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Abstract

In this paper, an iterative collocation method based on the use of Lagrange polynomials is developed

for the numerical solution of a class of nonlinear weakly singular Volterra integral equations. The error

analysis of the proposed numerical method is studied theoretically. Numerical illustrations confirm our

theoretical analysis.

1 Introduction

In this paper, we develop an approximation based on iterative collocation method to obtain numerical solutions of the following

nonlinear weakly singular Volterra integral equations,

x(t) = g(t) +

∫ t

0

p(t , s)k(t , s, x(s))ds, t ∈ I = [0, T], (1)

where the functions g , k are sufficiently smooth and p(t , s) = sµ−1

tµ
, µ > 1.

Equations with this kind of kernel have a weak singularity at t = 0 and they are a particular case of the cordial equations, studied

by G. Vainikko in [12, 13, 14, 15]. Actually, as shown in [13], if the core function of a cordial operator is φ(s) = sµ−1, then its

kernel is sµ−1 t−µk(t , s), which is the kind of kernel we are concerned with. Equations of this type are also the subject of the

article [6].

The cordial integral operators have the interesting property that they are bounded but non-compact, which implies that

some of the classical results for Volterra integral equations (for example, about existence and uniqueness of solution) are not

applicable in this case. However an existence and uniqueness result in Cm([0, T]) was obtained in [12], provided that the core

function satisfies φ(x) ∈ L1([0, 1]), which is the case of our equation, when µ > 0.

The application of polynomial and spline collocation methods to cordial equations was studied in [12, 14] and [15], respect-

ively, where sufficient conditions for convergence were obtained and error estimates were derived. Superconvergence results

for collocation methods were obtained in [6].

Equations of this type arise from heat conduction problems. As it was shown in [5], they may result from boundary value

problems for partial differential equations with mixed-type boundary conditions.

In [4] and [6] the authors were concerned with the numerical solution of linear cordial equations. Here we propose a

computational method for a nonlinear Volterra integral equation with a weakly singular kernel of the same type.

In [3] a similar approach was proposed for nonlinear Volterra integral equations with regular kernels (when p(t , s) ≡ 1).

This case was also well studied in the literature. In particular, Babolian and his co-authors [2] have proposed a Chebyshev

approximation. In [1] and [8] numerical algorithms based on the Adomian’s method were developed. In [16] an approach

was proposed, based on Taylor polynomial approximation, while the homotopy perturbation method was applied to the same

equation in [7]. The authors of [9] have introduced a scheme based on the fixed point method. Finally, the Haar wavelet method

and the Haar rationalized functions method were proposed in [10] and [11], respectively.

In Section 2 of the present work we describe a numerical scheme for the solution of equation 1. In Section 3 we analyze

the convergence and obtain error estimates. Numerical examples that illustrate the performance of the method are presented

in Section 4 and the paper finishes with conclusions in Section 5.

2 Description of the collocation method

LetΠN be a uniform partition of the interval I = [0, T] defined by tn = nh, n= 0, ..., N−1, where the stepsize is given by
T

N
= h.

Let the collocation parameters be 0< c1 < ......< cm ≤ 1 and the collocation points be tn, j = tn+ c jh, j = 1, ..., m, n= 0, ..., N−1.
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Define the subintervals σn = [tn, tn+1[, and σN−1 = [tN−1, tN ].

Moreover, denote by πm the set of all real polynomials of degree not exceeding m.

We define the real polynomial spline space of degree m− 1 as follows:

S
(−1)

m−1(I ,ΠN ) = {u : un = u|σn
∈ πm−1, n = 0, .., N − 1}.

This is the space of piecewise polynomials of degree at most m−1. Its dimension is N m. We consider the space L∞(I) with the

norm

‖ϕ‖= inf {C ∈ R : |ϕ(t)| ≤ C for a.e. t ∈ I}<∞.

It holds for any y ∈ Cm([0, T]) that

y(tn + τh) =

m∑

l=1

λl(τ)y(tn,l) + εn(τ), εn(τ) = hm y (m)(ζn(τ))

m!

m∏

j=1

(τ− c j), (2)

where τ ∈ [0, 1] and λ j(τ) =
m∏

l 6= j

τ− cl

c j − cl

are the Lagrange polynomials associate with the parameters c j , j = 1, ..., m.

Let Γm = ‖
m∑

j=1

|λ j |‖ be the Lebesgue constants, such that

‖

m∑

j=1

|λ j |‖=max

¨
m∑

j=1

|λ j(s)|, s ∈ [0, 1]

«

.

We have from (1) for each j = 1, ..., m, n = 0, ..., N − 1

x(tn j) = g(tn j) +

∫ tnj

0

p(tn j, s)k(tn j, s, x(s))ds

= g(tn j) +

∫ tn

0

p(tn j, s)k(tn j, s, x(s))ds+

∫ tnj

tn

p(tn j, s)k(tn j, s, x(s))ds

= g(tn j) +

n−1∑

i=0

∫ ti+1

ti

p(tn j , s)k(tn j, s, x(s))ds+

∫ tnj

tn

p(tn j, s)k(tn j, s, x(s))ds

(3)

Now, for s ∈ [t i , t i+1], we use the following change of variable: s = t i + τh with τ ∈ [0, 1], and for s ∈ [tn, tn j], we use the

following change of variable: s = tn + τh with τ ∈ [0, c j]. Then, from (3), we have

x(tn j) = g(tn j) +

n−1∑

i=0

∫ 1

0

hp(tn + c jh, t i + τh)k(tn + c jh, t i + τh, x(t i + τh))dτ

+

∫ c j

0

hp(tn + c jh, tn + τh)k(tn + c jh, tn + τh, x(tn + τh))dτ

(4)

By substituting the expression of the function p into (4), we obtain

x(tn j) = g(tn j) +

n−1∑

i=0

∫ 1

0

(i + τ)µ−1

(n+ c j)
µ

k(tn + c jh, t i + τh, x(t i + τh))dτ

+

∫ c j

0

(n+ τ)µ−1

(n+ c j)
µ

k(tn + c jh, tn + τh, x(tn + τh))dτ

(5)

Now, for j = 1, ..., m, by apply the formula (2) for the function

yi(τ) = k(tn + c jh, t i + τh, x(t i + τh)), we have

k(tn + c jh, t i + τh, x(t i + τh)) =

m∑

l=1

λl(τ)k(tn + c jh, tn,l , x(tn,l)) + εi(τ) (6)

where εi(τ) = hm y
(m)
i
(ηi)

m!

m∏

j=1

(τ− c j).

Inserting (6) into (5), we obtain for each j = 1, ..., m, n = 0, ..., N − 1

x(tn j) = g(tn j) +

m∑

l=1

�∫ c j

0

(n+ τ)µ−1

(n+ c j)
µ

k(tn + c jh, tn + clh, x(tnl))λl(τ)dτ

�

+

n−1∑

i=0

m∑

l=1

�∫ 1

0

(i + τ)µ−1

(n+ c j)
µ

k(tn + c jh, t i + clh, x(t il))λl(τ)dτ

�

+ o(hm),

(7)
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where,

o(hm) =

∫ c j

0

(n+ τ)µ−1

(n+ c j)
µ
εn(τ)dτ+

n−1∑

i=0

�∫ 1

0

(i + τ)µ−1

(n+ c j)
µ
εi(τ)dτ

�

.

Since the function k is smooth, then there exists α1 > 0, such that for i = 0, ..., N − 1, we have ‖y
(m)

i
‖ ≤ α1, which implies that

‖ o(hm) ‖≤ hm α1

m!

�∫ c j

0

(n+ τ)µ−1

(n+ c j)
µ

dτ+

n−1∑

i=0

�∫ 1

0

(i + τ)µ−1

(n+ c j)
µ

dτ

��

Since i + τ≤ n+ c j for all i = 0, ..., n− 1, then for all n= 0, ..., N − 1

‖ o(hm) ‖ ≤ hm α1

m!

�

1

(n+ c j)
+

n−1∑

i=0

�

1

(n+ c j)

��

≤ hm α1

m!

�

1

c1

+
n

(n+ c j)

�

≤ hm α1

m!

�
1

c1

+ 1

�

︸ ︷︷ ︸

=α

.

It holds for any u ∈ S
(−1)

m−1(I ,ΠN ) that

u(tn + τh) =

m∑

l=1

λl(τ)u(tn,l),τ ∈ [0, 1]. (8)

Now, we approximate the exact solution x by u ∈ S
(−1)

m−1(I ,ΠN ) such that u(tn, j) satisfy the following nonlinear system,

u(tn, j) = g(tn j) +

m∑

l=1

�∫ c j

0

(n+ τ)µ−1

(n+ c j)
µ

k(tn + c jh, tn + clh, u(tnl))λl(τ)dτ

�

+

n−1∑

i=0

m∑

l=1

�∫ 1

0

(i + τ)µ−1

(n+ c j)
µ

k(tn + c jh, t i + clh, u(t il))λl(τ)dτ

�

.

(9)

for j = 1, ..., m, n= 0, ..., N − 1.

Since the above system is nonlinear, we will use an iterative collocation solution uq ∈ S
(−1)

m−1(I ,ΠN ), q ∈ N, to approximate the

exact solution of (1) such that

uq(tn + τh) =

m∑

j=1

λ j(τ)u
q(tn, j),τ ∈ [0, 1] (10)

where the coefficients uq(tn, j) are given by the following formula:

uq(tn, j) = g(tn j) +

m∑

l=1

�∫ c j

0

(n+ τ)µ−1

(n+ c j)
µ

k(tn + c jh, tn + clh, uq−1(tnl))λl(τ)dτ

�

+

n−1∑

i=0

m∑

l=1

�∫ 1

0

(i + τ)µ−1

(n+ c j)
µ

k(tn + c jh, t i + cl h, uq(t il ))λl(τ)dτ

�

.

(11)

such that the initial values u0(tn, j) ∈ J (J is a bounded interval).

The above formula is explicit and the approximate solution uq is obtained without solving any algebraic system.

In the next section, we will prove the convergence of the approximate solution uq to the exact solution x of (1).

3 Convergence analysis

In this section, we assume that the function k satisfies the Lipschitz condition with respect to the third variable: there exists

L ≥ 0 such that

|k(t , s, y1)− k(t , s, y2)| ≤ L|y1 − y2|, (12)

for all t , s ∈ I , where L is independent of t and s.

The following result gives the existence and the uniqueness of a solution for (1).

Lemma 3.1. Let g ∈ C([0, T]), k(t , s, u) ∈ C(∆T ×R), where ∆T = {(t , s) ∈ R2 : 0 ≤ t ≤ T, 0≤ s ≤ t}. Let

∂ k

∂ u
∈ C(∆T ×R).

Assume that equation

ξ= k(0, 0,ξ)
1

µ
+ g(0) (13)
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has a unique solution ξ∗ ∈ R, and that

1 6=
a∗(0, 0)

λ+µ
,∀λ : Re(λ) ≥ 0, (14)

where

a∗(0, 0) =
∂ k

∂ u
(0, 0, u)

�
�
�
�
u=ξ∗

.

Moreover, let k satisfy

k(t , s, u)| ≤ c0 + c1|u|, (15)

with
c1

µ
< 1.

Then there is a unique solution x∗ ∈ C([0, T]) of (1), such that x∗(0) = ξ∗.

Proof. The result follows from Theorems 7.1 and 7.5 of [12], taking into account that in our case φ(x) = xµ−1,with µ > 1, and

therefore the linear integral operator Vφ (using the same notation as in [12]) is defined by

Vφu(t) =

∫ t

0

sµ−1

tµ
u(s)ds;

hence the spectrum of this operator is

σ0(Vφ) = {0} ∪ {
1

λ+µ
: λ ∈ C, Re(λ) ≥ 0},

which is used to obtain condition 14.

Lemma 3.2. Let the conditions of Lemma 3.1 be satisfied and let x∗ be a solution of (1). Moreover, let g ∈ Cm([0, T]) and

k ∈ Cm(∆T ×R), for some natural m.

Then x∗ ∈ Cm([0, T]).

Proof. The result follows from Theorem 8.1 of [12].

The following result gives the existence and the uniqueness of a solution for the nonlinear system (9).

Lemma 3.3. If
LΓm
µ
< 1, then the nonlinear system (9) has a unique solution u ∈ S

(−1)

m−1(I ,ΠN ). Moreover, the function u is bounded.

Proof. We will use the induction combined with the Banach fixed point theorem.

(i) On the interval σ0 = [t0, t1], the nonlinear system (9) becomes

u(t0, j) = g(t0, j) +

m∑

l=1

�∫ c j

0

(τ)µ−1

(c j)
µ

k(t0 + c jh, t0 + clh, u(t0l))λl(τ)dτ.

�

We consider the operator Ψ defined by

Ψ : Rm −→ Rm

x = (x1, ..., xm) 7−→ Ψ(x) = (Ψ1(x), ...,Ψm(x)),

such that for j = 1, ..., m, we have

Ψ j(x) = g(t0, j) +

m∑

l=1

�∫ c j

0

(τ)µ−1

(c j)
µ

k(t0 + c jh, t0 + clh, x l)λl(τ)dτ

�

.

Hence, for all x , y ∈ Rm, we have

‖Ψ(x)−Ψ(y)‖≤
LΓm

µ
‖x − y‖,

Since
LΓm
µ
< 1, then by Banach fixed point theorem, the nonlinear system (9) has a unique solution u on the interval σ0.

(ii) Suppose that u exists and is unique on the intervals σi , i = 0, ..., n−1 for n≥ 1, we show now that u exists and is unique

on the interval σn.

On the interval σn, the nonlinear system (9) becomes

u(tn, j) = G(tn, j) +

m∑

l=1

�∫ c j

0

(n+τ)µ−1

(n+ c j)
µ

k(tn + c jh, tn + clh, u(tnl))λl(τ)dτ

�

(16)

where,

G(tn, j) = g(tn, j) +
n−1∑

i=0

m∑

l=1

�∫ 1

0

(i+τ)µ−1

(n+c j)
µ k(tn + c jh, t i + cl h, u(t il))λl(τ)dτ

�

.

We consider the operator Ψ defined by:

Ψ : Rm −→ Rm

x = (x1, ..., xm) 7−→ Ψ(x) = (Ψ1(x), ...,Ψm(x)),
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such that for j = 1, ..., m, we have

Ψ j(x) = G(tn, j) +

m∑

l=1

�∫ c j

0

(n+ τ)µ−1

(n+ c j)
µ

k(tn + c jh, tn + clh, x l)λl(τ)dτ

�

.

Hence, for all x , y ∈ Rm, we have

‖Ψ(x)−Ψ(y)‖≤
LΓm

µ
‖x − y‖.

Since
LΓm
µ
< 1, then by Banach fixed point theorem, the nonlinear system (16) has a unique solution u on the interval σn.

Corollary 3.4. Under the condition
LΓm
µ
< 1, the following conditions of Lemma 3.1 are fulfilled:

1. Equation (13) has a unique solution ξ∗ ∈ R.

2. Inequality (15) is satisfied, moreover
c1

µ
< 1.

Proof. 1. We consider the operator Ψ defined by

Ψ : R −→ R

ξ 7−→ Ψ(x) = k(0, 0,ξ)
1

µ
+ g(0),

Hence, for all ξ1,ξ2 ∈ R, we have

|Ψ(ξ1)−Ψ(ξ2)| ≤
L

µ
|ξ1 − ξ2|,

Since L
µ
≤

LΓm
µ
< 1, then by Banach fixed point theorem, Equation (13) has a unique solution ξ∗ ∈ R.

2. We have,

|k(t , s, u)| ≤ |k(t , s, u)− k(t , s, 0)|+ |k(t , s, 0)| ≤ L
︸︷︷︸

=c1

|u|+ c0,

such that c0 =max{|k(t , s, 0)|, (t , s) ∈ I × I}.

Hence the inequality (15) is satisfied, moreover
c1

µ =
L
µ ≤

LΓm
µ < 1.

Remark 1. Under our assumptions and by Lemma 3.1, Lemma 3.2 and Corollary 3.4, to prove the existence and uniqueness

solution for Equation (1), we need only to show the condition (14).

The following result gives the convergence of the approximate solution u to the exact solution x .

Theorem 3.5. Let f , k be m times continuously differentiable on their respective domains. If
LΓm
µ <

1
2 , then the collocation solution

u converges to the exact solution x, and the resulting error function e := x − u satisfies:

‖e‖ ≤ Chm,

where C is a finite constant independent of h.

Proof. From (9) and (7), using (12), we obtain

|e(tn j)| ≤ αhm +
LΓm

µ
en +

LΓm

µnµ

n−1∑

i=0

((i + 1)µ − iµ) ei (17)

where α is a positive number and en =max{|e(tn,l )|, l = 1, ..., m}, n= 0, ..., N − 1.

Then, from (17), en satisfies for n= 0, ..., N − 1,

en ≤ αhm +
LΓm

µ
en +

LΓm

µnµ

n−1∑

i=0

((i + 1)µ − iµ) ei ,

which implies that,

en ≤
α

1−
LΓm
µ

hm +
LΓm

(1−
LΓm
µ
)µnµ

n−1∑

i=0

((i + 1)µ − iµ) ei .

Let C1 =
α

1−
LΓm
µ

and C2 =
LΓm

µ(1−
LΓm
µ )

, it follows that

en ≤ C1hm +
C2

nµ

n−1∑

i=0

((i + 1)µ − iµ) ei .
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Hence, for ξ =max{en, n= 0, ...., N − 1}, we deduce that

ξ ≤ C1hm + C2ξ.

Since C2 < 1, we obtain

ξ ≤
C1

1− C2

hm.

Which implies, from (2) and (8), that there exists C > 0 such that

‖e‖ ≤ Γmξ+ hm ‖x
(m)‖

m!

m∏

j=1

(1− c j)

≤ Γm
C1

1− C2

hm + hm ‖x
(m)‖

m!

m∏

j=1

(1− c j).

Thus, the proof is completed by setting C = Γm
C1

1−C2
+
‖x(m)‖

m!

m∏

j=1

(1− c j).

The following result gives the convergence of the iterative solution uq to the exact solution x .

Theorem 3.6. Consider the iterative collocation solution uq, q ≥ 1 defined by (10) and (11). If
LΓm
µ
< 1

2
, then for any initial

condition u0(tn, j) ∈ J (bounded interval), the iterative collocation solution uq, q ≥ 1 converges to the exact solution x. Moreover, the

following error estimate holds

‖uq − x‖ ≤ dρq + Chm

where d, C are finite constants independent of h and ρ < 1.

Proof. We define the error eq and ξq by eq(t) = uq(t)− x(t) and ξq(t) = uq(t)−u(t), where u is defined by lemma 3.3. It follows

that

eq = ξq + u− x . (18)

We have, from (9) and (11), for all n= 0, ..., N − 1 and j = 1, ..., m

|ξq(tn, j)| ≤
LΓm

nµµ

n−1∑

i=0

[(i + 1)µ − iµ]ξ
q

i
+

LΓm

µ
ξq−1

n
, (19)

where ξq
n
=max{
�
�ξq(tn,l)
�
� , l = 1....m} for n= 0, ..., N − 1, it follows from (19) that,

ξq
n
≤

LΓm

µnµ

n−1∑

i=0

[(i + 1)µ − iµ]ξ
q

i
+

LΓm

µ
ξq−1

n
.

We consider the sequence ηq =max{ξq
n
, n= 0, ...., N − 1} for q ≥ 1.

Then, ηq satisfies,

ηq ≤
LΓm

µnµ

n−1∑

i=0

[(i + 1)µ − iµ]ηq +
LΓm

µ
ηq−1

≤
LΓm

µ
ηq +

LΓm

µ
ηq−1.

Hence,

ηq ≤ ρηq−1, (20)

where ρ =

LΓm
µ

1−
LΓm
µ

, since
LΓm
µ
< 1

2
, then ρ < 1.

Which implies, from (20), that for all q ≥ 1, that

ηq ≤ ρηq−1 ≤ ρ2ηq−2 ≤ ...≤ ρqη0 ≤ ρq‖ξ0‖. (21)

Since, u0(tn, j) ∈ J , the function u0 is bounded.

Hence, there exists M > 0 such that

‖ξ0‖= ‖u0 − u‖ ≤ ‖u0 − x‖+ ‖u− x‖ ≤ M . (22)

From (21) and (22), we conclude that

‖ξq‖ ≤ Γmη
q ≤ Γm M
︸︷︷︸

d

ρq.

On the other hand, from Theorem (3.5), we have ‖u− x‖ ≤ Chm and therefore by (18) we obtain

‖eq‖ ≤ ‖ξq‖+ ‖u− x‖ ≤ dρq + Chm.

Thus, the proof is completed.
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4 Numerical Examples

To illustrate the theoretical results obtained in the previous section, we present the following examples with T = 1. All the exact

solutions x are already known.

In all the examples, we have a∗(0, 0) = 0, hence the condition (14) is satisfied.

In each example, we calculate the error between x and the iterative collocation solution uq for N = 10, 20 and m = 2, 3, 5 at

t = 0, 0.1, ..., 1. In all the examples, we choose, q = 5, u0(tn j) = 1, and we use the collocation parameters c j =
j

m+1 , j = 1, ..., m.

Since the condition
LΓm
µ
< 1

2
is essential to guarantee the convergence of the numerical method, we checked that it is satisfied

in all the numerical examples. Moreover, Γ2 = 3, Γ3 = 7 and Γ5 = 31.

Example 4.1. Consider the following integral equation

x(t) = g(t) +

∫ t

0

p(t , s)k(t , s, x(s))ds, t ∈ [0, 1].

with k(t , s, z) =
st exp(z)

40(1+exp(z)) , µ = 2 and g(t) is chosen such that the exact solution of this equation is x(t) = ln(1 + t2). The

absolute errors are presented in Table 1. The experimental orders of convergence (EOC) by using the maximum error ‖eN‖ =

max{|x(t i)− uq(t i)|, i = 0, ..., N} for N = 5, 10, 15, 20 and m= 1, 2, 3, 4 are given in Table 3.

Table 1: Absolute errors for Example 4.1

N = 10 N = 10 N = 10 N = 20 N = 20 N = 20

t m= 2 m= 3 m= 5 m= 2 m= 3 m= 5

0 2.21× 10−3 6.98× 10−6 1.66× 10−8 5.55× 10−4 4.38× 10−7 3.56× 10−9

0.1 2.10× 10−3 2.41× 10−5 3.39× 10−8 5.33× 10−4 2.65× 10−6 2.47× 10−10

0.2 1.89× 10−3 3.70× 10−5 5.27× 10−8 4.83× 10−4 4.38× 10−6 9.09× 10−9

0.3 1.60× 10−3 4.40× 10−5 5.01× 10−8 4.13× 10−4 5.39× 10−6 2.44× 10−9

0.4 1.28× 10−3 4.53× 10−5 3.02× 10−8 3.33× 10−4 5.69× 10−6 2× 10−10

0.5 9.65× 10−4 4.25× 10−5 2.23× 10−8 2.54× 10−4 5.41× 10−6 6.6× 10−9

0.6 6.79× 10−4 3.71× 10−5 9.3× 10−9 1.81× 10−4 4.78× 10−6 2.3× 10−9

0.7 4.36× 10−4 3.07× 10−5 4.5× 10−9 1.18× 10−4 3.99× 10−6 6× 10−10

0.8 2.38× 10−4 2.44× 10−5 2.6× 10−9 6.69× 10−5 3.19× 10−6 3.20× 10−9

0.9 8.37× 10−5 1.87× 10−5 2.3× 10−9 2.66× 10−5 2.46× 10−6 2.50× 10−9

1 4.06× 10−5 1.74× 10−5 1.77× 10−7 5.13× 10−6 2.05× 10−6 2.42× 10−8

Example 4.2. Consider the following integral equation

x(t) = g(t) +

∫ t

0

p(t , s)k(t , s, x(s))ds, t ∈ [0, 1].

with k(t , s, z) = ts

40(2+z2)
, µ= 2 and g(t) is chosen so that the exact solution of this equation is x(t) = 1

5(t3+1)
. The absolute errors

are presented in Table 2. The experimental orders of convergence (EOC) by using the maximum error ‖eN‖ = max{|x(t i) −

uq(t i)|, i = 0, ..., N} for N = 5, 10, 15, 20 and m= 1, 2, 3, 4 are given in Table 3.

Table 2: Absolute errors for Example 4.2

N = 10 N = 10 N = 10 N = 20 N = 20 N = 20

t m= 2 m= 3 m= 5 m= 2 m= 3 m= 5

0 4.44× 10−5 1.87× 10−5 5.30× 10−9 5.55× 10−6 2.34× 10−6 3.10× 10−9

0.1 1.75× 10−4 1.77× 10−5 2.39× 10−8 3.85× 10−5 2.26× 10−6 1.60× 10−9

0.2 2.91× 10−4 1.39× 10−5 3.29× 10−8 6.86× 10−5 1.87× 10−6 1.70× 10−9

0.3 3.68× 10−4 6.42× 10−6 2.22× 10−8 8.99× 10−5 1.01× 10−6 5.00× 10−10

0.4 3.81× 10−4 3.66× 10−6 5.70× 10−9 9.62× 10−5 2.13× 10−7 9.00× 10−10

0.5 3.23× 10−4 1.30× 10−5 3.50× 10−8 8.45× 10−5 1.44× 10−6 1.00× 10−9

0.6 2.10× 10−4 1.84× 10−5 4.57× 10−8 5.79× 10−5 2.23× 10−6 5.00× 10−10

0.7 7.62× 10−5 1.84× 10−5 3.15× 10−8 2.46× 10−5 2.36× 10−6 9.00× 10−10

0.8 4.41× 10−5 1.45× 10−5 1.31× 10−8 6.59× 10−6 1.94× 10−6 2.20× 10−9

0.9 1.30× 10−4 9.14× 10−6 2.90× 10−9 2.97× 10−5 1.27× 10−6 3.00× 10−10

1 1.50× 10−4 7.79× 10−6 1.52× 10−8 3.97× 10−5 8.50× 10−7 7.00× 10−9

Example 4.3. Consider the following integral equation

x(t) = g(t) +

∫ t

0

p(t , s)k(t , s, x(s))ds, t ∈ [0, 1].
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Table 3: Experimental ordres of convergence (EOC) of Examples 4.1-4.3

N m= 1 m= 2 m= 3 m= 4

5

10 0.99 1.98 2.97 3.92

15 0.99 1.98 2.98 3.93

20 0.99 1.98 2.98 3.95

N m= 1 m= 2 m= 3 m= 4

5

10 0.98 1.94 3.01 4.05

15 0.99 1.96 2.99 3.92

20 0.99 1.96 2.99 3.94

EOC of Example4.1 EOC of Example4.2

with k(t , s, z) =
t cos(s+z)

65
, µ = 1.03 and g(t) is chosen such that the exact solution of this equation is x(t) = t

10
. The absolute

errors are presented in Table 4.

Table 4: Absolute errors for Example 4.3

N = 10 N = 10 N = 10 N = 20 N = 20 N = 20

t m= 2 m= 3 m= 5 m= 2 m= 3 m= 5

0 3.35× 10−7 1.81× 10−10 7× 10−12 4.20× 10−8 7× 10−12 2.00× 10−12

0.1 8.33× 10−7 5.40× 10−10 4× 10−11 1.67× 10−7 2× 10−11 3.00× 10−11

0.2 1.32× 10−6 9.30× 10−10 1.7× 10−10 2.89× 10−7 4× 10−11 2.3× 10−10

0.3 1.79× 10−6 1.28× 10−9 7.00× 10−11 4.08× 10−7 5× 10−11 1.3× 10−10

0.4 2.23× 10−6 1.59× 10−9 2.4× 10−10 5.22× 10−7 6× 10−11 1.3× 10−10

0.5 2.65× 10−6 1.90× 10−9 1.3× 10−10 6.30× 10−7 8× 10−11 3× 10−11

0.6 3.04× 10−6 2.21× 10−9 3× 10−11 7.29× 10−7 2× 10−10 2× 10−11

0.7 3.39× 10−6 2.39× 10−9 6× 10−11 8.19× 10−7 1.1× 10−10 3.00× 10−11

0.8 3.69× 10−6 2.65× 10−9 1.4× 10−10 8.99× 10−7 1.00× 10−10 3.00× 10−11

0.9 3.95× 10−6 2.88× 10−9 8× 10−11 9.68× 10−7 1.2× 10−10 8× 10−11

1 3.85× 10−6 2.90× 10−9 1.99× 10−8 9.85× 10−7 2× 10−10 5.12× 10−9

5 Conclusion

In this paper, we have used an iterative collocation method based on the Lagrange polynomials for solving a class of nonlinear

weakly singular Volterra integral equations (1) in the spline space S
(−1)

m−1(ΠN ). The main advantages of this method that, is easy

to implement, has high order of convergence and the coefficients of approximate solution are determined by using iterative

formulas without solving any system of algebraic equations. The numerical examples confirm that the method is convergent

with a good accuracy.
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