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Abstract

An account on computation of integrals of highly oscillatory functions based on the so-called complex
integration methods is presented. Beside the basic idea of this approach some applications in computation
of Fourier and Bessel transformations are given. Also, Gaussian quadrature formulas with a modified
Hermite weight are considered, including some numerical examples.

1 Introduction and Preliminaries
In this paper we give an account on computing integrals of highly oscillatory functions based on the so-called complex integration
methods and using quadrature processes in general, as well as some new results and numerical examples. Some of these results
have been recently presented during author’s lecture at the 4th Dolomites Workshop on Constructive Approximation and Applications,
Session: Numerical integration, integral equations and transforms (September 8–13, 2016, Alba di Canazei, Italy).

We deal here with integration of functions of the form

I( f , K) = I( f (·), K(·; x)) =

∫ b

a

w(t) f (t)K(t; x)dt, (1)

where (a, b) is an interval on the real line, which may be finite or infinite, w(t) is a given weight function, and the kernel K(t; x)
is a function depending on a parameter x and such that it is highly oscillatory or/and has singularities on the interval (a, b) or in
its nearness. Typical examples of such kernels are:

(a) Oscillatory kernel K(t; x) = eix t , where x =ω is a large positive parameter. Then we have Fourier integrals over (0,+∞)
(Fourier transforms)

F( f ;ω) =

∫ +∞

0

tµ f (t)eiωt dt (µ > −1)

or Fourier coefficients (on a finite interval)

ck( f ) = ak( f ) + ibk( f ) =
1
π

∫ π

−π
f (t)eikt dt, (2)

where ω= k ∈ N.
(b) Oscillatory kernels K(t; x) = H (m)

ν
(x t), where x = ω is also a large positive parameter. These integral transforms are

known as Hankel (or Bessel) transforms (see Wong [51]),

Hm(x) =

∫ +∞

0

tµ f (t)H (m)
ν
(ωt)dt (m= 1,2), (3)

where H (m)
ν
(t), m= 1,2, are the Hankel functions of first and second type and order ν,

H (1)
ν
(z) = Jν(z) + iYν(z) and H (2)

ν
(z) = Jν(z)− iYν(z),

where Jν is the Bessel function of the first kind and order (index) ν, defined by

Jν(z) =
+∞
∑

k=0

(−1)k

k!Γ (k+ ν+ 1)

� z
2

�2k+ν
, J−n(z) = (−1)nJn(z).

Otherwise, Jν is a particular solution of the so-called Bessel differential equation

z2 y ′′ + z y ′ + (z2 − ν2)y = 0.
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The second linearly independent solution of this equation is the Bessel function of the second kind Yν (sometimes known as Weber
or Neumann function),

Yν(z) =
Jν(z) cos(νπ)− J−ν(z)

sin(νπ)
.

(c) Logarithmic singular kernel K(t; x) = log |t − x |, where a ≤ x ≤ b.
(d) Algebraic singular kernel K(t; x) = |t − x |α, where α > −1 and a < x < b.
Also, we mention here an important case when K(t; x) = 1/(t − x), where a < x < b and the integral (1) is taken to be a

Cauchy principal value integral.
Integrals of rapidly oscillating functions appear mainly in the theory of special functions and Fourier analysis, but also in other

applied and computational sciences and engineering, e.g., in theoretical physics (in particular, theory of scattering), acoustic
scattering, quantum chemistry, theory of transport processes, electromagnetics, telecommunication, fluid mechanics, etc. For
example, in the last time, a very attractive problem is the numerical solution of Volterra integral equation of the second (or first)
kind with highly oscillatory kernel

y(x) +

∫ x

0

Jν(ω(x − t))
(x − t)α

y(t)dt = ϕ(x),

or

λy(x) +

∫ x

0

eiωg(x−t)

(x − t)α
y(t)dt = ϕ(x),

where x ∈ [0, 1], 0≤ α < 1, ω� 1, ϕ(x) and g(x) are given functions, and y(x) is unknown function.
We mention also a type of integrals involving Bessel functions

Iν( f ;ω) =

∫ +∞

0

e−t2
Jν(ωt) f (t2)tν+1 dt, ν > −1,

with a large positive parameter ω. Such integrals appear in some problems of high energy nuclear physics (cf. [14]).
In Fig. 1 we present the graphics of J3(ωx) and Y3(ωx) on [1,10] for some values of the parameter ω
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Figure 1: The graphics of J3(100x) (left) and Y3(1000x) (right) on [1,10]

Conventional techniques for computing values of special functions are power series, Chebyshev expansions, asymptotic
expansions, recurrence relations, sequence transformations, continued fractions and best rational approximations, differential
and difference equations, quadrature methods, etc. A nice survey on these methods, including a list of recent software for special
functions as well as a list of new publications on computational aspects of special functions is given recently by Gil, Segura
and Temme [18]. An application of standard quadrature formulas to I( f ; K) usually requires a large number of nodes and too
much computation work in order to achieve a modest degree of accuracy. In a recent joint survey paper with M. Stanić [40] we
discussed some specific nonstandard methods for numerical integration of highly oscillating functions, mainly based on some
contour integration methods and applications of some kinds of Gaussian quadratures, including complex oscillatory weights. In
particular, Filon-type quadratures for weighted Fourier integrals, exponential-fitting quadrature rules, Gaussian-type quadratures
with respect to some complex oscillatory weights, methods for irregular oscillators, as well as two methods for integrals involving
highly oscillating Bessel functions have been considered, including some numerical examples. In addition, we mention also the
so-called integrals with irregular oscillators

I[ f ; g] =

∫ b

a

f (x)eiωg(x) dx , (4)

where −∞< a < b < +∞, |ω| is large, and both f and g are sufficiently smooth functions. In a special case when g(x) = x , we
have the so-called regular oscillators. Numerical calculation of the integrals 4 has been treated in a large number of papers (cf.
[10, 11, 12], [22], [24], [26, 27, 28, 29], [31], [43, 44, 45, 46], etc.). The most important are asymptotic methods, Filon–type
methods, and Levin–type methods. Asymptotic method was presented by Iserles and Nørsett [29].
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Using suitable integral representations of special functions, in this paper, we show how existing or specially developed quadrature
rules can be successfully applied to effectively calculation of highly oscillatory integrals (Fourier type integrals, oscillatory Bessel
transformation, Bessel-Hilbert transformation, etc.). The procedure is based on an idea from our paper [35] from 1998, where,
beside an account on some special – fast and efficient – quadrature methods for weighted integrals of strongly oscillatory functions,
we introduced the so-called Complex Integration Methods for some classes of oscillatory integrals (1).

This paper is organized as follows. In Section 2 we give some basic facts on the Complex Integration Methods. Applications
of these methods to integrals of highly oscillatory special functions are treated in Section 3. Finally, in Section 4 we consider
Gaussian quadrature formuals with respect to a modified Hermite weight on R.

2 Complex Integration Methods – Basic Idea
The basic idea of the Complex Integration Methods is to transform the integral of an oscillatory function to a weighed integral with
respect to the exponentially decreasing weight function on (0,+∞).

First we illustrate this idea to calculation of the Fourier integrals on the finite interval [−1,1],

I( f ;ω) =

∫ 1

−1

f (x)eiωx dx , (5)

assuming that f is an analytic real-valued function in the half-strip of the complex plane, −1≤ Re z ≤ 1, Im z ≥ 0, with possible
singularities at the points zν (ν= 1, . . . , m) inside the region

Gδ =
¦

z ∈ C
�

� −1≤ Re z ≤ 1, 0≤ Im z ≤ δ
©

,

where δ is sufficiently large.
Now we suppose that the corresponding residues of these singularities give

2πi
m
∑

ν=1

Res
z=zν

¦

f (z)eiωz
©

= P + iQ, (6)

as well as that there exist the constants M > 0, δ0 > 0 and ξ < ω such that
∫ 1

−1

| f (x + iδ)|dx ≤ Meξδ (δ > δ0 > 0). (7)

-� �
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�

Γδ

δ

�

�

�

��

� � � + �

�

Figure 2: The contours of integration Γδ (left) and CR (right)

By integrating the function z 7→ f (z)eiωz over the contour Γδ = ∂ Gδ (see Fig. 2 (left)), we have
∮

Γδ

f (z)eiωz dz =

∫ δ

0

f (1+ iy)eiω(1+iy)i dy +

∫ −1

1

f (x + iδ)eiω(x+iδ) dx +

∫ 0

δ

f (−1+ iy)eiω(−1+iy)i dy + I( f ;ω)

= 2πi
m
∑

ν=1

Res
z=zν

¦

f (z)eiωz
©

= P + iQ,

i.e.,

I( f ;ω) = P + iQ+ i

∫ δ

0

�

e−iω f (−1+ iy)− eiω f (1+ iy)
�

e−ωy dy +

∫ 1

−1

(x + iδ)eiω f (x + iδ)dx .
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Because of (7) we conclude that

|Iδ| =
�

�

�

�

∫ 1

−1

f (x + iδ)eiω(x+iδ) dx

�

�

�

�

= e−ωδ
�

�

�

�

∫ 1

−1

f (x + iδ)eiωx dx

�

�

�

�

≤ e−ωδ
∫ 1

−1

| f (x + iδ)|dx ≤ Me(ξ−ω)δ.

Thus, Iδ→ 0 when δ→ +∞, and

I( f ;ω) = P + iQ+
1

iω

∫ +∞

0

�

eiω f
�

1+ i
t
ω

�

− e−iω f
�

−1+ i
t
ω

��

e−t dt. (8)

In this way we proved the following result:

Theorem 2.1 ([35]). Let f be an analytic real-valued function in the half-strip of the complex plane, −1≤ Re z ≤ 1, Im z ≥ 0, with
possible singularities zν (ν = 1, . . . , m) in the region Gδ = int Γδ, such that (6) holds. Supposing that there exist the constants M > 0
and ξ < ω such that the condition (7) holds for sufficiently large δ, we have (8).

The obtained integral (8) in Theorem 2.1 can be solved by using the Gauss-Laguerre rule.
In order to illustrate the efficiency of this method we consider a simple example – Fourier coefficients (2), with f (t) =

1/(t2 + ε2)m (m ∈ N, ε > 0). Thus, we are interested in the integrals

ck( f ) =

∫ 1

−1

f (x)eikπx dx , ω= kπ.

According to (8), for 1≤ m≤ 3, we have

ck( f ) = P + iQ+
(−1)k

ikπ

∫ +∞

0

�

f
�

1+ i
t

kπ

�

− f
�

−1+ i
t

kπ

��

e−t dt,

where, in our case, we have

f (z) =
1

(z2 + ε2)m
, P + iQ = 2πi Res

z=iε

¦

f (z)eikπz
©

=























π

ε
e−kπε, m= 1,

π(1+ kπε)
2ε3

e−kπε, m= 2,

π(3+ 3kπε + k2π2ε2)
8ε5

e−kπε, m= 3.

For calculating c5( f ), c10( f ) and c40( f ), when ε = 1 and ε = 10−2, we apply the n-point Gauss-Laguerre rule for n= 1, . . . , 7
nodes. The corresponding relative errors in quadrature approximations are given in Table 1. Numbers in parentheses indicate
decimal exponents. As we can see the convergence is faster for larger k (and smaler ε).

Table 1: Relative errors in n-point Gauss-Laguerre approximations of ck( f ) for k = 5,10, 40 and ε = 1 and 10−2

k = 5 k = 10 k = 40
n ε = 1 ε = 10−2 ε = 1 ε = 10−2 ε = 1 ε = 10−2

1 1.11(−2) 1.69(−9) 2.60(−3) 1.28(−10) 1.59(−4) 7.91(−13)
2 3.48(−4) 1.38(−10) 2.56(−5) 3.40(−12) 1.04(−7) 1.45(−15)
3 2.12(−5) 8.83(−12) 2.71(−7) 1.02(−13) 5.78(−11) 3.35(−18)
4 3.84(−7) 1.03(−13) 3.25(−9) 3.21(−15) 5.45(−14) 9.92(−21)
5 3.49(−8) 7.80(−14) 1.29(−10) 8.69(−17) 8.20(−13) 4.48(−22)
6 8.46(−9) 9.35(−15) 4.06(−12) 2.94(−19) 4.77(−12) 2.39(−21)
7 1.61(−9) 6.62(−16) 1.65(−13) 2.21(−19) 5.40(−14) 2.75(−23)

Table 2: Gaussian approximation of the integral ck( f )

k ε = 1 ε = 10−2

5 4.0039258346130827412 (−3) 1.553332097827282899812027 (+6)
10 −1.0100710270520897087 (−3) 1.507753137017524820873537 (+6)
40 −6.3313694112094129150 (−5) 1.008860345037773704075638 (+6)

Approximative values obtained by 7-point Gauss-Laguerre rule are presented in Table 2. Digits in error are underlined.
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Now we consider the Fourier integral on (0,+∞),

F( f ;ω) =

∫ +∞

0

f (x)eiωx dx ,

which can be transformed to

F( f ;ω) =
1
ω

∫ +∞

0

f
� x
ω

�

eix dx =
1
ω

F
�

f
� ·
ω

�

; 1
�

,

which means that is enough to consider only the case ω= 1.
In order to calculate F( f ; 1) we select a positive number a and divide the integral over (0,+∞) into two integrals,

F( f ; 1) =

∫ a

0

f (x)eix dx +

∫ +∞

a

f (x)eix dx = L1( f ) + L2( f ),

where

L1( f ) = a

∫ 1

0

f (at)eiat dt and L2( f ) =

∫ +∞

a

f (x)eix dx .

For calculating the second integral L2( f ) we use the complex integration method over the closed circular contour CR presented in
Fig. 2 (right).

Theorem 2.2 ([35]). Suppose that the function z 7→ f (z) is defined and holomorphic in the region D = {z ∈ C |Re z ≥ a > 0, Im z ≥
0}, and such that

| f (z)| ≤
A
|z|

, when |z| → +∞, (9)

for some positive constant A. Then

L2( f ) = ieia

∫ +∞

0

f (a+ iy)e−y dy (a > 0). (10)

In this case, by Cauchy’s residue theorem, we have
∫ a+R

a

f (x)eix dx +

∫ π/2

0

�

f (z)eiz
�

z=a+Reiθ Rieiθ dθ +

∫ 0

R

f (a+ iy)ei(a+iy)i dy = 0. (11)

Let z = a+ Reiθ , 0≤ θ ≤ π/2. Because of (9), we have that

| f (z)| ≤
A

|a+ R cosθ + i sinθ |
=

A
p

a2 + 2aR cosθ + R2
≤

A
p

a2 + R2
(0≤ θ ≤ π/2).

Using Jordan’s inequality sinθ ≥ 2θ/π, when 0≤ θ ≤ π/2, we obtain the following estimate for the integral over the arc
�

�

�

�

∫ π/2

0

�

f (z)eiz
�

z=a+Reiθ Rieiθ dθ

�

�

�

�

≤
∫ π/2

0

�

� f (a+ Reiθ )
�

� e−R sinθ R dθ ≤
π

2
·

A
p

a2 + R2
·
π

2

�

1− e−R
�

→ 0,

when R→ +∞, and then (10) follows directly from (11).
In the numerical implementation we use the Gauss-Legendre rule on (0, 1) and Gauss-Laguerre rule for calculating L1( f ) and

L2( f ), respectively.

3 Computing Integrals of Highly Oscillatory Special Functions
The idea on complex integration methods has been exploited in many papers, which are dealing with integrals of special functions,
in particular with a highly oscillatory Bessel kernels (cf. Chen [4, 5, 6, 7, 8], Kang and Xiang [30], Xu, Milovanović and Xiang [53],
Xu and Milovanović [52], Xu and Xiang [54], etc.). For example, Chen [4] considered the numerical evaluation of the integrals
on (a, b), 0< a < b, involving highly oscillatory Bessel kernel Jν(ωx), where Jν(ωx) is the Bessel function of the first kind and
of order ν (> 0) and ω is a large positive parameter. Using the integral form of Bessel function and its analytic continuation, he
applied the complex integration methods to transform these integrals into the forms on [0,+∞) that the integrand does not
oscillate and decays exponentially fast, and which can be efficiently computed by using Gauss-Laguerre quadrature rule.

Evaluation of Cauchy principal value integrals of oscillatory functions was also considered in such a way by Wang and
Xiang [50], as well as applications to the computation of highly oscillatory Bessel Hilbert transforms [52]. We mention also the
corresponding applications in solving Volterra and Fredholm integral equations with highly oscillatory kernels (cf. [13], [23],
[32]).

Recently, Xu, Milovanović and Xiang [53] developed a method for efficient computation of highly oscillatory integrals with
Hankel kernel,

I1[ f ] =

∫ b

a

f (x)H (1)
ν
(ωx)dx and I2[ f ] =

∫ +∞

a

f (x)H (1)
ν
(ωx)dx , (12)
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for ω� 1 and b > a > 0. Using the integral form of the Hankel function for x > 0 (see [20, p. 915])

H (1)
ν
(ωx) =

√

√ 2
πωx

ei(ωx− π2 ν−
π
4 )

Γ (ν+ 1
2 )

∫ +∞

0

�

1+
it

2ωx

�ν− 1
2

tν−
1
2 e−t dt,

they obtained the following integral representations for the previous integrals:

I1[ f ] =

√

√ 2
πω

e−iπ(2ν+1)/4

Γ (ν+ 1
2 )

∫ b

a

f (x)x−1/2 g(x)eiωx dx and I2[ f ] =

√

√ 2
πω

e−iπ(2ν+1)/4

Γ (ν+ 1
2 )

∫ +∞

a

f (x)x−1/2 g(x)eiωx dx ,

where

g(x) =

∫ +∞

0

�

1+
it

2ωx

�ν− 1
2

tν−
1
2 e−t dt. (13)

Supposing that f be a holomorphic function in the half-strip of the complex plane, a ≤ Re (z) ≤ b, Im (z) ≥ 0, as well as
that there exist two constants C and ω0, such that | f (x + iR)| ≤ Ceω0R, a ≤ x ≤ b, with 0<ω0 <ω, the integral I1[ f ] can be
reduced to (see [53])

I1[ f ] =
i
ω

√

√ 2
πω

e−iπ(2ν+1)/4

Γ
�

ν+ 1
2

� (G(a)− G(b)), (14)

where

G(c) = eiωc

∫ +∞

0

F
�

c +
i
ω

t
�

e−t dt. (15)

Really, (14) follows after an application of the complex integration method over the contour Γ = ∂ D = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 (see Fig. 3
(left)), where D is the region

D =
¦

z ∈ C
�

� a ≤ Re (z)≤ b, 0≤ Im (z)≤ R
©

.

In this case, the integrand F(z) = f (z)z−1/2 g(z) is a holomorphic function in D, such that
∫

Γ1∪Γ2∪Γ3∪Γ4
F(z)eiωz dz = 0.

�

�

Γ�

� �

� ⅈ � � ⅈ �Γ�

� Γ�

Γ�

�

�

Γ�

ε

�

ε �

Γ�

� Γ�

Γ�

Γ�

Figure 3: The contours of integration Γ = ∂ D (left) and Γ = ∂ (G \ G′) (right)

Regarding the assumptions we can see that
�

�

�

�

∫

Γ3

F(z)eiωz dz

�

�

�

�

≤
∫

Γ3

|F(z)eiωz ||dz| ≤ C Me−(ω−ω0)R(b− a)→ 0 as R→ +∞,
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i.e.,
∫

Γ3
F(z)eiωz dz→ 0 as R→ +∞, so that

∫

Γ1

F(z)eiωz dz = − lim
R→+∞

∫

Γ2∪Γ3∪Γ4

F(z)eiωz dz

= lim
R→+∞

¨

i

∫ R

0

F(a+ iy)eiω(a+iy) dy − i

∫ R

0

F(b+ iy)eiω(b+iy) dy

«

=
i
ω

∫ +∞

0

eiωa F
�

a+ i
t
ω

�

e−t dt −
i
ω

∫ +∞

0

eiωb F
�

b+ i
t
ω

�

e−t dt

=
i
ω
(G(a)− G(b)),

where

G(c) = eiωc

∫ +∞

0

F
�

c +
i
ω

t
�

e−t dt.

Thus, we have

I1[ f ] =

∫ b

a

f (x)H (1)
ν
(ωx)dx =

√

√ 2
πω

e−iπ(2ν+1)/4

Γ
�

ν+ 1
2

�

∫

Γ1

F(z)eiωz dz,

i.e., (14).
Similarly, using a circular contour like one in Fig. 2 (right), the second integral in (12) can be reduced to

I2[ f ] =

∫ +∞

a

f (x)H (1)
ν
(ωx)dx =

i
ω

√

√ 2
πω

e−iπ(2ν+1)/4

Γ
�

ν+ 1
2

� G(a).

Since F(z) = f (z)z−1/2 g(z) and g(x) defined in (13), after certain transformations, G(c) can be transformed to (see [53])

G(c) = eiωc

+∞
∫

0

+∞
∫

0

f
�

c + i
ω t
�

�

c + i
ω t
�ν

�

c +
i
ω

t +
i

2ω
s
�ν−1/2

e−tsν−1/2e−s dt ds.

For computing this double integral, in [53] we used two classical Gaussian quadrature rules
∫ +∞

0

h(x)w`(x)dx =
n
∑

k=1

A(`)n,kh(x (`)n,k) + R(`)n [h], `= 1,2; (16)

one with respect to the Laguerre weight w1(t) = e−t and the second one to the generalized Laguerre weight w2(s) = sν−1/2e−s.
The coefficients in the three-term recurrence relations for the corresponding orthogonal polynomials,

π
(`)
k+1(x) = (x −α

(`)
k )π

(`)
k (x)− β

(`)
k π

(`)
k−1(x), k = 0,1, . . . ,

with π(`)0 (x) = 1, π(`)−1(x) = 0, are given by

α
(1)
k = 2k+ 1, β

(1)
0 = 1, β (1)k = k2;

α
(2)
k = 2k+ ν+

1
2

, β
(2)
0 = Γ

�

ν+
1
2

�

, β (2)k = k
�

k+ ν−
1
2

�

,

respectively. With these recursive coefficients, it is easy to compute quadrature parameters in (16), the nodes x (`)n,k and the weights

(Christoffel numbers) A(`)n,k, using the well-known Golub-Welsch algorithm [19] (see also [33, p. 100]), with the Jacobi matrices

Jn(w`) =



























α
(`)
0

q

β
(`)
1 O

q

β
(`)
1 α

(`)
1

q

β
(`)
2

q

β
(`)
2 α

(`)
2

. . .

. . .
. . .

q

β
(`)
n−1

O
q

β
(`)
n−1 α

(`)
n−1



























(`= 1,2).

This algorithm is implemented in our MATHEMATICA package OrthogonalPolynomials (see [9], [38]), which is freely down-
loadable from the web site: http://www.mi.sanu.ac.rs/˜gvm/.
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Now, an application of quadrature formulas (16) to (14) gives

I1[ f ] =Qn1 ,n2
[ f ] + Rn1 ,n2

[ f ],

where the cubature sum Qn1 ,n2
[ f ] (with n1 nodes in the first quadrature and n2 nodes in the second one) is given by

Qn1 ,n2
[ f ] =

i
ω

√

√ 2
πω

e−iπ(2ν+1)/4

Γ
�

ν+ 1
2

�

n1
∑

k=1

n2
∑

j=1

A(1)n1 ,kA(2)n2 , j

�

ϕ(x (1)n1 ,k, x (2)n2 , j; a)−ϕ(x (1)n1 ,k, x (2)n2 , j; b)
�

,

where

ϕ(t, s; c) = eiωc
f
�

c + i
ω t
�

�

c + i
ω t
�ν

�

c +
i
ω

t +
i

2ω
s
�ν−1/2

.

Theorem 3.1 ([53]). Suppose that f is a holomorphic function in the half-strip of the complex plane, a ≤ Re (z)≤ b, Im (z)≥ 0,
and there exist two constants C and ω0, such that | f (x + iR)| ≤ Ceω0R, a ≤ x ≤ b, with 0<ω0 <ω. Then the error bound of the
method for the integral I1[ f ] is given by

I1[ f ]−Qn1 ,n2
[ f ] = O

�

ω−
3
2−2τ

�

, ω� 1,

where τ=min{n1, n2}.
A similar result has been proved for the quadrature method

Qn1 ,n2
[ f ] =

i
ω

√

√ 2
πω

e−iπ(2ν+1)/4

Γ
�

ν+ 1
2

�

n1
∑

k=1

n2
∑

j=1

A(1)n1 ,kA(2)n2 , jϕ
�

x (1)n1 ,k, x (2)n2 , j; a
�

for calculating I2[ f ].

Theorem 3.2 ([53]). Suppose that f is a holomorphic function in the complex plane
�

0 ≤ arg(z) ≤ π/2
	

, and there exists some
constant C1, such that | f (z)| ≤ C1 as |z| → +∞. Then the error bound of the method for the integral I2[ f ] is given by

I2[ f ]−Qn1 ,n2
[ f ] = O

�

ω−
3
2−2τ

�

, ω� 1,

where τ=min{n1, n2}.
As we can see the convergence of quadrature sums Qn1 ,n2

[ f ] and Qn1 ,n2
[ f ] to I1[ f ] and I2[ f ], respectively, is very fast,

especially for larger ω.
In the sequel we mention another approach for computing the Bessel transformations

I1[ f ] =

∫ a

0

f (x)Jν(ωx)dx and I2[ f ] =

∫ +∞

0

f (x)Jν(ωx)dx ,

where a > 0 and ν is an arbitrary nonnegative number. The method has been recently developed in a joint paper by Xu [52] and
it is based on the use of the following important identity

Jν(z) =
1

(2πz)1/2

§

e
1
2 (ν+

1
2 )πiW0,ν(2iz) + e−

1
2 (ν+

1
2 )πiW0,ν(−2iz)

ª

, (17)

where Wκ,µ(z) is the Whittaker W function, as well as its asymptotic property as z→ 0,

W0,ν(z)∼

¨

z1/2 log z, ν= 0,

z1/2−ν, ν > 0.
(18)

Based on an idea of Chen [8], we rewrite the integral I1[ f ] as a sum I1[ f ] = I ′1[ f ] + I ′′1 [ f ], where

I ′1[ f ] =

∫ a

0

F(x)Jν(ωx)dx and I ′′1 [ f ] =
2n−1+n1
∑

k=0

f (k)(0)
k!

∫ a

0

x kJν(ωx)dx , (19)

where n1 = dνe is the smallest integer not less than ν, and

F(x) = f (x)−
2n−1+n1
∑

k=0

f (k)(0)
k!

x k. (20)

The integral in I ′′1 [ f ] can be expressed in the explicit form [20, p. 676]
∫ a

0

x kJν(ωx)dx =
2kΓ ( k+ν+1

2 )

ωk+1Γ ( ν−k+1
2 )

+
a
ωk

¦

(k+ ν− 1)Jν(ωa)s(2)k−1,ν−1(ωa)− Jν−1(ωa)s(2)k,ν(ωa)
©

,

where s(2)k,ν(z) denotes the second kind of Lommel function.
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For the integral I ′1[ f ] we put

F1(x) = F(x)x−1/2e−iωx W0,ν(−2iωx) and F2(x) = F(x)x−1/2eiωx W0,ν(2iωx), (21)

where F is defined in (20). Now, according to the identity (17), we can see that

F(z)Jν(ωz) =
1

p
2πω

§

e
1
2 (ν+

1
2 )πiF(z)z−1/2W0,ν(2iωz) + e−

1
2 (ν+

1
2 )πiF(z)z−1/2W0,ν(−2iωz)

ª

=
1

p
2πω

§

e−
1
2 (ν+

1
2 )πiF1(z)e

iωz + e
1
2 (ν+

1
2 )πiF2(z)e

−iωz
ª

.

In order to calculate the integral I ′1[ f ] defined in (19) we suppose that f is a holomorphic function in the half-strip of

the complex plane 0 ≤ Re (z) ≤ a and define we define the regions G =
¦

z ∈ C
�

� 0 ≤ Re (z) ≤ a, 0 ≤ Im (z) ≤ R
©

and

G′ =
¦

z ∈ C
�

� |z| ≤ ε, 0 ≤ arg(z) ≤ π/2
©

, such that G contains G′, i.e., 0 < ε < min{a, R} (see Fig. 3 (right)). Then, we

note that z 7→ F1(z)eiωz is holomorphic in G \ G′ (see (18) for behaviour at z = 0), as well as the function z 7→ F2(z)e−iωz

in a symmetric region with respect to the real axis. Therefore, by the Cauchy Residue Theorem,
∫

Γ
F1(z)eiωz dz = 0, where

Γ = ∂ (G \ G′) = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ∪ Γ5 (displayed in Fig. 3 (right)), as well as
∫

Γ ∗
F2(z)e−iωz dz = 0 over the symmetric contour Γ ∗

(w.r.t. the real axis).
Applying the complex integration method Xu and Milovanović proved the following result:

Theorem 3.3 ([53]). Assume that f is a holomorphic function in the half-strip of the complex plane, 0≤ Re (z)≤ a, and there exist
two constants C and ω0, such that for 0<ω0 <ω, the inequalities

∫ a

0

|F1(x + iR)|dx ≤ Ceω0R and

∫ a

0

|F2(x + iR)|dx ≤ Ceω0R

hold, where F1 and F2 are defined in (21). Then the integral I ′1[ f ] can be rewritten in the following form
∫ a

0

F(x)Jν(ωx)dx =
1

p
2πω

§

e
1
2 (ν+

1
2 )πi
�

I[F2, a]− I[F2, 0]
�

+ e−
1
2 (ν+

1
2 )πi
�

I[F1, 0]− I[F1, a]
�

ª

,

where

I[F1, y] =
ieiωy

ω

∫ +∞

0

F1

�

y +
ip
ω

�

e−p dp and I[F2, y] =
ie−iωy

ω

∫ +∞

0

F2

�

y −
ip
ω

�

e−p dp, (22)

and F1 and F2 are defined in (21).

A similar result has been obtained for the integral I2[ f ] over (0,+∞) [53]. Also, numerical quadrature rules of Gaussian
type for computing the line integrals I[F j , a] and I[F j , 0] ( j = 1,2) have been analyzed in detail in [53].

In the case a > 0 these integrals can be evaluated by the n-point Gauss-Laguerre quadrature rule as

I[F1, a]≈Qn
I[F1 ,a] =

ieiωa

ω

n
∑

k=1

wk F1

�

a+
ixk

ω

�

and I[F2, a]≈Qn
I[F2 ,a] =

ie−iωa

ω

n
∑

k=1

wk F2

�

a−
ixk

ω

�

.

However, when a = 0 the behavior of the functions F1 and F2 at z = 0 should be taken into account. According to (18) we
have introduced the functions

L j(x) =















F j(x)

log x
, ν= 0,

F j(x)

xα
, ν > 0,

for j = 1, 2, where α= dνe − ν, and then we concluded that for ν > 0 the previous integrals can be evaluated by the generalized
Gauss-Laguerre quadrature rule (with the parameter α), e.g.,

I[F1, 0] =
i
ω

∫ +∞

0

F1

� ip
ω

�

e−p dp =
�

i
ω

�1+α∫ +∞

0

L1

� ip
ω

�

pαe−p dp ≈Qn
I[F1 ,0] =

�

i
ω

�1+α n
∑

k=1

wαk L1

�

ixαk
ω

�

.

Finally, the most complicated case is when a = 0 and ν= 0. Then for the integral I[F1, 0] we have

I[F1, 0] =
i
ω

∫ +∞

0

F1

� ip
ω

�

e−p dp =
i
ω

∫ +∞

0

L1

� ip
ω

�

log
� ip
ω

�

e−p dp. (23)

Evidently, the Gauss-Laguerre (GL) quadrature rule is not feasible, because of logarithmic singularity. However, if we rewrite the
integral I[F1, 0] as a linear combination of two integrals,

I[F1, 0] =
i
ω

§

∫ +∞

0

L1

� ip
ω

��

log
� i
ω

�

− 1+ p
�

e−p dp−
∫ +∞

0

L1

� ip
ω

�

�

p− 1− log p
�

e−p dp
ª

,

Dolomites Research Notes on Approximation ISSN 2035-6803



Milovanović 88

then, we can apply the ordinary Gauss-Laguerre rule to the first integral and the so-called logarithmic Gauss-Laguerre (logGL)
rule to the second one. Thus, the application of such two n-point rules leads to the following approximate formula

I[F1, 0]≈Qn
I[F1 ,0] =

i
ω

§ n
∑

k=1

wk L1

� ixk

ω

��

log
� i
ω

�

− 1+ xk

�

−
n
∑

k=1

wG
k

� ixG
k

ω

�

ª

,

where xG
k and wG

k , k = 1, . . . , n, are the nodes and weights of the n-point logGL-rule. A similar formula can be done for I[F2, 0]
(see [53]).

The last quadrature rule on (0,+∞) with respect to the weight function

wG
α
(x) = xα(x − 1− log x)e−x on (0,+∞),

has been constructed recently by Gautschi [16], using his MATLAB package SOPQ for symbolic/variable-precision calculations
(see Appendix B in [17]). Graphics of this weight for α = −1/2,0,1/2 are presented in Fig. 4. Following Gautschi [16], the

� � � � � �
����

���

���

���

���

�

Figure 4: Gautschi’s logGL weight function for α= −1/2 (red line), α= 0 (black line), and α= 1/2 (blue line)

moments with of the weight function x 7→ wG
α
(x) on R+ are

µk =

∫ +∞

0

x k+α(x − 1− log x)e−x dx = Γ (α+ k+ 1)[α+ k−ψ(α+ k+ 1)], k ≥ 0,

where ψ(x) = Γ ′(x)/Γ (x) is the logarithmic derivative of the gamma function, as well as the modified moments relative to the
system of monic generalized monic Laguerre polynomials bL(α)k (x),

mk =

∫ +∞

0

xα(x − 1− log x)bL(α)k (x)e
−x dx











[α−ψ(α+ 1)]Γ (α+ 1), k = 0,

α Γ (α+ 1), k = 1,

(−1)k(k− 1)!Γ (α+ 1), k ≥ 2.

Using these moments and the previous mentioned MATHEMATICA package OrthogonalPolynomials we can obtain the
recursive coefficients αG

k and βG
k . For example for α= 0, we have

αG
0 = 1, αG

1 =
3γ+ 5
γ+ 1

, αG
2 =

20γ4 + 106γ3 + 111γ2 + 32γ− 1
(γ+ 1) (4γ3 + 14γ2 + 5γ− 1)

,

αG
3 =

4032γ7 + 48480γ6 + 176768γ5 + 237320γ4 + 72624γ3 − 31006γ2 − 8839γ+ 2489
(4γ3 + 14γ2 + 5γ− 1) (144γ4 + 1104γ3 + 1652γ2 + 184γ− 237)

;

βG
0 = γ, β1 =

γ+ 1
γ

, βG
2 =

4γ3 + 14γ2 + 5γ− 1
γ(γ+ 1)2

, βG
3 =

γ(γ+ 1)
�

144γ4 + 1104γ3 + 1652γ2 + 184γ− 237
�

(4γ3 + 14γ2 + 5γ− 1)2
, etc.,

where γ is the well-known Euler’s constant (see [53]).

Theorem 3.4 ([53]). If the functions F1(x) and F2(x) defined by (21) satisfy the condition of Theorem 3.3, the error bound of the
method for the integral I1[ f ] can be estimated as

�

�Qn
I1[ f ]
− I1[ f ]

�

�=

¨

O
�

ω−2n−3/2(1+ logω)
�

, ν= 0,

O
�

ω−2n−3/2
�

, ν > 0.
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An alternative approach for computing the integral (23) has been also developed in [53]. Namely, we constructed the
so-called universal (direct) quadrature formulas of Gaussian type

∫ +∞

0

g(t)e−t dt =
n
∑

k=1

Ak g(τk) + Rn(g), (24)

which are exact for each g(t) = p(t) + q(t) log t, where p(t) and q(t) are algebraic polynomials of degree at most n− 1. These
quadrature rules can calculate integrals with a sufficient accuracy, regardless of whether their integrands contain a logarithmic
singularity, or they do not. Thus, an application of such rules avoids the separation into singular and non-singular parts in
integrands, as well as an additional integration of such a singular part using some special logarithmically weighted quadrature
formula like one w.r.t. the weight function wG

α
(t). Thus, with the universal quadrature formula (24) we can directly calculate the

integrals I[F1, y] and I[F2, y] given by (22) in Theorem 3.3; for example,

I[F1, y]≈
ieiωy

ω

n
∑

k=1

Ak F1

�

y +
iτk

ω

�

.

Unfortunately, the construction of such universal quadrature formulas is not simple. Namely, there are not elegant tools
for their construction like Golub-Welsch procedure in the case of construction quadrature rules with a polynomial degree of
precision. In this non-polynomial case, in order to construct the quadrature formula (24), we must solve the following system of
2n nonlinear equations

n
∑

k=1

Akϕ j(τk) =

∫ +∞

0

ϕ j(t)e
−t dt, j = 1,2, . . . , 2n, (25)

in τk and Ak, k = 1, . . . , n, taking an orthonormal system {ϕ1,ϕ2, . . . ,ϕ2n} obtained from the system of 2n linearly independent
functions U = {1, t, . . . , tn−1, log t, t log t, . . . , tn−1 log t} by an orthogonalization process (cf. [33, pp. 75–77]). Since ϕ1(t) = 1,
the right-hand side in the previous system of Eqs. becomes

∫ +∞

0

ϕ j(t)ϕ1(t)e
−t dt =

¨

1, j = 0,

0, j 6= 0.

Otherwise, a direct use of the non-orthogonal system of the basis functions U leads to a very ill-conditioned iterative process.
The orthonormal system of functions {ϕ1,ϕ2, . . . ,ϕ2n} can be considered as a Müntz system {tλ0 , tλ1 , . . . , tλ2n−1} on (0,+∞),

with λ j = λn+ j = j, j = 0,1, . . . , n− 1. Then, we can see that ϕ j(t) = L j−1(t), j = 1, . . . , n, are normalized classical Laguerre
polynomials. So, for different n ∈ N, we obtain the following orthogonal functions:

1◦ n= 1 :

ϕ1(t) = 1, ϕ2(t) =
p

6
π
(γ+ log t);

2◦ n= 2 :

ϕ1(t) = 1, ϕ2(t) = t − 1, ϕ3(t) =

√

√ 6
π2 − 6

�

γ+ 1− t + log t
�

,

ϕ4(t) =

√

√ 6
216− 12π4 +π6

§

6− γ(π2 − 12)−
�

π2 + γ(6−π2)
�

t +
�

12−π2 + (π2 − 6)t
�

log t
ª

;

3◦ n= 3 :

ϕ1(t) = 1, ϕ2(t) = t − 1, ϕ3(t) =
1
2

�

t2 − 4t + 2
�

, ϕ4(t) =
1
2

√

√ 3
2π2 − 15

�

6+ 4γ− 8t + t2 + 4 log t
�

,

ϕ5(t) = C5

§

24− 2π2 + γ(21− 2π2) +
�

2π2 − 27+ γ(2π2 − 15)
�

t + (9−π2)t2 +
�

(2π2 − 15)t − 2π2 + 21
�

log t
ª

,

ϕ6(t) = C6

§

504− 51π2 + 2γ
�

279− 48π2 + 2π4
�

+ 2
�

4π4 − 24π2 − 153− γ(4π4 − 66π2 + 261)
�

t

+
�

54+ 24π2 − 3π4 + γ(72− 27π2 + 2π4)
�

t2

+
��

72− 27π2 + 2π4
�

t2 − 2
�

261− 66π2 + 4π4
�

t + 2(2π4 − 48π2 + 279)
�

log t
ª

,

where

C5 =

√

√ 6
−1080+ 549π2 − 84π4 + 4π6

and C6 =

√

√ 3
159408− 65610π2 + 2727π4 + 1584π6 − 216π8 + 8π10

,

etc.
For solving the system of equations (25) we use the well-known Newton-Kantorovich method, with quadratic convergence,

but the main problem which then arises is how to provide sufficiently good starting values. Our strategy in the construction is
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based on the method of continuation, starting from the corresponding standard Gauss-Laguerre formula (with a polynomial
degree of exactness). Numerical values of parameters τk and Ak, k = 1, . . . , n, for 1 ≤ n ≤ 6 was presented in [53]. For some
additional details on the generalized Gaussian quadratures on a finite interval and for Müntz systems of functions see [36], [39]
and [37].

4 Gaussian Quadrature Formulas with a Modified Hermite Weight

I this section we consider the Gaussian quadrature formula on R with respect to a modified Hermite weight x 7→ e−x2
by the

square root term x 7→
p

1+αx + β x2, i.e.,

w(α,β)(x) =
e−x2

p

1+αx + β x2
, (26)

with the real parameters α and β such that α2 < 4β .

Remark 1. The weight function w(α,β)(x) has the quasi-singularities near to the real axis if α2→ 4β . In the limit case, w(α,α2/4)(x)
has a singularity, i.e., a pole of the first order at the point −α/(2β) on the real line.

Several methods for modified weights (measures) by the rational terms (linear and quadratic factors and divisors) can be
found in [15, Subsection 2.4], as well as the corresponding MATLAB software in [17, pp. 19–27].

Thus, we are interested here in constructing Gaussian quadrature rules of the form
∫ +∞

−∞

f (x)
p

1+αx + β x2
e−x2

dx =
N
∑

ν=1

Aν f (xν) + RN ( f ), (27)

where Aν = A(α,β)
ν

are weight coefficients (Christoffel numbers), and Rn( f ) is the corresponding remainder term, such that
RN ( f ) = 0 for each f ∈ P2N−1.
Remark 2. In 1997 Bandrauk [3] stated a problem how to evaluate the integral

Iα,β
m,n =

∫ +∞

−∞

Hm(x)Hn(x)
p

1+αx + β x2
e−x2

dx , (28)

where Hm(x) is the Hermite polynomial of degree m, defined by

Hn(x) = (−1)nex2 dn

dxn

�

e−x2�

, n≥ 0.

Alternatively, the question was how to find computationally effective approximations for the integral (28). The function
x 7→ Hm(x)e−x2/2 is the quantum-mechanical wave function of m photons, the quanta of the electromagnetic field. The integral
(28) expresses the modification of atomic Coulomb potentials by electromagnetic fields. In the case m= n= 0, the integral Iα,β

0,0
represents the vacuum or zero-field correction (for details see [2, Chaps. 1 and 3]).

Evidently, for α= β = 0, the integral I0,0
m,n expresses the orthogonality of the Hermite polynomials, i.e, I0,0

m,n = 2mm!
p
πδm,n,

where δm,n is the Kronecker delta.
A solution for Iα,β

0,0 was derived by Grosjean [21] in the following form

Iα,β
0,0 =

1
β

+∞
∑

j=0

��

4β −α2
�

/4β2
� j

22 j( j!)2

+∞
∑

r=0

(−1)r
(2r + 2 j)!
(2r)!(r + j)!

�

α

2β

�2r

cr, j ,

where

cr, j = −γ+ log4− log

�

4β −α2

4β2

�

+ 2H j +Hr+ j − 2H2r+2 j ,

γ (= 0.57721566490 . . . ) is Euler’s constant, and H j is the j-th harmonic number,

H j = 1+
1
2
+ · · ·+

1
j
.

Also, he gave a study of Iα,β
m,0 , m= 1,2, . . ., as well as a five-term recurrence relation for these integrals.

The problem from Remark 2 was also considered in [35], with the monic Hermite polynomials ÒHk(x) = 2−kHk(x) in (28).
For constructing the coefficients αk and βk, k = 0, 1, . . . , in the three-term recurrence relation

πk+1(x) = (x −αk)πk(x)− βkπk−1(x), k ≥ 0 (π0(x) = 1, p−1(x) = 0) (29)

for polynomials πk(x) orthogonal on (−∞,∞) with respect to the modified Hermite weight function (26), it was used the
discretized Stieltjes-Gautschi procedure with the discretization based on the standard Gauss-Hermite quadratures,

∫ +∞

−∞
P(t)w(α,β)(x)dx =

∫ +∞

−∞

P(x)
p

1+αx + β x2
e−x2

dx

∼=
N
∑

k=1

λH
k P(τH

k )
Æ

1+ατH
k + β(τ

H
k )2

,
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where P is an arbitrary algebraic polynomial, and τH
k = τk are nodes (zeros of HN (x)) and

λH
k =

2N−1(N − 1)!
p
π

NHN−1(τk)2

are the weights (Christoffel numbers) of the N -point Gauss-Hermite quadrature formula (cf. [33, p. 325]). Such a procedure
is needed for each of selected pairs (α,β). The recurrence coefficients for k < 20 and α= β = 1 were presented in [35]. The
corresponding Gaussian approximations were tested in double precision arithmetic in two cases: m = 3, n = 6, and m = 10,
n= 15.

In this section we give a simple way for constructing the coefficients in the three-term recurrence relation (29), using the
modified method of moments, realized in the MATHEMATICA package OrthogonalPolynomials ([9], [38]) in variable-precision
arithmetic in order to overcome the numerical instability. All that is required is a procedure for numerical calculation of the
modified moments in variable-precision arithmetic. In the same time, we give answer to the problem stated in Remark 2.

In our case we use the first 2N modified moments with respect to the sequence of the monic Hermite polynomials, i.e.,

mk = m(α,β)
k =

∫ +∞

−∞

ÒHk(x)
p

1+αx + β x2
e−x2

dx , k = 0,1, . . . , 2N − 1, (30)

in order to get quadrature rules of Gaussian type (27) for each n≤ N , using the Golub-Welsch algorithm [19]. For the sequence
{ÒHk(x)}k∈N0

the following recurrence relation ÒHk+1(x) = xÒHk(x)− (k/2)ÒHk−1(x) holds, with ÒH0(x) = 1 and ÒH1(x) = x .
First we transform the trinomial in the integral (30) to a canonical form

1+αx + β x2 = β
�

(x − p)2 + q2
�

, p = −
α

2β
, q =

4β −α2

2β
(p2 + q2 = β),

and then we apply the so-called double-exponential (DE) transformation

x = u(t) = p+ q sinh
�π

2
sinh t

�

,

in order to reduce the modified moments (30) to

mk = m(α,β)
k =

π

2

p

p2 + q2

∫ +∞

−∞

ÒHk(u(t))e
−u(t)2 cosh t dt, k = 0,1, . . . , 2N − 1. (31)

The crucial point in this DE transformation is the decay of the integrand be at least double exponential (≈ exp(−C exp |t|) as
|t| → +∞, where C is some positive constant. For integrals of such form of an analytic function on R, it is known that the
trapezoidal formula with an equal mesh size gives an optimal formula (cf. [25, 34, 41, 42, 47, 48, 49]).

For calculating the modified moments (31) we apply the trapezoidal formula with an equal mesh size h, i.e.,

mk[h] =
πh
2

p

p2 + q2

+∞
∑

j=−∞

ÒHk(u( jh))e
−u( jh)2 cosh jh, k = 0, 1, . . . , 2N − 1.

Since the integrand decays double exponentially, in actual computation of these sums we can truncate the infinite summation at
k = −M and k = M , so that

mk ≈ mk[h; M] =
πh
2

p

p2 + q2

M
∑

j=−M

ÒHk(u( jh))e
−u( jh)2 cosh jh, k = 0,1, . . . , 2N − 1. (32)

Because of some symmetry in the expression for mk[h; M], (32) can be implemented in the following way. Namely, if we put

t j = jh, ξ j = q sinh
�π

2
sinh t j

�

, c j = 2 cosh(2pξ j), s j = 2 sinh(2pξ j),

we have u(t j) = p+ ξ, u(−t j) = p− ξ, u(0) = p, and therefore

mk[h; M] =
πh
2

p

p2 + q2 e−p2

¨

ÒHk(p) +
M
∑

j=1

e−ξ
2
j cosh(t j)

�

ÒHk(p+ ξ j)e
−2pξ j + ÒHk(p− ξ j)e

2pξ j
�

«

, k = 0,1, . . . , 2N − 1.

Lemma 4.1. Let

ϕk(p,ξ) = ÒHk(p+ ξ)e
−2pξ + ÒHk(p− ξ)e2pξ, ψk(p,ξ) = ÒHk(p+ ξ)e

−2pξ − ÒHk(p− ξ)e2pξ, k = 0,1, . . . .

Then, the following recurrence relations

ϕk+1(p,ξ) = pϕk(p,ξ)−
k
2
ϕk−1(p,ξ)− ξψk(p,ξ), k = 0,1, . . . , (33)

ψk+1(p,ξ) = pψk(p,ξ)−
k
2
ψk−1(p,ξ)− ξϕk(p,ξ), k = 0,1, . . . , (34)

hold, where ϕ0(p,ξ) = 2cosh(2pξ), ψ0((p,ξ) = 2sinh(2pξ), and ϕ−1(p,ξ) =ψ−1(p,ξ) = 0.

Dolomites Research Notes on Approximation ISSN 2035-6803



Milovanović 92

A proof of this lemma can be done using the three-term recurrence relation of the monic Hermite polynomials.
According to Lemma 4.1 we see that

mk[h; M] =
πh
2

p

p2 + q2 e−p2

¨

ÒHk(p) +
M
∑

j=1

e−ξ
2
j cosh(t j)ϕk(p,ξ)

«

, k = 0,1, . . . , 2N − 1. (35)

In the sequel, as an example, we take α= β = 50/13 in the weight function (26) and N = 40. Then we have p = −1/2 and
q = 1/10, which means that the integrands in (30) have quasi-singularites at p± iq in the complex plane.

In order to illustrate the effect of the before mentioned double-exponential decay of integrands, we present the graphics of
integrands for k = 0, 1, 2, 3 (left) and k = 65 (right) in Figure 5. The values of all integrands in (31), k = 0, 1, . . . , 79, at t = 2.1,
are:

�

1.× 10−321, 3.× 10−320, 7.× 10−319, 2.× 10−317, 5.× 10−316, 1.× 10−314, 4.× 10−313, 1.× 10−311, 3.× 10−310, 8.× 10−309,

2.× 10−307, 6.× 10−306, 2.× 10−304, 4.× 10−303, 1.× 10−301, 3.× 10−300, 8.× 10−299, 2.× 10−297, 6.× 10−296, 2.× 10−294,

4.× 10−293, 1.× 10−291, 3.× 10−290, 8.× 10−289, 2.× 10−287, 6.× 10−286, 2.× 10−284, 4.× 10−283, 1.× 10−281, 3.× 10−280,

8.× 10−279, 2.× 10−277, 6.× 10−276, 1.× 10−274, 4.× 10−273, 1.× 10−271, 3.× 10−270, 7.× 10−269, 2.× 10−267, 5.× 10−266,

1.× 10−264, 4.× 10−263, 1.× 10−261, 3.× 10−260, 7.× 10−259, 2.× 10−257, 5.× 10−256, 1.× 10−254, 3.× 10−253, 8.× 10−252,

2.× 10−250, 6.× 10−249, 2.× 10−247, 4.× 10−246, 1.× 10−244, 3.× 10−243, 7.× 10−242, 2.× 10−240, 5.× 10−239, 1.× 10−237,

3.× 10−236, 9.× 10−235, 2.× 10−233, 6.× 10−232, 2.× 10−230, 4.× 10−229, 1.× 10−227, 3.× 10−226, 7.× 10−225, 2.× 10−223,

5.× 10−222, 1.× 10−220, 3.× 10−219, 8.× 10−218, 2.× 10−216, 5.× 10−215, 1.× 10−213, 4.× 10−212, 9.× 10−211, 2.× 10−209
	

,

and their maximal value is 2.× 10−209. Similarly, the maximal absolute value of all values at t = −2.1 is 4.× 10−232.

-� -� � �
�

-���

���

���

�

-� -� � �
�

-�

-�

�

�

�

Figure 5: (Left) The integrands in m(α,β)
k for k = 0 (red line), k = 1 (blue line), k = 2 (brown line), and k = 3 (black line) for α = β = 50/13;

(Right) The integrand in m(α,β)
65 × 10−35 for α= β = 50/13

The corresponding MATHEMATICA code, which includes our package OrthogonalPolynomials, can be done in the following
form:

<< orthogonalPolynomials‘
(* Input of parameters alpha, beta, and Nmax *)
alpha = 50/13; beta = 50/13; Nmax = 40;
alphaH = Table[0,{k,0,2 Nmax}]; betaH = Prepend[Table[k/2,{k,1,2 Nmax}],Sqrt[Pi]];
HerM[x_] := aMakePolynomial[2 Nmax,alphaH,betaH,x,ReturnList -> True];
p=-alpha/(2 beta); q= Sqrt[4 beta-alpha^2]/(2 beta);
u[t_] := p + q Sinh[Pi/2 Sinh[t]];
fMH[t_,k_] := Pi/2 Sqrt[p^2+q^2] HerM[u[t]][[k+1]]Exp[-u[t]^2]Cosh[t];
(* Print values of integrands of all moments at t=2.1 *)
Tp = Table[N[fMH[21/10, k], 1], {k, 0, 2 Nmax-1}]; Print[Tp]; Max[Abs[Tp]]
The following code represents a procedure (DExpT) for calculating all moments (35), using the recurrence relations (33) and

(34), as well as a command for calculating the recursive coefficients in (29), αk and βk, k = 0,1, . . . , N − 1 (lists alphaM and
betaM), by the Chebyshev methods of modified moments (aChebyshevAlgorithmModified):

Options[DExpT] = {WorkingPrecision -> $MachinePrecision};
DExpT[Pol_,b_,M_,p_,q_,Nmax_,Ops___] :=
Module[{wp,h,fac,momM,vt,j,xi,cvt,ec,c,s,phi0,phi1,phi2,psi0,psi1,psi2,k},
{wp} = {WorkingPrecision} /. {Ops} /. Options[DExpT];
Block[{$MinPrecision = wp}, h = b/M; fac = N[Pi/2 Sqrt[p^2+q^2]Exp[-p^2],wp];
momM = N[Pol[p], wp]; vt = N[Table[j h, {j,1,M}], wp];
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xi = q Sinh[Pi/2 Sinh[vt]]; cvt = Cosh[vt]; ec = Exp[-xi^2] cvt;
c = 2 Cosh[2 p xi]; s = 2 Sinh[2 p xi]; phi0 = c;
phi1 = p c - xi s; psi0 = s; psi1 = p s - xi c;
momM[[1]] = momM[[1]] + Total[ec phi0];
momM[[2]] = momM[[2]] + Total[ec phi1];
For[k = 1, k <= 2 Nmax - 2, k++,
phi2 = p phi1 - k/2 phi0 - xi psi1;
psi2 = p psi1 - k/2 psi0 - xi phi1;
momM[[k + 2]] = momM[[k + 2]] + Total[ec phi2];
phi0 = phi1; psi0 = psi1; phi1 = phi2; psi1 = psi2;]; momM = h fac momM;
Return[momM];];];

momM = DExpT[Function[x,HerM[x]], 21/10, 800, p, q, Nmax, WorkingPrecision -> 52];
{alphaM, betaM} = aChebyshevAlgorithmModified[momM, alphaH, betaH, WorkingPrecision -> 52];
As we can see, in this case, the moment integrals are calculated by the trapezoidal rule, taking M = 800 (positive)

equidistant nodes on the finite interval [0, b] = [0, 21/10]. In in order to overcome the numerical instability and obtain the first
N = 40 recursion coefficients αk and βk with 40 exact decimal digits, we had used the working precision of 52 decimal digits
(WorkingPrecision -> 52). These recursion coefficients for α= β = 50/13 are shown in Table 3.

Table 3: Recursion coefficients for the polynomials {πk( · ; w(α,β))}, α= β = 50/13

k alpha(k) beta(k)

0 -3.056007650989553610006858836445558057864E-01 2.372619381077149609357146735045269999374E+00
1 1.091135901172070725048795730904031636823E-01 2.245468863371941107162002605406537898164E-01
2 -6.393650751044613184510213541531714004955E-02 7.464045492492715756061806875559370152332E-01
3 2.896093622914383390462496451022656640930E-02 1.302942897121644523552877231408192507139E+00
4 -1.209308423360305534840259415165592137550E-02 1.709113932903603587555654516890103590942E+00
5 -1.718837754000391722650945735332100058077E-03 2.309675711077846031637617355708075984524E+00
6 7.750720489169099233811949642062773337494E-03 2.711933128251153801071850610620211255924E+00
7 -1.298438968330839486761114881503272529107E-02 3.295423910768401255759852684415586881992E+00
8 1.412241831101624089616484008974666521998E-02 3.727067165030535190750968123128118634984E+00
9 -1.536929634325645177722701317932091457588E-02 4.276650074098969245628776026578674761372E+00

10 1.429372116400763580863048010758003995197E-02 4.743791732695879570081833190100403204112E+00
11 -1.371654702276508069074812825473119164151E-02 5.259693049405470172104203173535811336196E+00
12 1.176798222770504655068245919798468067142E-02 5.757791419391763379586773316034897076418E+00
13 -1.047335910809081780000034574295255003176E-02 6.246792977846921565057499044107858314470E+00
14 8.340981954066187739248307612282341319947E-03 6.767670276167376192729000834886725961325E+00
15 -6.902153058283111921150338986783630810628E-03 7.238344308003691658560233194861394606057E+00
16 4.929945437819196532285480021173326789508E-03 7.773406567159667299886098793924001808522E+00
17 -3.631375626543328827099446310229842010077E-03 8.233910000676667222653908148429153190199E+00
18 1.972847873088252308562475996047991553534E-03 8.775587423340927445076726663037241731381E+00
19 -9.382315978354561145269552590737997646937E-04 9.232721978517029915230829146365560298491E+00
20 -3.590681123674328669455571404324200078543E-04 9.775014853263387106715308533241278438528E+00
21 1.095358678598460476718502577077385730842E-03 1.023393662540638845246860030635602508313E+01
22 -2.041461679283772492661795151991013174894E-03 1.077250428073515075650921973182315999394E+01
23 2.493038018253023527313131199875957019916E-03 1.123676305795445168215946077180108462115E+01
24 -3.127157761850318637784558126478989924399E-03 1.176878719309650540780247278527980428697E+01
25 3.331307697373371667460005653852087490994E-03 1.224052203413264299811344867071655763280E+01
26 -3.705066401755012230703476782449637934130E-03 1.276447094822281468910882302771173682594E+01
27 3.708472613355638464086302889208344266282E-03 1.324466634505785425765285743005522902919E+01
28 -3.876118282811593232978939167314294489251E-03 1.376002971186171368411809734326371916264E+01
29 3.726629521970398538846032669091781797121E-03 1.424878006310961035489193536070686057143E+01
30 -3.739541281204642760970291432757018722020E-03 1.475581173402593548748610073608230163091E+01
31 3.481647957368403622687805428236969037966E-03 1.525256676562352665482501057345643055499E+01
32 -3.385493240656504254144846089209709418270E-03 1.575205446688666048604769866201807323007E+01
33 3.058077360327979878387310350953018114909E-03 1.625583271515342584196983999075092016028E+01
34 -2.891602583824989303750000660963506068601E-03 1.674890265429714582600860755968340910384E+01
35 2.527072773248249037028648170239124387933E-03 1.725846851667865695915038035877920062809E+01
36 -2.321882218704978824348409214597430203417E-03 1.774642665450064142184409594060804319341E+01
37 1.946133267460015383516991475529693281566E-03 1.826043126925382043488200028053223782116E+01
38 -1.727043261257568539548073321379504740500E-03 1.874463952401863690524176781475423384354E+01
39 1.359884433345210740624392306660577854045E-03 1.926172829906529820447076427312396940827E+01

These recursive coefficients enable us to construct the Gaussian formulas (27) for each N ≤ 40.
We return now to the problem (28) given in Remark 2. Note that the integrand x 7→ Hm(x)Hn(x)w(α,β)(x) in (28) has m+ n

zeros on R and very large oscillations (see graphics in Fig. 6).
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-� � �

-���×����

-���×����

-���×����

�

���×����

���×����

-� � �

-�×����

-�×����

-�×����

�

�×����

�×����

�×����

Figure 6: The integrand x 7→ H30(x)H25(x)w(α,β)(x) for α= β = 1 (left) and α= β = 50/13 (right)

Using the well-known Feldheim’s linearization formula for Hermite polynomials (cf. Askey [1, p. 42])

Hm(x)Hn(x) =
min(m,n)
∑

ν=0

�

m
ν

��

n
ν

�

2νν!Hm+n−2ν(x),

we can transform (28) to

Iα,β
m,n = 2m+n

min(m,n)
∑

ν=0

�

m
ν

��

n
ν

�

ν!
2ν

∫ +∞

−∞

ÒHm+n−2ν(x)
p

1+αx + β x2
e−x2

dx = 2m+n
min(m,n)
∑

ν=0

�

m
ν

��

n
ν

�

ν!
2ν

m(α,β)
m+n−2ν,

i.e., Iα,β
m,n can be expressed in terms of the modified moments (30) or approximatively by mk[h; M], i.e.,

Iα,β
m,n ≈ 2m+n

min(m,n)
∑

ν=0

�

m
ν

��

n
ν

�

ν!
2ν

mm+n−2ν[h; M],

with some appropriate h and M .

Table 4: Gaussian approximations Q(N)30,25 of the integral Iα,β
30,25 for α= β = 50/13 and N = 25(1)30

N Q(N)30,25

25 3.898244052558028200823864546757694876758 (+35)
26 −1.427237521561725565254536466961946087101 (+36)
27 −3.385708554339398400919137631484156473271 (+35)
28 −6.866138084691156226517445794601480146019 (+35)
29 −6.866138084691156226517445794601480146019 (+35)
30 −6.866138084691156226517445794601480146019 (+35)

Alternatively, Iα,β
m,n can be exactly calculated (up to rounding errors) by applying the N -point Gaussian formula (27), for a

given parameters α and β , taking the number of nodes N to be such that m+ n≤ 2N − 1. Thus,

Iα,β
m,n ≈Q(N)m,n =

N
∑

ν=1

AνHm(xν)Hn(xν). (36)

For example, to calculate Iα,β
30,25 we need N ≥ 28.

Taking recursion coefficients from Table 3 we can evaluate nodes and weights (xν and Aν) in the quadrature formula (27)
by the function aGaussianNodesWeights from our MATHEMATICA package OrthogonalPolynomials, in this case, up to
N ≤ 40. The corresponding Gaussian approximations of the integral I50/13,50/13

30,25 are presented in Table 4 for N = 25(1)30. As we
can see, the obtained results for N ≥ 28 are exact (up to rounding errors). Results in error are displayed in red.
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