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A Nystrom method for integral equations of the second kind
with fixed singularities
based on a Gauss-Jacobi-Lobatto quadrature rule

Concetta Laurita?®

Abstract

The Gauss-Lobatto quadrature rule for integration over the interval [—1, 1], relative to a Jacobi weight
function w®P(t) = (1—t)*(1+1t)P, a, p > —1, is considered and an error estimate for functions belonging
to some Sobolev-type subspaces of the weighted space Lvlva,ﬁ ([—1,1]) is proved. Then, a Nystrom type
method based on a modified version of this quadrature formula is proposed for the numerical solution
of integral equations of the second kind with kernels having fixed singularities at the endpoints of the
integration interval and satisfying proper assumptions. The stability and the convergence of the proposed
modified Nystrom method in suitable weighted spaces are proved and confirmed through some numerical
tests.

1 Introduction

We consider the following integral equation of the second kind with fixed singularities of Mellin convolution type

FO+y (t)J 1“)f(s)d n +(z)f k* f(s)d +J h(e,s)f (s)ds = g(t), te(=1,1). )

In this equation by ¥, " € C*°([—1,1]) we denote cut-off functions, i.e. smooth functions such that 0 < ¥ (t) < 1 for
—1<t<1withy (t)=1for—1<t<—-0.5and y (t)=0for0<t <1, and that y*(¢) = y~(—t).
The functions k™ and k* are real valued functions over the half axis R* = (0, +o0) satisfying proper assumptions and define the

associated Mellin kernels . ) . )
+t —t
k(t,s) = —k~ k*(t,s) = —k* 2
(t.5) 1+s (1+s)’ (t.5) 1—s (1—5) 2

having fixed singularities at the points (—1,—1) and (1, 1) of the square [—1, 1]?, respectively.
The bivariate function h(t,s) and the right-hand side g(t) are assumed sufficiently smooth on [—1,1]% and [—1, 1], respectively,
while f(t) denotes the unknown function.
For simplicity, we restrict ourselves throughout this paper to Mellin convolutions with singularities fixed at the points (—1,—1)
and (1, 1) but the case of Mellin kernels with fixed singularities at (—1,1) and (1,—1) can be treated in a similar manner.
Integral equations naturally occur in many areas of mathematical physics. Many engineering and applied science problems
arising in water waves, potential theory and electrostatics are reduced to solving integral equations. In particular, integral
equations with fixed singularities in the kernel encounter rather often in theory of elasticity and boundary value problems for
elliptic equations in domains with non-smooth boundary (see e.g. [5]).
The aim of this work is to propose a stable numerical method for the solution of integral equations of type (1) when the
Mellin kernels satisfy the following assumptions

J x4k (x)|dx < oo, 3)
0
for some 0 < 0~,0% < 1. Let us remark that under these conditions the Mellin integral operators
1
(K= f)(t)= J k=(t,s)f (s)ds @
-1
and
1
K f)O) = f k*(¢,5)f (s)ds )
-1
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are not bounded with respect to the uniform norm and the solution f of (1) could be singular at both the endpoints of the interval
[—1,1]. Due to the noncompactness of such operators, the standard stability theory for the numerical methods does not apply.

Systems of integral equations of type (1) with the Mellin kernels k*(t,s) as in (2) satisfying conditions of type (3) arise, for
instance, using the single layer representation of the potential in the exterior Neumann problem for the Laplace’s equation in a
plane region with corners. In such a case the functions k* both take the following expression
N 1 sin 6
)= m1—2xcos6 +x2’

0 being the interior angle at a corner point of the boundary.

Many different methods have been proposed for the numerical solution of integral equations of Mellin type with one fixed-
point strong singularity in the kernel (see [2, 3,4, 6, 7, 8,9, 12, 13, 14, 16, 17] and the references therein). Most of them are
based on piecewise polynomial approximations with graded meshes but, more recently, also numerical methods based on global
approximation have been considered, sometimes in special cases.

In particular in [2, 3, 4, 13, 14] the numerical solution of integral equations of the second kind with only one fixed singularity
of Mellin type at the origin is addressed by means of modified Nystrom type methods proposed under different assumptions on
the Mellin kernel k(t,s) = %I_c (f) More precisely, in [13] the case when k(t) is non-negative and fulfills

+o0 =
k
J ﬁdt<+c>o
0 t

was considered. In such a case the solution of the integral equation is continuous. A modified Nystrom method based on the
Gauss-Legendre quadrature rule was introduced and its stability and convergence were proved. In [3] we treated the case where
the following condition

+00
J £ Nk()|d e < +o0 (6)
0
holds true for some 1 < p < +o0 and o € [—%, 1— %]. According to the corresponding mapping properties of the Mellin integral
operator, we approximate the solution of the problem in suitable weighted L? spaces by using a Nystrom type method based on a
proper Gauss-Jacobi quadrature formula. A modification of the classical method is introduced near the singularity as well as
preconditioning strategy is employed in order to obtain satisfactory numerical results showing the stability and convergence
of the method. Nevertheless, a theoretical proof of the stability was remained an open challenge. In [4] the concern over the
stability was addressed when the Mellin kernel satisfies the previous condition with p = +00 and o > 0, i.e.

+00
f T k(t)|dt < +o0, o >0. @)
0

In this case the Mellin integral operator is not necessarily bounded with respect to the uniform norm, therefore the authors
studied the problem in weighted spaces of continuous functions. Then, they reduced to solve a new Mellin integral equation
whose solution is at least continuous and vanishes at the origin. For its numerical solution they proposed a modified Nystrém
method employing a suitable Gauss-Jacobi quadrature formula, whose stability and convergence were studied in the space of the
continuous functions vanishing at the point 0. In the more recent paper [14] the solution f was searched in a proper weighted
space of continuous functions, too. A new integral equation was obtained multiplying the original one by a Jacobi weight of the
type v9(t) = t°, chosen according to the singularity of the solution. It admits exactly the same solution of the original problem
and was numerically solved by applying a Nystrom type method based on a proper Gauss-Radau type quadrature rule for the
discretization of the weighted integral operators. Also in this case, when applied to the Mellin operator, the quadrature formula
needs to be modified near the singularity in order to achieve the stability. The stability and convergence of the method were
proved, from both the theoretical and numerical point of view, directly in the weighted space where the solution f lives. Error
estimates in weighted uniform norm were also provided.

In the case under consideration, due to the presence of two fixed strong singularities of the Mellin convolution kernels k*(t, s)
(defined by (2) and satisfying (3)), one has to take into account the singular behavior of the solution near both the endpoints
+1. For this reason, the study of the solvability of equation (1) as well as of the stability and convergence of the numerical
method we are going to propose will be carried out in proper weighted function spaces with the weight of Jacobi type having
the form wo 9 (t) = (1—1t)° (14 ¢t)° . This approach, in the same fashion of [14], allows us to avoid recurring to smoothing
transformation in order to handle the singularities.

The numerical method is of Nystrom type and it will use a certain Gauss-Jacobi-Lobatto quadrature rule, suitably modified
near both singularities for achieving stability and convergence results. For the proof of such properties, under proper assumptions,
we will use an error estimate for the adopted quadrature rule which is demonstrated in the present paper, too. Moreover, we
highlight that resorting to preconditioning techniques is not necessary since the linear systems arising from the discretization are
well conditioned.

The plan of this paper is as follows. In the first section we give some notation and useful preliminary results. Section 3 is
devoted to prove an error estimate for the Gauss-Lobatto quadrature formula relative to a Jacobi weight w®#(t) = (1—t)*(1+1t)?,
a, 3 > —1 holding true for functions belonging to some Sobolev-type subspaces of the weighted space Lvlva,ﬁ~ In Section 4 we
propose a modified Nystrom method for the numerical solution of equation (1) and show its stability and convergence in some
weighted spaces of continuous functions. An error estimate is provided and the well-conditioning of the involved linear systems
is also proved. Finally, some numerical tests will be presented in Section 5.
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2 Notation and preliminary results

2.1 Notation

For a general weight function w(t) on[—1,1]and 1 < p < +00, let L? = L ([—1,1]) denote the weighted space of all real-valued
measurable functions f on [—1, 1] such that

Wl = Nf llp = If wll, = (j If(t)W(t)Ipdt) < +o00.

For p = 00 and w continuous on the interval [—-1,1], we set L°>° = C,, with C,, = C,,([—1,1]) the Banach space of all continuous
functions f : (—1,1) — R such that fw is continuous in [—1,1] (i.e. fw e C = C([—1,1])), equipped with the weighted norm

1f 1,0 = sup |f (©)w(t).

te[-1,
With 1 < p < oo, let W?(w) be the following weighted Sobolev-type subspaces of L?
wPw)={f €L?: f0 Y eAC(-1,1), If¢"ll,, < +oo},

wherer e N, r > 1, ¢(t) = /1 —t2 and AC(—1, 1) is the collection of all functions which are absolutely continuous on every
closed subset of (—1, 1), equipped with the norm

I ey = 1F sy + 1F 0 (-
For a function f € L?, the error of the best approximation of f in L? by polynomials of degree at most n is defined as
En(f)w,p = I}ng,l ”f _P”w,p'
Fixed a Jacobi weight w"?(t) = (1—t)"(1+t)?, v, 5 > —1, we will denote by xryl’f and Az’i, k=1,...,n, the nodes and coefficients
of the corresponding n—point Gauss-Jacobi quadrature rule on [—1,1] and by

1,0 A Y,0 41 7,6
plo(t) =yl °t" + lower degree terms, Y >0,

the Jacobi polynomial of degree n orthonormal w.r.t. w"®(t) having positive leading coefficient.

In the sequel C will denote a positive constant which may assume different values in different formulas. We write C =C(a, b, ...)
to say that C is dependent on the parameters a, b, .... and C # C(a, b, ...) to say that C is independent of them. Moreover, we will
write A ~ B, if there exists a positive constant C independent of the parameters of A and B such that 1/C <A/B <C.

2.2 Preliminary results

It is well known that for functions f belonging to WF (w), the following Favard inequality

¢ /
En(f)w,p < ;En—l(f )WW)P’ ®

is fulfilled for a positive constant C independent of n and f (see, for example, [15, (2.5.22), p. 172]). By iteration of inequality
(8), it follows that, for f € WP(w), r > 1, the estimate

By € B (D CECS) ©

holds true.
Let us recall that the knots xZ’,‘j and Christoffel numbers AZ’z of the Gaussian quadrature formula corresponding to the Jacobi

weight w"? satisfy the following properties (see, for instance, [15, (4.2.4), p. 249])

5 s V1—t2 5 5
XI,kH —XI,k ~ n xi,k =t=< xlkw (10)
and (see [20, (14), p. 673])
2
1— (xy’é)
5 n.k 5 5
o VTV sy an

n

uniformly for 1 < k < n, n € N. Moreover, for the orthonormal polynomials {pg’é(t)}n one has that (see [21, (12.7.2), p. 309])

1
T ~1, as n— oo, (12)
Y,6
Yn—l
and (see, for instance, [19, p. 170]) the equality
5
1 _ YZ’—l v,6 5Y v,6
TS s Mk (%) (xn,k) (13)
P (xn,k ) Tn
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holds true. Furthermore (see [19, Corollary 9.34, p. 171])

o) ~nrtz,  |prd(=1)| ~n®t3, (14)
uniformly for n € N and, more generally, [15, (4.2.29)-(4.2.30), p. 255])
C
[pro(o)] ~nitE 1-—<t<l, (15)
C
PP~ —l<e<-14 (16)

3 An error estimate for the Gauss-Jacobi-Lobatto quadrature rule

For a Jacobi weight function w*?(t) = (1 —t)*(1 + t)?, @, > —1, on the interval [—1,1], we consider the (n + 2)-point

Gauss-Jacobi-Lobatto rule .
n

J FOWP@E = wof (<1 + D wif (8) +Wyaf (1) + e, () (17)
-1 k=1

which is exact for polynomials of degree at most 2n+ 1, i.e.

en(f) = 0: Vf € P2n+1

P, being the set of all algebraic polynomials on [—1, 1] of degree at most n.
It is well known that the interior quadrature nodes t;, k = 1,...,n, are the zeros of the Jacobi polynomial of degree n orthonormal
with respect to the Jacobi weight w*™#+1(¢) = (1 — t)?w®P(t). The weights of the formula (17) are given by

1
wk=J L(Ow*P(t)dt, k=0,1,...,n+1 (18)
-1
where, setting from now on t, =—1 and t,,; = 1, [;(t) denotes the (k + 1)-th Lagrange fundamental polynomial associated to
the system of nodes {tg, t,...,tpi1}-

By standard arguments, it can be easily proved that the quadrature error e,(f) satisfies the following estimate

le.(f)l < Z(J W“’ﬁ(t)df) Eypii(feor  Vf €C([-1,1]),

-1

where
&Py

denotes the error of best approximation of a function f € C([—1,1]) by means of polynomials of degree at most n with respect to
the uniform norm.

The aim of the present section is to provide a new error estimate for less regular functions belonging to some Sobolev-type
subspaces of the weighted space L;Mj ([—1,1]). A similar estimate is proved in [15] for the classical Gauss-Jacobi quadrature
formula, in [ 10] for the Gauss-Lobatto rule with respect to the Legendre weight w®° and, more recently, in [ 14] for the Gauss-Radau
formula with respect to a general Jacobi weight w*?.

Lemma 3.1. The nodes and the weights of the Gauss-Jacobi-Lobatto quadrature formula (17) satisfy the following relations

wo < C Atow*P(t,), (19a)
At whP(ty), k=1,...,n—1,

e { Aty Wa’ﬁ(tk) k=n, (19b)

W < CALW*P(¢,), (19¢)

where At =ty —ty, k=0,1,...,nand C # C(n).

Proof. First, let us observe that the weights of the formula (17), given in (18), have the following alternative representation

1 _a+l,B+1
1 t
Wo = f p:+1 B+l © w* P (1)dt, (202)
1 tO -1 Pn ’ (to)
1 a+1,p+1
1 t
wy = 3 f Py — [g ——woLAH (1)d e, k=1,...,n, (20b)
(l_tk) -1 (t_tk)(pn ’ ) (te)
1 a+1,5+1
Wiy1 = ! f pfl ) © wsPl(e)de. (20c)
Tttin Jopn " (e
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For k=1,...,n, since
a+1,p+1
z‘n,k

at1,p+1)2°
1= ()
using (11) and (10) for y =a+1 and 6 = 8 + 1, we can deduce that

w*P(t )AL, k=1,...,n—1,
W™ k=n

Wy =

whP (t )AL,

i.e. (19b). Now, in order to prove (19a), let us observe that, since

LT pa+lp+l a+1,B+1 2
J |: pa+1 B+ © ( pa+1 B+1 © ) :|Wa+1’ﬁ(t)dt =0
-1 (to) Pn (to)

we can rewrite the first coefficient w, in (20a) as follows

2

’ 2
o 1 |:(pg+1,ﬁ+1) (tl):| Jl pz+1,ﬂ+1(t) (t _ t1)2 Wa+1,/3+l(t)dt
o—=<\| /= .
2 pgﬂ,ﬁﬂ(to) . (t— tl)(pg+1,[3+1)z(t1) 1+t
Taking into account that (t —t;)*/(1+t) < C and using (13) (withy = a+1and 6 = +1) for k = 1 (we recall that xa‘+1 Pl = =t
in our notation), we get
(anrl [5+1) (tl) a+1,p+1
Wo s C [Tl(t) A
1 ( Ya+1 B+1 ) 1
= C .
[pg+1,[3+1(t0):|2 },g+i B+1 A:’-;l,[}+1 |: a+1 B+l (tl)]
Now, in virtue of (11), it is
(1_ a+1,[i+1)“+g (1+ a+l, ﬁ+1)ﬁ 3
P D S ~ L @D
1 n n2b+4’

Taking into account (21), (12), (14) and (16) (all applied with y = a+1 and 6 = 3 + 1), we deduce the following estimate of w,,
n2[3+4 C

(22)

Wo=Cape — e
On the other hand,
ﬁ+1 1

Atow* ﬁ(tl)—(l xaﬂﬁﬂ) (1+ a+lﬁ+1) n2ﬂ+2

which, combined with (22), gives (19a). In order to prove (19c), proceeding in an analogous way, we start writing w,,; as
follows

Wa+1,ﬁ+1(t)d t.

2
1 |:( a+1[5+1) (t ):| J pa+1,ﬁ+1(t) (t—tn)z
-1

pzﬂﬁﬂ(t (t—t, )( a+1[3+1) (t) 1—t¢t

Wpy1 = 2
Then, using (t —t,)?/(1—t) < C, (11) and (13) fory =a+1,6 =B +1and k = n, (12), (14) and (15) also with y = a + 1 and
6 = f + 1, we deduce the estimate

n+l)

a+1,p+1
Wy <C [w] AQTLA+L L

a+1,p+1 n,n 2a+2
p (tn+1) n

with C # C(n). Since

a+l B
Atw P (£,) ~ (1= x@H )T (14 @t 1A =

we can, finally, conclude that also (19¢) holds true. O

Using the previous lemma we are able to prove our main result.

Theorem 3.2. For f € er (w*P), r > 1, the error of the Gauss-Jacobi-Lobatto quadrature formula (17) satisfies the following

estimate c
le,(F) < WE2n+l—r(f(r))<p'W“ﬁ,l (23)

where ¢(t) = v1—t2 and C # C(f,n) is a positive constant.
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Proof. We start by proving the estimate (23) in the case r = 1. First, we are going to show that

n+1

1
> il < Clfwel + f FOlpw(0)de. 29
-1

k=0
Taking into account (19a), (19b) and (19¢c) we have

n+1 n—1

Dwdfedl < CLAGW () (to)l + Y Atw™P(6)If (6] +
k=0 k=1

+ Atn—l Wa’ﬁ(tn)lf(tnn + Atnwa’ﬁ(tn)|f(tn+1)| ]

In virtue of the following inequality

(b—a)|f (a) ’ v
(b—a)[f(b)| }SL |f(t)|dt+(b—a)fa If/(D)ldt,

it follows that

IA

n+1 ty ty
Zwklf(tk)l C[W“’ﬁ(tl)(f |f(t)|df+Atof If’(t)ldt)
k=0 t

0 to

n—1 e+l
+ Zw“’ﬁ(tk)(J F(©lde + At f
k=1 t,

If ’(t)ldt)

N wa’ﬁ(rn)(f“ |f(r)|dt+Atn_1f” If/(t)ldt)

N waﬂ(tn)U " Folde+ ac, f If’(t)ldtﬂ,

Tt ~1tt~1Et,,, G <t<tn, (25)

tk+1

from which, being for k =0,1,...,n,

and, taking into account (10) and also that

,  —l<t<t,

At, ~ , t,<t<1,

we deduce

A

0

Diwdf(e)l < CU If(t)lwa)ﬁ(t)dt+%f IF/ (Ol (w™P (0)de
k=0 to £
n—1 i1 it
+ (J If(t)lw“’ﬁ(t)dt+%f If’(t)lw(t)w“’ﬁ(t)dt)
k=1 tk ty
+ f If(t)IW“”j(t)dH%f If’(t)ltp(t)W“”j(t)dt]

tn

-1

- c{ f If(t)IW“’ﬁ(t)dH%J- If’(t)lw(t)W“’ﬁ(t)dt}
-1

i.e. (24). Since the (n+ 2)-point quadrature formula (17) is exact for any polynomial of degree at most 2n + 1, for P € P, ; we
have

el = lea(f —P)|
< f (f = PYOW P ()t |+ | > wi(f — P)(t;)
-1 k=0
< NG =PWHP I+ D wi |(f = PX(EI
k=0

Now, combining the previous inequality with (24) and the following relation (see, for instance, [15, p. 339], [18, p. 286])
I(F = PY owP|l; < c@n+2)II(f — PIW*P Iy +CrExn(f Vgt 15
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we can deduce

leaN] < €O = PP+ S = PY el

IA

¢ /
Cli(f —Pyw™Pl; + ;lEzn(f ) pwa 1-

Taking the infimum over P € P, and using the Favard inequality (9) we get

C /7 c /
lea( < CEanar (F w1+ — Ean(f Vgt € 5 Eonl(f Vgt 1 (26)

The estimate (23) for r > 1 can be deduced from (26) by iterating the application of the Favard inequality. |

4 The numerical method

4.1 A new integral equation

In order to propose a numerical method for the solution of integral equation (1), we start from giving a new formulation of the
problem. Using the cut-off functions y* occurring in (1) and described in Section 1, by the trivial equalities

F)=xF6)f () + (1= xF()f (s),
we can split each of the operators K* into the sum of two operators as follows

1 1

K F)(0) = ik—(ﬂ)x-(s)f(s)dw ik-(l”)(l—x-(s))f(s)ds=:(K;f)(r)+(1<;f)(r) @7)

_ 1+s 1+s 4 1+s 1+s

v [l (A2t),- D () - :
wno=| () rores | fhra(Ea-roressanoreno. e

Let us note that while the operators K; and K" have Mellin convolution type kernels with fixed singularities at the points (—1,—1)
and (1, 1), respectively, the remaining operators K, and K, have kernels which are continuous in [—1, 1%
Using (27)-(28) and setting

1
(Hf)(t)= f h(t,s)f (s)ds,
1

we can rewrite equation (1) in a compact form as follows
I+ 27K+ 'K + ¢ K, + 'K+ H)f () = g(¢), te(-1,1), (29)

I being the identity operator. Now, let us analyze some mapping properties of the integral operators involved in (29).

To this end, we consider the Jacobi weight function w(t) =w® ° (t) =(1—t)° (1+t)° , with the exponents 0 < o* < 1 such
that (3) is satisfied. Then, for any function f belonging to the weighted space C,,, we can extend by continuity the definition of
the weighted functions (WK~ f)(t) and (WK™ f)(t) as follows

(Wf)(—l)J xR (x)dx,  t=-1
(WK~ F)(0) = o , 0
W(f)J k™ (t,5)f (s)ds, te(-1,1]

and X
W(t)f k*(t,s)f (s)ds, te[-1,1)
(WK )(t) = . _ a1
(Wf)(l)f XK (e)dx,  t=1
0

For the weighted integral operators wK~ and wK* defined by (30) and (31), respectively, the following result holds true.

Theorem 4.1. If the kernels k*(t,s) defined by (2) satisfy conditions (3) for some 0 < o* < 1, then the operators wK* are linear
maps from C,, to C.

Proof. We start by proving that the operators wK* are linear maps from C,, to C. The linearity of wK* trivially follows from the
linearity of the integral operators K* defined in (4)-(5). Now, let us prove that for any f € C,,, the function wK™f is continuous in
[—1,1]. Similar arguments apply to wK* f. For f € C,, the continuity of (wK~f)(¢t) in (—1,1] is a consequence of the continuity
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of the kernel k™(¢,s) for t +s > —2. Moreover, since by definition (30), using first the change of variable 1+s = (1+t)y and
then x = y™!, we get

11m (WK )= hm w(t)f = lk‘ )f((l +t)y—1dy

Jlim W(t)f x[o =0+ Oy A+ Yy F((+ )y —Dw((1+ )y —1)dy

(Fw)— 1)f *“’k( )a

(fW)(—l)f Xk (x)dx = (WK~ f)(=1),
0

with 0.2 ] the characteristic function of the interval [0, %], we can deduce that (WK™ f)(t) is continuous at t = —1, too. O
T+t

The second main step of our procedure consists in solving the following new weighted integral equation, with the same
unknown function f,

(WI+ x WKy + x WK + x " wK; + x "wK; +wH) f =wg, (32)
obtained by multiplying both sides of (29) by the weight function w(t). The weighted Mellin operators wK; and wK;" occuring
in (32) are defined as

(WK £)(6) = (WK* 2= f)(1), (33)

with the operators wK* given by (30)-(31), and satisfy the following

Theorem 4.2. If the kernels k*(t,s) defined by (2) satisfy conditions (3) for some 0 < o* < 1, then the operators y*wKj : C,, — C
are bounded linear maps with

It o <27 f X I (o) dx. (34

Proof. We prove the theorem for the operator y “wK; . In a similar way one can prove the analogous result for y *wK;". For
f € C,, the continuity of the function y “wK; f in [—1,1] is a consequence of Theorem 4.1 and (33), taking also into account that
the cut off function y~ is assumed to be very smooth. Then, it remains to show that the operators y“wK| : C,, — C is bounded
and satisfies (34). For —1 < t < 0, proceeding as in the proof of Theorem 4.1, we can write

A

(ki F) @] < 2 (Owo) f (5 ) ooy - ndy
o Y Yy

1 (O—0)°" f y

0

IA

k—(l)‘)qo L NE-A+0y)7 W+ 0y —1)|dy
y

A

< 2 Il f X ()| dx,
0

being0< y (t)<1land,for0<y < 11?, 279" <(2—(1+ t)y)_"+ < 1. Finally, since for 0 < t < 1 one has (x‘le‘f) (t)=0,
the thesis immediately follows. O

Now, we are able to prove the following theorem establishing the solvability of equation (32).

Theorem 4.3. Let us assume that the conditions
oo
J x1Ho” |ki(x)| dx <279 (35)
0
are satisfied and that h(t,s)w(t) is continuous on [—1,1]%. Then, if the equation (Wl + y WK™ + y *"wK™ + wH)f = 0 has only the
trivial solution in the space C,,, equation (32) has a unique solution f € C,, for each given function g € C,,.

Proof. First, we note that the operator wi : C,, —> C is linear, bounded and invertible with the inverse w™I : C — C,, such that
lw ' Illcoc, =1, where w'(t) = (1— ) (14 ¢)° denotes the reciprocal of the weight w(t).
Now, let us estimate the norm of the operator y “"wK; + y*wK; : C,, — C. For f € C,, taking into account (34), we have

[Grwis s k)l = ma [(wks + k)70

= “wKIf(t TwKf(t
max{[g_alg]u Wi F(0)] ma [ Wi £ )|}

IA

T max{zv* f X i ()] da, 27 f e |k+(x)|dx}
0 0
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from which, by assumptions (35), we can deduce

||)(’WK1’ + x*wK{rH <1 (36)

Cy—C
Then, in virtue of (36), we can apply the Neumann series theorem and deduce that the operator wl + y "wK; + y"wK; is
invertible as a map from C,, to C. Finally, observing that the kernels

. o1 (14t
ACOESAOERRS (

1_4-5) (I—x ()
of the operator y K, and
k(s i= Ok (14 )a-276)
1—s 1—s

of y*K} are continuous on the square [—1,1]* as well as, by assumption, the product h(t,s)w(t), we can conclude that the
operator y “wK; + y*wK; +wH : C,, — C is compact being sum of compact operators (see [14, Theorem 2]). Then, the thesis
easily follows if one uses [11, Corollary 3.8]. O

4.2 The Nystrom method

In this subsection we are going to propose a numerical method for the solution of integral equation (32) (and consequently of
(1)). The method is of Nystrém type, hence it is based on suitable approximations of all the integrals occurring in the equation.
In particular, for this purpose, we will use the Gauss-Jacobi-Lobatto quadrature rule given in (17) with respect to the Jacobi
weight w®P(t) = w o () =w(t) with0 < o* < 1 satisfying (3). While all the compact integral operators involved in (32)
are discretized just applying the quadrature formula (17), we need to use a modified version of it for the approximation of the
Mellin convolution operators y “wK; and y *wK; in order to achieve convergence and stability results for the Nystrém method.
First, we introduce the following discrete operators

n+1

(KO =D wk* (6, )2 ()W (8, 37)
k=0
n+1
(KE L0 = D wik* (£, £ (1— 2*(6)) W )(8,), (38)
k=0
and "
(HLF)(6) = D wih(t, 6 )wf )(t,).
k=0

and approximate the weighted operators WKZi and wH by means of WKZ*H and wH,, respectively. Moreover, fixed, in correspondence
of a positive constant ¢ and a small € > 0, a breaking point
c
Tn - Tl272€ > (39)

we define the following weighted “modified” discrete operators

Ti [+ (wKy f)(—1+7)—(t+1—-7)(wK; F)(-D)], te[-1,-1+7,)

(K f)o={ " (40)
(wk;,f) (), te[-1+71,1]
and
(wK; ) (o), tel-1,1-1,]
(K 0=4 4 1)

—[a-0(wk} f)a—1)+(—1+7) WK D], te-r,1]
T, ’

approximating wK; and wK;, respectively.
The Nystrom method we propose consists in computing the solution f, of the following approximating equation

(WI + K K+ WKy, + WK+ wH,,)fn =wg, (42)

by which we approximate the unknown solution f of equation (32).
In order to obtain f,, we collocate (42) at the quadrature knots t;, i =0, 1,...,n+1, of the adopted Gauss-Jacobi-Lobatto formula
reducing to solve a linear system of n + 2 equations in the n + 2 unknowns a; = (wf,)(t;), j =0,1,...,n+1,

[(WI"‘X_K:}IW‘*‘XJrKI’:‘FX_WKZn+X+WKZH+WHn)fn](ti)=(Wg)(ti)» i=0,1,...,n+1. (43)
Once the system (43) is solved, one can compute the weighted Nystrém interpolant
wf, =wg— (X_K;,’nw + ;(J'K;’,;W + X WKy, + ){+WK;:n + an)fn (44)

with f, which satisfies equation (42).
The stability and convergence of the proposed method are established by the following
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Theorem 4.4. Let the hypotheses of Theorem 4.3 be satisfied. Moreover, we assume that the kernels k*(t,s) given in (2), for some
r €N, satisfy
C
<————,  j=01,...,r, te(-11], (45)
1 (14+1t)zt°
_¢
TR

with ¢(s) = ¥1—s2 and C a positive constant independent of t. Then, for sufficiently large n (say n = n,), the operators

H - (k~(t,)7) 9w

H—(W(t ) lw j=0,1,...,r, te[-1,1), (46)

(WI+)(_K£;IW+;(+K+W+)( WK, + x TwKy +WH) :C—C,
exist and are uniformly bounded. Moreover; the solutions f of (32) and f, of (42), under the assumption g € C,, satisfy

Proof. Let us start by proving that, under the assumptions, y "K; ' + )(JrKl+ "1 C, — C, n €N, are linear operators satisfying

+K+w

lim || K + 2K

<1. (48)

Cc,—C

The linearity is an immediate consequence of the definitions (40)-(41) and of the linearity of the operators K; * and K] * . (see
(27)-(28) and (37)). In order to check that for any f € C,, the image (x K Y 4 x*K )f is a continuous function on [ 1,1],
one needs only to verify that K ; " f is continuous at the point —1 + 7, while K In Y f is contlnuous at 1—17,. From (40) it follows
that
s —Ww _ — _ —Ww
Lm0 ) 0= (K f)C1e )= ime (K1) @)

and from (41)
lim (k)0 = (KL )a-w) = lim (KF) @),

t—=(1—7,)"

Now, for f € C,,, we consider the following norm

||(x K +)(+K f||oo—max{ max ’()( K f (t)| rnax]|( +K+Wf (t)|} (49)

te[—1,0]

Let us estimate the first term in the brackets. Assuming 7, < 0.5, according to the properties of the cut off function y~ and the
definition of the operator K1 (see (40)), we have

max (e K2 F)©)], max (KO}

—1,-1+7

max |()(’K£;f”f)(t)| = max{[

te[—1,0]

IA

e { I(WKl_f) (_1)| ’ [}S&Tl?ﬁo] ‘(WKl_nf) (t)‘} :
Now, proceeding as in the proof of Theorem 4.2, we can write
| (WK F) D] <27 1f oo f X7 [l ()] dx.
0

Furthermore, for t € [—-1+ 7,,0]

\(wKinf)(t)\ < w(6) D wi [k( e ()l ws (e
k=0
< ||f||w,ww(r)[ f |k_(f,5)|x_(S)W‘1(S)ds+|en(|k_(t,-)|x_)|]
where
o SN o (01 1+ 1+
w(r)“k (9] r W Eds < 2 J11+Sk(1+s)‘(1+s) ds
<

27" f X K (x)| dx
0

while, in virtue of the error estimate (23) and condition (45),

w(t) |e, (K~ (¢, 7)< (1= (1 + t)v’% H% (k=(t, ) ™) w7

1
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Consequently, we get

- A - c
- W < (o —1+0 — =~
1 GO < |27 [ eGofars ] (50
Proceeding in an analogous way, using the assumption (46), the second term in (49) can be estimated as follows
~ + c
ma (16110 < flon |27 j e ars £, 1)
tef0,1] o ne

hence, combining (49) with (50) and (51) and taking into account the assumption (35), the inequality (48) follows.
The next step of the proof consists in showing that

nl}gloo ||x _WK f”oo ’ Vf < CW’ (52)
using the Banach-Steinhaus theorem applied to the sequences of operators y*K: " : C,, —> C, n € N, which, as proved above

(see (50) and (51)), are uniformly bounded for sufficiently large n. To this end, we con51der the following dense subspace of the
weighted space C,,

P,1= {W_1p|p € IP’}

where by P we have denoted the set of all algebraic polynomials defined on [—1, 1], and we prove that for any f =w™'p € P,
the limit condition (52) holds true. We limit the proof to the case "~".
We have that

I (ki —wi )|y =max{ max x5 —wi ) @) max @@ —wk)f@f) 69

Proceeding as in [14, Proof of Lemma 1] and using the error estimate (23) for the Gauss-Jacobi-Lobatto rule proved in Section 3,
from the assumption (45), for any t € [—1 + 7, 0], it follows that

|x () (K —wKT) £ (1) w(t) |2~ (te, k‘(t,~)x‘Wf)|

< w(t )-Z}:( ; )J R — (K (t,9)x ‘cpJ(S) |p(s)] " (5w (s)ds
J
< 27 = H— (K (6,027 )'w™
1

C i
< F}.zo(j)“”)
< Satos

nr

from which we can deduce
max |x (t) i — WKy )f(t)| B4

[+,

For t € [—1,—1+ 7,,], taking into account definition (40), we have

(K —wkD) F()] = 1 (0)|—= (1+t) [(wK; ) (=14 7,) — (K (D] + [(wK; £)(=1) = (wK; £ ) (1)]
< &2 WKinf)(_”Tn)—(WKff)—
+ (1: t) |(WKy f) (=14 7,) — WKy £)(1)| + |(wKy £)(=1) — (WK £) ()] -

Then, wK| f being a continuous function on [—1, 1], (see the proof of Theorem 4.1) we have

im max 85D ) 14 )~ (i D) =0 5)
and
lim max . |(WK;f)(—1) — (le’f) (t)l =0, (56)

n—+00 te[—1,—

while, according to (54),

e, R () - () )

<L (57)
nrf

Combining (53) with (54)-(57), condition (52) is proved in the case "~" for any f € P,1. The proof can be repeated in a similar
way in the case "*". Hence the thesis (52) follows. Moreover, using the geometric series theorem, from (48) we can deduce that,
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for sufficiently large n, say n = n,, the operators wl + y K Y+ ){*K : C,, — C are invertible and their inverses are uniformly
bounded with respect to n with

1
< )
6= T L= supyey [lr Ky + K | e

”(wl +x K+ ){*Klf;lw)f1

Now, we observe that the operators y “wK; . and wH, map C,, into C and the sequences { x WK } and wH,, are collectively
compact and pointwise convergent in C,, (see [14, Lemma 2]). From all the previous results it follows that (see for instance,[11,

Theorem 10.8 and Problem 10.3]) the operators (wI + 1K, Y+ )(+K+w WKy, +x WKy + an) :C — C,, exist and
are uniformly bounded for any n > n,. Consequently, since

fofo = (WLt a K+ 2 K+ WKy, + WK, v wH,) [ (K —wKy) f + 2 (K —wiy ) f
+ o (wiy, —wK; ) f + (WK, —wK;)f + (wH, —wH) f |
we have
Uf = Fullwoo - < €Ll (R =wED) £ + o (KLY = wi) £

||x’(wK;n—wK; fH +)x+

(wics, = wi )£ ||+ 10w, w1l (58)
from which (47) follows. O

In the last part of this section we are going to prove an estimate for the weighted error ||f — f, || which holds true under
further suitable assumptions on the kernel functions.

We shall suppose that the functions k* defining the Mellin kernels k*(t,s) given in (2) are such that

)
J x—l+oi—pi
0

for some 0 < p* < 1 and some [ € N. Then, using the same arguments in [14] (see also [7]), we can deduce that if h(t,s) and
g(t) are sufficiently smooth functions, the solution f (t) of (32) has the following asymptotic behavior near the endpoints of the
interval [—1,1]

w,007

X (K )“)(x))dx<oo J=0,1,...,1 (59)

F() = {(1 + t)p*—o*fo—(t) +(1+ t)—tffl—(t), t €[-1,0] )

(1=t fH )+ A=ty f5 (1), te[0,1]

with f;~ € C'(—1,0] such that (1+t Y (f;)9(¢) € C([—1,0]), f,7 € C'[0,1) such that (1—t) (f,))V(t) € €([0,1]), for j =0, 1,...,1,
and f,” and f;* smoother functions in [—1,0] and [0, 1], respectively. The following result can be proved.

Theorem 4.5. Under the hypotheses of Theorem 4.4, if conditions (59) are fulfilled for some 0 < p* <1 and | €N,

a7
sup —(k (t,)1—x))'w?|| <oo, j=0,1,...,1 61)
—1ze<1 || O 1
sup ||l=— (k+(t A=) ew || <oo, j=0,1,...,7, (62)
—1ze<1 || 980 1
and the kernel h(t,s) satisfies
sup a—h(t Jew || <o, j=0,1,...,r, (63)
—1<¢t<1 asi 1
and the solution f of (32) verifies o
[wAPel|| < o0, j=0,1,...,, (64)
then the following error estimate holds true
C
nv

with u = min{re,2(1—¢)p~,2(1—¢€)p™*}.

Proof. We start by estimating the first term in the square brackets on the right-hand side in (58)

||)(_(K1—,:"W_WK1—)f||oo=max{ max |;( (0 (x o —wK )f(t)| ma)(ll’o]|x_(t)(K:;:”—le_)f(t)|}=:A1+A2.

te[—1,—1+7,] te[—1+71

From (54) it immediately follows that
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and it remains to estimate A,. For t € [—1,—1 + 7, ], we can write (see the proof of Theorem 4.4)

|)(_(t) (K;;W —le_)f(t){ <A () +A5(8) +A5()

with .
A0 = E | ) 14 )~ (k) 147,
120 = ki £) 1 42— oo )],
and

A(0) = |wKy () — (wK; f) (=1)].
By (54), for any t € [—1,—1 + 7, ] we have
C
Al,l(t) < —
n
Adding and subtracting the quantity

(W)(—f)(—l)f XK (x)dx,

and taking into account (60), for A, ,(t), t € [-1,—1+ 7,], we can write

1 o
Ap) = w14, f I (L2 ) @ s — wr D) J G
+ ﬂl(wx-f)(—mj Xk () dx
0
+ 0 1 _ Th Ta o~ _ ot oo o 1
e w [ L) o e e [ ecolo
£l f 1 i () dx.
0

Tn
I+s2

Now, using the change of variable x = we get

()

27" |fy (1) f x”v|k(x)|dx+||f||w,oorgf X [l ()| dx
Tn 0

A(t) < 20778 f X [k ()| fo(%—l)‘dx+2"+f X ()|

+

IA

ct? f X1 ik’(x)| dx +2°" f X1 |k’(x)| [
0 Tn

(2 -1)| + 1Al dx.

Being |f1(§me)| =MaX, [ 147 ] |f1(x)| we have

J"" x~Ho ‘k_(x)l [

IA

2 J | [ )| (1) (e L)

n

(2 -1)| +1aEDl]dx

IA

CTﬁJ x~ro e |k_(x)| dx

and, finally, using the assumptions (59), we can conclude that

C

T -
Aa() SCTl = —oe
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Using similar tools we can estimate also the quantity A, 5(t), for t € [~1,—1 + 7, ], obtaining

0 o~ [e)
A = 27 J () (52) (1+S)"If(S)|d5+|(wx‘f)(—1)|J ()l
1+t
+ vy D) f X e () dx
0
< wravy [ ewecolln(FE ) v [ e oo (F5)] + e ex
1+t X 1+t x
o0 0 f XM K (o)ldx
0
<

oo
P —14+0"—p " |1,—
cth JO x k™ (x)|dx < e

Then, we can conclude that
C

”X_ (Kl_nw - WKl_)f || ) = pmin{re,2(1—e)p~} (66)
By proceeding in an analogous way, one can prove that
C
||X+ (KI;IW - WK;—)f || %) = nmin{re,2(1—e)p+} €7

Now, let us estimate the last term in (58) according to the assumptions (63) and (64). Using (23), for t € [—1,1] we have

(ot w0 £ = ) |2 T 6] 9 0
2 Y g A , .
< %w(t)jzo( ’ )U%h(t’s) PO |G ¢ ()

from which it follows that c

Similar estimates hold true for the terms H X~ (WKZ_ L — WK ) f H and ‘
> (oo}

x* (WK2+ L — WK ) f H since the kernels of the integral
operators K; satisfy the assumptions (61)-(62) and the proof is complete. O

Finally, following a standard scheme (see [1]), the proof of the following theorem regarding the conditioning of the linear
system (43) can be carried out.
Theorem 4.6. Under the hypotheses of Theorem 4.4, denoting by M,, the matrix of the coefficients of system (43) and by cond(M,,)
its condition number in the uniform norm, for a sufficiently large n, € N we have

sup cond(M,,) < sup cond(wl + ¥ K ;" + x*K;";lW +x WK, +x wK, +wH,) < oo (68)

nzng nzng

with wl + x K" + x "K'

+x WK, +x"wK;, +wH, : C, > C.

5 Numerical results

This section is dedicated to some numerical examples showing the efficiency of the Nystrom type method described in the previous
one. In each test we will report the weighted absolute errors

erry = max w7 (y)If () = fu(y)l,

1,..,103
with yi,..., Y103 equispaced points in the interval (—1,1). We will retain as exact the approximate solution f,,,s when the exact
solution is unknown. We will also report the estimated order of convergence
log(err,/erry,)
eoc, = —————
log 2

and the condition number in the infinity norm, cond(M,,), of the coefficient matrix M,, of the linear system (43). One can observe
that the sequence {cond(M,)}, is bounded w.r.t. n, according to the theoretical results (see (68)).

The exponents o* of the Jacobi weight w(t), satisfying condition (35), can be chosen in such a way as to guarantee the largest
values of p* which make (59) fulfilled. This allows to maximize the order of convergence, according to Theorem 4.5.

In the numerical simulations the choice of the parameters ¢ and e occurring in the definition of the breaking point 7, (see (39))
has been made in such a way to minimize the errors, according to the numerical evidence. Anyway, we remark that some criteria
proposed in [14] (see also [4]) in order to maximize the theoretical order of convergence u = min{re,2(1—¢€)p—,2(1—€)p™}
can be also used. More precisely, taking into account the asymptotic behavior of the solution f described by (60), one can choose
¢ =107, being p = min{p~,p*} and e = ri‘z’ > with r such that the assumptions (45)-(46) and (61)-(64) are fulfilled. The
numerical results obtained in this case show that such convergence rate estimate is sharp.
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Example 5.1. In the first example we have chosen
1 sin 2 1 sin 27
K (x)=— 3 — 3 H(t,s) =s2(s*+ t2)

_— kt(x) =
2m x2—2xcosg +1 (x)

21 x2—2xcos§n+1’

and the right-hand side g(t) such that the function f(t) = 1 is the exact solution of equation (1). In Table 1 we report the
numerical results computed in correspondence of the specified values of the parameters involved in the applied method.

Table 1: Example 5.1, o+ =0.99, 0~ =0.99,c =3, e = 1072

n err eoc, cond(M,)

n

2% 2.15e-02 219 6.2135e+03
25 4.72e-03 592 6.2294e+03
26 7.76e-05 2.79 6.2387e+03
27 1.11e-05 2.19 6.2378e+03
28 2.43e-06 229 6.2392e+03
2°  4.97e-07 2.41 6.2393e+03
210 9.33¢-08 6.2394e+03

Conditions (59) being verified with c* = 0.99 and p* = 0.98, choosing € = ri—gp with r = 500, we expect a theoretical order of
convergence u =~ 1.9523 which is confirmed by the estimated order eoc, reported in the following table

Table 2: Example 5.2, ot =0.99, 0~ =0.99, ¢ ~ 9.5499¢ — 01, € =~ 3.9046¢ — 03

n err, eoc,

2% 4.73e-03 3.4575
25 4.30e-04 1.9557
26 1.11e-04 1.9837
27 2.80e-05 1.9932
28 7.05e-06 1.9968
2°  1.76e-06 1.9985
210 4.42e-07 1.9992
21 1.10e-07 1.9996
212 2.76e-08

Finally, in order to show that modifying the quadrature formula near the singularities £1 (when it is applied for the discretization
of the Mellin integral operators) not only is necessary from a theoretical point of view for achieving stability, but it is also useful to
get more accurate numerical results, in Table 3 we compare the errors err, obtained by applying the numerical method described
in Section 4 with the errors err, obtained by using a Nystrom method based on a non modified quadrature formula w.r.t. to the
weight w(t) =(1—t) " (1+¢) .

Table 3: Example 5.1, 0¥ =0.99, 0~ =0.99,c =3, =102

n err, err,

2% 2.15e-02 8.60e-03
25 4.72e-03 2.35e-03
20 7.76e-05 6.16e-04
27 1.11e-05 1.57e-04
28 2.43e-06 3.98e-05
2°  4.97e-07 1.00e-05
21 9.33e-08 2.51e-06
21 1.52¢-08 6.29e-07
22 1.83e-09 1.57e-07
213 2.59e-10  3.94e-08
2% 1.76e-10  9.85e-09
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Example 5.2. In this second test we consider the following known functions

1 x*+1 x5

— = K=,
m(x2+1)3 () (5+x)3
In this case the solution f of equation (1) is unknown. Tables 4 and 5 contains the values of the chosen parameters and the
obtained results.

k(x) = H(t,s) =sin((s —t)?), g(t)=e1,

Table 4: Example 5.2, 0+ =0.99, 0~ =0.99,c =15, =102

n err, eoc, cond(M,)

2% 5.93e-03 1.05 7.3990e+03
25  2.86e-03 2.80 7.5457e+03
2% 4.10e-04 6.58 7.5687e+03
27 4.28e-06 2.93 7.5732e+03
28 55907 3.82 7.575%9e+03
2°  3.95e-08 3.36 7.5763e+03
210 3.83e-09 7.5765e+03

Since with o* = 0.99 and p* = 0.98 conditions (59) are verified, choosing € = % with r = 100, the expected theoretical
order of convergence is p >~ 1.9223. The values of the estimated rate of convergence eoc, reported in table 5 show the sharpness

of the error estimate (65).

Table 5: Example 5.1, o+ =0.99, 0~ =0.99, ¢ ~ 9.5499¢ — 01, € ~ 1.9223¢ — 02

n  eoc,
2% 4.4540
2% 3.2699
26 1.8178
27 1.9180
28 2.0070

2°  2.2837

Example 5.3. Here we consider the following kernels and right-hand side

K=2—1 = Heg= () =log(t*+1)
S o (1+x3)?’ 2\ (12’ T ereyr 8UTOE ’

while the solution f is unknown. We report the weighted errors, the corresponding estimated order of convergence and the
condition numbers produced by our method with the given parameters in Table 6.

Table 6: Example 5.3, 0t =0.7,0"=0.9,c=5,e=10"°

n err eoc, cond(M,)

n

2% 2.11e-02 1.67 1.2303e+02
2°  6.63e-03 9.38 1.3116e+02
26 9.88¢-06 3.38 1.3464e+02
27 9.44e-07 221 1.3626e+02
28 2.03e-07 2.05 1.3714e+02
2°  4.88e-08 231 1.3756e+02
219 9.79e-09 1.3777e+02

Acknowledgements

The author is partially supported by GNCS Project 2022 “Metodi e software per la modellistica integrale multivariata”. This research
has been accomplished within RITA (Research ITalian network on Approximation) and the UMI Group TAA (Approximation
Theory and Applications).

Dolomites Research Notes on Approximation ISSN 2035-6803



/O‘Q\,\ Laurita 112

References

(1]
(2]
(3]
[4]
(5]

(6]
(7]
(8]

K. E. Atkinson. The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge Monographs on
Applied and Computational Mathematics, 552, 1997.

M. C. De Bonis, C. Laurita. A modified Nystrém method for integral equations with Mellin type kernels. J. Comp. Appl. Math., 296:512-527,
2016.

M. C. De Bonis,C. Laurita. A Nystrom method for integral equations with fixed singularities of Mellin type in weighted LP spaces. Appl.
Math. Comput., 303:55-69, 2017.

M. C. De Bonis,C. Laurita. On the stability of a modified Nystrom method for Mellin convolution equations in weighted spaces. Numer.
Algorithms, 79:611-631, 2018.

R. Duduchava. Integral Equations in Convolution with Discontinuous Presymbols Singular Integral Equations with Fixed Singularities, and
Their Applications to Some Problems of Mechanics, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1979.

D. Elliott, S. Prossdorf. An algorithm for the approximate solution of integral equations of Mellin type. Numer. Math., 70:427-452, 1995.
J. Elschner. On spline approximation for a class of non-compact integral equations. Math. Nachr., 146:271-321, 1990.

J. Elschner. The h — p—version of spline approximation methods for Mellin convolution equations. J. Integral Equations Appl., 5:47-73,
1993.

J. Elschner., I. G. Graham. Numerical methods for integral equations of Mellin type. J. Comp. Appl. Math., 125:423-437, 2000.

L. Fermo, C. Laurita. A Nystrom method for a boundary integral equation related to the Dirichlet problem on domains with corners. Numer.
Math., 130:35-71, 2015.

R. Kress. Linear Integral Equations. Springer-Verlag, Applied Mathematical Sciences, 82, 1989.

R. Kress. A Nystrom method for boundary integral equations in domains with corners, Numer. Math, 58:445-461, 1990.

C. Laurita. A numerical method for the solution of integral equations of Mellin type. Appl. Numer. Math., 116:215-229, 2017.

C. Laurita. A new stable numerical method for Mellin integral equations in weighted spaces with uniform norm. Calcolo, 57:25, 2020.

G. Mastroianni, G. V. Milovanovi¢. Interpolation Processes Basic Theory and Applications. Springer Monographs in Mathematics, Springer-
Verlag, 2009.

G. Mastroianni, G. Monegato. Nystrom interpolants based on the zeros of Legendre polynomials for a non-compact integral operator
equation. IMA J. Numer. Anal., 14:81-95, 1993.

G. Monegato. A stable Nystrom interpolant for some Mellin convolution equations. Numer. Algorithms, 11:271-283, 1996.
G. Mastroianni, M. G.Russo. Lagrange interpolation in weighted Besov spaces. Constr. Approx., 15:257-289, 1999.

G. P Nevai. Orthogonal Polynomials. Amer. Math. Soc., 1979.

G. P Nevai. Mean convergence of Lagrange interpolation, III. Trans. Amer. Math. Soc., 282:669-698, 1984.

G. Szeg6. Orthogonal polynomials. Amer. Math. Soc. Collog. Publ., 23,4thed., Amer. Math. Soc., 1975.

Dolomites Research Notes on Approximation ISSN 2035-6803



	Introduction
	Notation and preliminary results
	Notation
	Preliminary results

	An error estimate for the Gauss-Jacobi-Lobatto quadrature rule
	The numerical method
	A new integral equation
	The Nyström method

	Numerical results

