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On Urysohn type Generalized Sampling Operators

Harun Karsli a

Abstract

The aim of this work is to define and study Urysohn type integral form of generalized sampling operators
by using the Urysohn type interpolation of the given function f. The basis used in this construction are
the Fréchet and Prenter Denstity theorems together with Urysohn type operator values instead of the
rational sampling values of the function. After that, we investigate some properties of this operators in
some function spaces. At the end of this study, some graphical representations for the various examples
are given related with the Urysohn type sampling operators.
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1 Introduction
Whereas the Bernstein polynomials Bn f are known to give the most elegant proof of the Weierstrass approximation theorem for
algebraic polynomials on the space C[a, b], the classical Whittaker-Kotel’nikov-Shannon (WKS) Sampling theorem gives an exact
reconstruction of a continuous function f defined over the real line in terms of the interpolation series

(Ssin c
n f )(t) :=

∞
∑

k=−∞

f
�

k
n

�

sin c(nt − k), (t ∈ R).

where

sin c(t) :=
sinπt
πt

for t 6= 0, sin c(0) := 1.

This series has many important applications to signal analysis since it provides an exact reconstruction for the band-limited
signals. However, the WKS sampling theorem does not hold for functions which are not band-limited and it holds only in an
approximate version (see e.g., [13, 14, 15]).

To obtain a positive answer to the approximation problem on C(R), in 1919 Maria Theis used another special kernel function
(sin c(t))2 which belongs to L1(R) for the sampling operators [31] .

But, the general theory for the approximation problem on C(R) is due to the great mathematician P. L. Butzer. Namely, a
counterpart for the approximation of functions f ∈ C(R) on the whole real line, for the functions which are not necessarily
band-limited, are the generalized sampling series.

One and two dimensional case of the Generalized Sampling Series are defined as follows.

Let f be a bounded function defined on R, then the one dimensional generalized sampling series (Sn f ) is given by

(Sn f )(t) :=
∞
∑

k=−∞

f
�

k
n

�

ϕ(nt − k), (t ∈ R, n ∈ N), (1)

where ϕ : R→ R is the kernel function satisfying

ϕ ∈ L1,
∞
∑

k=−∞

ϕ(u− k) = 1 for every u ∈ R, (2)

and

Aϕ := sup
u∈R

∞
∑

k=−∞

|ϕ(u− k)|<∞ (3)

where the convergence of the series (3) is uniform on each compact subintervals of R.

Similarly, given a bounded function f defined on R2 and a “kernel” function ϕ : R→ R, the two dimensional Generalized
sampling series are defined as:

(Sn f )(x , y) =
∞
∑

k=−∞

∞
∑

j=−∞

f
�

k
n

,
j
n

�

ϕ(nx − k)ϕ(ny − j) (4)
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where n ∈ N, (x , y) ∈ R2.

These operators (Sn f ) allow us to reconstruct (in some sense) a given signal f by a sequence of its sample values, which are
of the form f (k/n) or f

�

k
n , j

n

�

, k, j ∈ Z, n ∈ N. A systematic study of Generalized sampling operators (1) and (4) for arbitrary
kernel functions ϕ with (2) and (3) was initiated at RWTH Aachen by P. L. Butzer and his collaborators (students) since 1977
(see, e.g., [12]-[16] and [26]).

In recent years, these operators and some of their modifications have been of great importance in the development of
mathematical models for signal and image recovering, as studied by research group (RITA network) from Perugia led by Bardaro
C. and Vinti G. (see, e.g., [1]-[11], [17], [18] and [29]).

The goal of this study is to find a positive solution to the approximation (or superposition) problem for operators and
functionals. In other words, we will propose a generalization and extension of the theory of interpolation to operators by
introducing an integral operator, called Urysohn type operators. The new operators are more flexible than the previous one and,
practically, the convergence problems can be extended to the functionals and operators.

The basis used in this construction are the Fréchet and Prenter Denstity theorems together with Urysohn type operator values
instead of the rational sampling values of the function.

2 Preliminaries and auxiliary results
In this section we shall introduce some notation and background material used throughout this paper.

As usual, we denote by C(R) the Banach space of continuous and bounded functions u : R→ R with norm

‖u‖= sup{|u(x)| : x ∈ R}.

Unlike these approaches, in the present study we will investigate these problems for operators or functionals by using Urysohn
type operators. To define an Urysohn type operator and obtain some positive answers to the approximation problems, we consider
the following Urysohn integral operators that were discussed by Urysohn.

F (t, x(·)) =

1
∫

0

f (t, s, x(s))ds, t ∈ [0,1], 0≤ x(·)≤ 1 (5)

with unknown kernel f : If such a representation exists, then the kernel of this integral operators f (t, ·, x(·)) is called Green’s
functions. A well-known fact is that its properties and values depend on the properties and values of the function x(·) (see, e.g.,
[8], [9], [20]-[25], [28]).

For a constant function x(·) = a, we set Fa(t) = F(a).

Equation (5) was discussed by Urysohn in 1923-1924 in [32]-[33]. Equations of this type appear in many applications. For
example, it occurs in solving problems arising in economics, engineering, and physics (see [27], [30], [34] and [35]).

Recall that, since the Dirac Delta function is actually a generalized functions (or distributions), the derivative of the Heaviside
unit step function (H(x)) is the Dirac Delta function (δ(x)) in distributional sense, namely

δ(x) =
dH(x)

d x

holds true.

In view of the relations between Dirac and Heaviside unit step functions, we assume that the following continuous interpolation
conditions hold.

F x (t) := F (t, x i(·, s)) =

1
∫

0

f (t, z, x i(z, s))dz, t ∈ [0, 1] (6)

where −∞< x i(z, s)<∞ defined as x i(z, s) = i
n H(z − s); s ∈ [0,1]; and i = ...− 2,−1,0, 1,2, ....

It is clear that
∂ F (t, x i(·, s))

∂ s
=
∂ F

�

t, i
n H(· − s)

�

∂ s
= f (t, s, 0)− f

�

t, s,
i
n

�

(7)

holds true, where x i(·, s) = i
n H(· − s); s ∈ [0, 1]; and i = ...− 2,−1,0, 1,2, ....

Denote

F1

�

t, s,
i
n

�

:= f (t, s, 0)− f
�

t, s,
i
n

�

=
∂ F (t, x i(·, s))

∂ s
. (8)
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Now, we can construct a new type Sampling operator by means of the Urysohn interpolation conditions given in (6) with unknown
function f : [0,1]2×R→ R, which we plan to use it for the solution of the convergence problem to the Urysohn operator F x (t) .

Owing to the above definitions, first of all, we introduce the sequence of one dimensional Urysohn type operators studied in
this paper.

Definition 1. Let F be the Urysohn integral operator of f . Then the Urysohn type generalized sampling operator is defined as:

(USnF)x(t) := (USnF) (t; x(·, s)) =

1
∫

0

� ∞
∑

k=−∞

f
�

t, s,
k
n

�

ϕk,n (x(s))

�

ds (9)

where ϕk,n (x(s)) = ϕ (nx(s)− k) is an arbitrary kernel function satisfies (2) and (3). In particular, we will put Dom (USF) =
⋂

n∈N
Dom (USnF) , where Dom (USnF) is the set of all bounded functions f : [0,1]2 × R → R for which the operator is well

defined.

Remark 1. By (5) and (7), (USnF) can be written as;

(USnF)x(t) = F(0)−

1
∫

0

� ∞
∑

k=−∞

∂ F
�

t, k
n H(t − s)

�

∂ s
ϕk,n (x(s))

�

ds.

Throughout this work, we assume that.the first two central moments of the generalized sampling operators satisfy

m1(ϕ) : =
∞
∑

k=−∞

ϕ(u− k)(u− k) = 0,

m2(ϕ) : =
∞
∑

k=−∞

ϕ(u− k)(u− k)2 = C

for every u ∈ R and for a given constant C ∈ R.

In general, for every u ∈ R and for some β > 0, we assume that the discrete absolute moment of order β are finite, i.e.,

Mβ (ϕ) := sup
u∈R

∞
∑

k=−∞

|ϕ(u− k)| |u− k|β <∞

(see [4] and [19]). The formula for Mβ (ϕ) in case β = 0 is exactly Aϕ .

3 Convergence property

3.1 One Dimensional case

We now introduce some notations and structural hypotheses, which will be fundamental in proving our convergence theorems.

Definition 2. Let f ∈ C
�

[0, 1]2 ×R
�

and δ > 0 be given. Then the partial modulus of continuity of f is given by;

ω3 (δ) := sup
(t,s)∈

sup
[0,1]2 |u1−u2 |≤δ

| f (t, s, u1)− f (t, s, u2)| . (10)

Clearly, if δ = |u1 − u2| , one has

| f (t, s, u1)− f (t, s, u2)| ≤ω3 (|u1 − u2|)≤
�

1+
|u1 − u2|
δ

�

ω3 (δ) .

We are now ready to establish one of the main results of this study:

Theorem 1. Let f : [0,1]2 ×R→ R be a bounded function and let F be the Urysohn integral operator of the function f . Then,

lim
n→∞

(USnF)x(t) = F x(t),

holds true at each point x(s) of continuity of f .

Proof. In view of the definition of the operator (9) and (6), we have

(USnF)x (t)− F x(t) = F(0)−

1
∫

0

� ∞
∑

k=−∞

∂ F
�

t, k
n H(t − s)

�

∂ s
ϕk,n (x(s))

�

ds− F x(t)

= F(0)− F x(t)−

1
∫

0

� ∞
∑

k=−∞

∂ F
�

t, k
n H(t − s)

�

∂ s
ϕk,n (x(s))

�

ds

= F(0)− F x(t)−

1
∫

0

∞
∑

k=−∞

F1

�

t, s,
k
n

�

ϕk,n (x(s)) ds.
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Note that, by (7) and (8), one has

F(0)− F x(t) =

1
∫

0

f (t, s, 0)ds−

1
∫

0

f (t, s, x(s))ds =

1
∫

0

F1 (t, s, x(s)) ds.

So we obtain

(USnF)x (t)− F x(t) =

1
∫

0

∞
∑

k=−∞

ϕk,n (x(s))
�

F1 (t, s, x(s))− F1

�

t, s,
k
n

��

ds.

Let us divide the last term into two parts as;

(USnF)x (t)− F x(t) = P1 + P2,

where

P1 =

1
∫

0

∑

| kn−x(s)|<δ
ϕk,n (x(s))

�

F1 (t, s, x(s))− F1

�

t, s,
k
n

��

ds

and

P2 =

1
∫

0

∑

| kn−x(s)|≥δ
ϕk,n (x(s))

�

F1 (t, s, x(s))− F1

�

t, s,
k
n

��

ds.

Hence one has
|(USnF)x (t)− F x(t)| ≤ |P1|+ |P2|

together with

|P1| ≤

1
∫

0

∑

| kn−x(s)|<δ

�

�ϕk,n (x(s))
�

�

�

�

�

�

F1 (t, s, x(s))− F1

�

t, s,
k
n

�

�

�

�

�

ds,

and

|P2| ≤

1
∫

0

∑

| kn−x(s)|≥δ

�

�ϕk,n (x(s))
�

�

�

�

�

�

F1 (t, s, x(s))− F1

�

t, s,
k
n

�

�

�

�

�

ds.

Since x(s) is a continuity point of f , then clearly
�

�

�

�

F1 (t, s, x(s))− F1

�

t, s,
k
n

�

�

�

�

�

< ε

holds true when
�

�

k
n − x(s)

�

�< δ, and
�

�

�

�

F1 (t, s, x(s))− F1

�

t, s,
k
n

�

�

�

�

�

≤ 2‖ f ‖

holds true, when
�

�

k
n − x(s)

�

�≥ δ.

So

|P1| ≤

1
∫

0

∑

| kn−x(s)|<δ

�

�ϕk,n (x(s))
�

�

�

�

�

�

F1 (t, s, x(s))− F1

�

t, s,
k
n

�

�

�

�

�

ds

≤ Aϕε,

and

|P2| ≤

1
∫

0

∑

| kn−x(s)|≥δ

�

�ϕk,n (x(s))
�

�

�

�

�

�

F1 (t, s, x(s))− F1

�

t, s,
k
n

�

�

�

�

�

ds

≤ 2‖ f ‖

1
∫

0

∑

| kn−x(s)|≥δ

�

�ϕk,n (x(s))
�

� ds

≤ 2‖ f ‖
M2(ϕ)
δ2n2

= O(n−2).

Collecting these estimates we have
lim

n→∞
(USnF)x(t) = F x(t).
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This completes the proof.

Theorem 2. Let F be the Urysohn integral operator of the function f . Then (USnF) converges to F uniformly in x. That is

lim
n→∞

‖(USnF)− F‖= 0.

Owing to the Weierstrass criterion (for uniform convergence), the proof of this theorem is similar and a consequence of the
previous theorem.

Theorem 3. Let F be the Urysohn integral operator of the function f . Then for every ε > 0

|(USnF)x (t)− F x(t)| ≤ 2ω3 ( f ;δ)

holds true at each point x(s) of continuity of f , where δ =
p

M2 (ϕ)/n2.

Proof. Clearly one has

|(USnF)x (t)− F x(t)| ≤

1
∫

0

∞
∑

k=−∞

�

�ϕk,n (x(s))
�

�

�

�

�

�

F1 (t, s, x(s))− F1

�

t, s,
k
n

�

�

�

�

�

ds

: = In,1 (x) , (11)

say. Taking into account the modulus of continuity, we can write (11) as follows;

In,1 (x)≤

1
∫

0

∞
∑

k=−∞

�

�ϕk,n (x(s))
�

�ω3

��

�

�

�

x(s)−
k
n

�

�

�

�

�

ds.

We have

In,1 (x) ≤

1
∫

0

∞
∑

k=−∞

�

�ϕk,n (x(s))
�

�ω3

��

�

�

�

x(s)−
k
n

�

�

�

�

�

ds

≤ ω3 (δ)







1+δ−1

1
∫

0

∞
∑

k=−∞

�

�

�

�

k
n
− x(s)

�

�

�

�

�

�ϕk,n (x(s))
�

� ds







≤ ω3 (δ)







1+δ−2

1
∫

0

∞
∑

k=−∞

�

k
n
− x(s)

�2
�

�ϕk,n (x(s))
�

� ds







≤ ω3 (δ)
§

1+
M2 (ϕ)
δ2n2

ª

.

If we choose

δ =

√

√M2 (ϕ)
n2

,

then one can obtain the desired estimate, namely,

|(USnF)x (t)− F x(t)| ≤ 2ω3 (δ) .

Thus the proof is now complete.

3.2 Two Dimensional case

In view of the one dimensional case, we obtain the following convergence results related to the two dimensional generalized
sampling operators.

As to the two dimensional case, we assume that the two dimensional continuous interpolation conditions hold:

F
�

x i(t), y j(t)
�

=

1
∫

0

1
∫

0

f (t, s, z, x i(s), y j(z))dsdz, t ∈ [0, 1] (12)

where

x i(s) =
i
n

H(s− ξ);ξ ∈ [0;1], (13)

y j(z) =
j
n

H(z − ς);ς ∈ [0; 1]
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and i, j = ...− 2,−1, 0,1, 2, ... .

Taking into account (12) and (13), by a straightforward calculation the stated identities follow.

F
�

i
n

H(s− ξ),
j
n

H(z − ς)
�

=

1
∫

ς

1
∫

ξ

f (t, s, z,
i
n

,
j
n
)dsdz +

ς
∫

0

1
∫

ξ

f (t, s, z,
i
n

, 0)dsdz

+

ς
∫

0

ξ
∫

0

f (t, s, z, 0, 0)dsdz +

1
∫

ς

ξ
∫

0

f (t, s, z, 0,
j
n
)dsdz (14)

and hence, one has

∂ 2F
�

i
n H(s− ξ), j

n H(z − ς)
�

∂ ξ∂ ς
= f (t,ξ,ς,

i
n

,
j
n
)− f (t,ξ,ς,

i
n

, 0)

+ f (t,ξ,ς, 0, 0)− f (t,ξ,ς, 0,
j
n
).

Say

F1

�

t,ξ,ς,
i
n

,
j
n

�

:=
∂ 2F

�

i
n H(s− ξ), j

n H(z − ς)
�

∂ ξ∂ ς
. (15)

Definition 3. Given a continuous and bounded function f and an arbitrary kernel ϕ : R→ R satisfies (2) and (3). We consider a
sequence UST F = (USTnF) of operators, called Urysohn type two dimensional Generalized Sampling operators defined on R2,
having the form:

(USTnF) (x (t) , y(t))

=

1
∫

0

1
∫

0

� ∞
∑

k=−∞

∞
∑

j=−∞

f
�

t, s, z,
k
n

,
j
n

�

ϕk,n (x(s))ϕ j,n (x(s))

�

dsdz,

acting on bounded functions f on [0, 1]3 xR2. We will put Dom (UST F) =
⋂

n∈N
Dom (USTnF) as the set of all functions f for

which the operator is well defined.

Theorem 4. Let F be the Urysohn integral operator of f , with (x , y) ∈ R2. Then

lim
n→∞

(USTnF) (x (t) , y(t)) = F (x (t) , y(t))

at each point x(s) and y(z) of continuity of f .

Proof. In view of the definition of the operator (9) and (6), we have

(USTnF) (x (t) , y(t))− F (x (t) , y(t))

=

1
∫

0

1
∫

0

� ∞
∑

k=−∞

∞
∑

j=−∞

�

F1 (t,ξ,ς, x(s), y(z))−
−F1

�

t,ξ,ς, k
n , j

n

�

�

ϕk,n (x(s))ϕ j,n (x(s))

�

dsdz

Let us divide the last term into four parts as;

|(USTnF) (x (t) , y(t))− F (x (t) , y(t))| ≤ P1 + P2 + P3 + P4,

where

P1 =

1
∫

0

1
∫

0

∑

| kn−x(s)|<δ1

∑

�

�

�

j
n−y(z)

�

�

�<δ2

�

�ϕk,n (x(s))ϕ j,n (x(s))
�

�

�

�

�

�

F1 (t, s, z, x(s), y(z))− F1

�

t, s, z,
k
n

,
j
n

�

�

�

�

�

dsdz,

P2 =

1
∫

0

1
∫

0

∑

| kn−x(s)|<δ1

∑

�

�

�

j
n−y(z)

�

�

�≥δ2

�

�ϕk,n (x(s))ϕ j,n (x(s))
�

�

�

�

�

�

F1 (t, s, z, x(s), y(z))− F1

�

t, s, z,
k
n

,
j
n

�

�

�

�

�

dsdz,

P3 =

1
∫

0

1
∫

0

∑

| kn−x(s)|≥δ1

∑

�

�

�

j
n−y(z)

�

�

�<δ2

�

�ϕk,n (x(s))ϕ j,n (x(s))
�

�

�

�

�

�

F1 (t, s, z, x(s), y(z))− F1

�

t, s, z,
k
n

,
j
n

�

�

�

�

�

dsdz,
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and

P4 =

1
∫

0

1
∫

0

∑

| kn−x(s)|≥δ1

∑

�

�

�

j
n−y(z)

�

�

�≥δ2

�

�ϕk,n (x(s))ϕ j,n (x(s))
�

�

�

�

�

�

F1 (t, s, z, x(s), y(z))− F1

�

t, s, z,
k
n

,
j
n

�

�

�

�

�

dsdz.

Since x , y are continuity points of f , then there exist δ1,δ2 > 0 such that for every ε > 0
�

�

�

�

F1 (t, s, z, x(s), y(z))− F1

�

t, s, z,
k
n

,
j
n

�

�

�

�

�

< ε

holds true when
�

�

k
n − x(s)

�

�< δ1 and
�

�

j
n − y(z)

�

�< δ2. So one can easily obtain

P1 < A2
ϕ
ε.

As to the other terms
�

�

�

�

F1 (t, s, z, x(s), y(z))− F1

�

t, s, z,
k
n

,
j
n

�

�

�

�

�

≤ 2M

holds true for some M > 0, when
�

�

k
n − x(s)

�

�≥ δ1 or
�

�

j
n − y(z)

�

�≥ δ2.

P2 ≤ 2M

1
∫

0

1
∫

0

∑

| kn−x(s)|<δ1

∑

�

�

�

j
n−y(z)

�

�

�≥δ2

�

�ϕk,n (x(s))ϕ j,n (x(s))
�

� dsdz

≤ 2M
AϕM2(ϕ)

δ2
2n2

= O(n−2).

Similarly one has

P3 ≤ 2M
AϕM2(ϕ)

δ2
1n2

= O(n−2),

P4 ≤ 2M
M2

2 (ϕ)

δ2
1δ

2
2n4
= O(n−4)

Collecting these estimates we have
lim

n→∞
(USTnF) (x (t) , y(t)) = F (x (t) , y(t)) .

This completes the proof.

Theorem 5. Let F be the Urysohn integral operator with (x , y) ∈ R2. Then (USTnF) converges to F uniformly in x , y. That is

lim
n→∞

‖(USTnF)− F‖= 0.

As in the proof of Theorem 2, owing to the Weierstrass criterion (for uniform convergence), the proof of the Theorem 5 is similar
and a consequence of the Theorem 4.

4 Practical examples, Graphical representations
Now, we will give some graphical examples for these approaches, namely convergence to functionals or operators by means of
Urysohn type WKS sampling operators generated by the kernel functions of the type ϕ(x) := sin c(x).

We note that in the Figures, the graph with the red line belongs to the original operator, the graph with the green line belongs
to the operators with small values of n, and finally the graph consisting of blue line to the operators with bigger values of n.

Example 1. Let us consider the operator F x(t) =
1
∫

0

x3(t)d t, and we take its corresponding Urysohn type WKS sampling

operator (USnF)x (t), then one has for k differs from −100 to 100, n= 2 and for n= 30.
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40 ∫0
1(x(z))3 ⅆz

(US2F)x(t)

(US30F)x(t)

Figure 1: Approximation of F x(t) =
1
∫

0
x3(t)d t by Urysohn type Sampling operator, for n= 2 and n= 30.

Example 2. Let us consider the operator F x(t) =
1
∫

0

x3(t)d t, and we take its corresponding Urysohn type WKS sampling

operator (USnF)x (t), then one has for k differs from −1000 to 1000, n= 20 and for n= 80.

-10 -5 5 10

-500

500
∫0
1(x(z))3 ⅆz

(US20F)x(t)

(US80F)x(t)

Figure 2: Approximation of F x(t) =
1
∫

0
x3(t)d t by Urysohn type Sampling operator, for n= 20 and n= 80.

Example 3. Let us consider the operator F x(t) =
1
∫

0

x3(t)d t, and we take its corresponding Urysohn type WKS sampling

operator (USnF)x (t), then one has for k differs from −1000 to 1000, n= 20 and for n= 80.

-3 -2 -1 1 2 3

-20

-10

10

20
∫0
1(x(z))3 ⅆz

(US20F)x(t)

(US80F)x(t)

Figure 3: Approximation to F x(t) =
1
∫

0
x3(t)d t by Urysohn type Sampling operator, for n= 20 and n= 80.

Example 4. Let us consider the operator F x(t) =
1
∫

0

sin
�

x3(t) + 1
�

d t, and we take its corresponding Urysohn type WKS

sampling operator (USnF)x (t), then one has for k differs from −100 to 100, n= 2 and for n= 10.
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-3 -2 -1 1 2 3

1

2

3

∫0
1Sin[(x(z))3+1] ⅆz

(US2F)x(t)

(US10F)x(t)

Figure 4: Approximation of F x(t) =
1
∫

0
sin
�

x3(t) + 1
�

d t by Urysohn type sampling operator, for n= 2 and n= 10.

Example 5. Let us consider the operator F x(t) =
1
∫

0

sin
�

x3(t) + 1
�

d t, and we take its corresponding Urysohn type WKS

Sampling operator (USnF)x (t), then one has for k differs from −1000 to 1000, n= 2, n= 100.

-3 -2 -1 1 2 3

1

2

3
∫0
1Sin[(x(z))3+1] ⅆz

(US2F)x(t)

(US100F)x(t)

Figure 5: Approximation to F x(t) =
1
∫

0
sin
�

x3(t) + 1
�

d t by (USnF)x (t) for n= 2, n= 100.
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