 1000.0 10000.0
δ 1.0527 1.0055 1.0006 1.0001

Table 6: δn from (35) for n= 500

5 Appendix: Proof of Lemma 2.2
By (7) we have

ek0(1+ x , 1+ y) =
x + 1

y + x + x y
−
�

x + 1+
1

x + 1
−

2
(x + 1)3

�

1
(y + x + x y)2

+
�

x + 1−
2

x + 1
+

1
(x + 1)3

�

1
(y + x + x y)3

−
�

1+
1

(x + 1)2

�

1
y + 1

−
1

x + 1
−

1
(x + 1)3

.

If we take into account that

x + 1+
1

x + 1
−

2
(x + 1)3

= 6x +
(x + 1)3 + (x + 1)2 − 2− 5x(x + 1)3

(x + 1)3

= 6x +
x3 + 3x2 + 3x + 1+ x2 + 2x + 1− 2− 5x4 − 15x3 − 15x2 − 5x

(x + 1)3

= 6x −
x2(5x2 + 14x + 11)

(x + 1)3
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and

x + 1−
2

x + 1
+

1
(x + 1)3

= 4x2 +
(x + 1)4 − 2(x + 1)2 + 1− 4x2(x + 1)3

(x + 1)3

= 4x2 +
x4 + 4x3 + 6x2 + 4x + 1− 2x2 − 4x − 2+ 1− 4x5 − 12x4 − 12x3 − 4x2

(x + 1)3

= 4x2 −
x3(4x2 + 11x + 8)

(x + 1)3

hold, we can compute

ek0(1+ x , 1+ y) =
x + 1

y + x + x y
−
�

x + 1+
1

x + 1
−

2
(x + 1)3

�

1
(y + x + x y)2

+
�

x + 1−
2

x + 1
+

1
(x + 1)3

�

1
(y + x + x y)3

−
�

1+
1

(x + 1)2

��

1
y + 1

+
1

x + 1

�

=
1

y + x + x y
−

6x
(y + x + x y)2

+
4x2

(y + x + x y)3

+
x

y + x + x y
+

5x2 + 14x + 11
(x + 1)3

x2

(y + x + x y)2
−

4x2 + 11x + 8
(x + 1)3

x3

(y + x + x y)3

−
�

1+
1

(x + 1)2

��

1
y + 1

+
1

x + 1

�

=
1

y + x
−

6x
(y + x)2

+
4x2

(y + x)3
− h(x , y) ,

where

h(x , y) =
1

y + x
−

6x
(y + x)2

+
4x2

(y + x)3
−

1
y + x + x y

+
6x

(y + x + x y)2
−

4x2

(y + x + x y)3

−
x

y + x + x y
−

5x2 + 14x + 11
(x + 1)3

x2

(y + x + x y)2
+

4x2 + 11x + 8
(x + 1)3

x3

(y + x + x y)3

+
�

1+
1

(x + 1)2

��

1
y + 1

+
1

x + 1

�

=
1

y + x
−

1
y + x + x y

− 6x
�

1
(y + x)2

−
1

(y + x + x y)2

�

+ 4x2
�

1
(y + x)3

−
1

(y + x + x y)3

�

+
§�

((4x + 11)x + 8)x
y + x + x y

− (5x + 14)x − 11
�

x
(y + x + x y)(x + 1)3

− 1
ª

x
y + x + x y

+
�

1+
1

(x + 1)2

��

1
y + 1

+
1

x + 1

�

is bounded and continuously differentiable for (x , y) ∈ (0,∞)× [0,∞) .
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