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Abstract
We prove the existence of pseudo Leja sequences with large sets of limit points for many plane

compact sets.

Keywords: Leja sequences, Pseudo Leja sequences.

1 Introduction

Let K be a non-empty compact subset of the complex plane and let A = (an : n ∈ N) be a sequence
of points in K. We write

w
(
A,ad ;z

)
:=

d−1

∏
j=0

(z−a j), d ≥ 1. (1.1)

One says that A is a Leja sequence for K if, for all d ≥ 1, the (d+1)-st entry ad maximizes the product
of the distances to the d previous ones, that is

|w
(
A,ad ;ad

)
|= max

z∈K
|w
(
A,ad ;z

)
|. (1.2)

By the maximal principle, all points of A (except perhaps a0) must lie on the outer boundary ∂∞K of
K. It is known that every non-polar compact set (that has a positive logarithmic capacity) possesses
infinitely many Leja sequences but it is in general impossible to compute them. Recently, Białas-Cież
and Calvi [2] described the structure of Leja sequences for the unit disk in C. Also in [2], the authors
introduced the concept of pseudo Leja sequence for K, that is a sequence Z = (zn : n ∈ N) in K such
that the (d +1)-st entry zd satisfies the inequality

MZ(zd)|w
(
Z,zd ;zd

)
| ≥max

z∈K
|w
(
Z,zd ;z

)
|, d ≥ 1, (1.3)

where (MZ(zd) : d ∈ N∗) is a sequence of positive real numbers greater than or equal to 1 of subex-

ponential growth, i.e., limd→∞

(
MZ(zd)

) 1
d = 1. The sequence MZ(zd) is called the Edrei growth of the

pseudo Leja sequence Z. There are some advantages in working with pseudo Leja sequences. First,
unlike Leja sequences, pseudo Leja sequences can be easily computed and are therefore suitable for
numerical purposes. For details, we refer the reader to [2]. Second, from a theorical point of view,
pseudo Leja sequences also provide excellent points for polynomial interpolation. We shall explain the
second point. Suppose that K is a non-polar, polynomially convex, compact set in C. Białas-Cież and
Calvi showed that

lim
d→∞

|VDM(z0, . . . ,zd−1)|
2

(d−1)d =C(K), (1.4)

where VDM(z0, . . . ,zd−1) = ∏0≤ j<k≤d−1(zk − z j) and C(K) is the logarithmic capacity of K. This
asymptotic behavior enables one to use [3, Theorem 1.5] and get the following two properties.

1. limd→∞(1/d)∑
d−1
j=0 [z j] = µK , where [z j] is the Dirac measure at z j and µK is the equilibrium

measure of K.

2. Under the additional hypothesis that K is regular in the sense of the potential theory, for every
holomorphic function f in a neighborhood of K, the Lagrange interpolation polynomial of f at
z0, . . . ,zd−1 converges uniformly to f on K as d→ ∞.
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According to a remark in [2], the first property implies that every point in the support of µK is a limit
point of Z = (zn : n ∈ N). Since this support lies in ∂∞K, the number of points lying in any compact
subset G of the interior of K is small in the sense that

lim
n→∞

1
d
]
(
G∩{z0, . . . ,zd−1}

)
= 0.

There arises a natural problem to decide whether there exists a pseudo Leja sequence of Edrei growth
for a compact set with a limit point in the interior of the compact set. The aim of this paper is to give
an affirmative answer. It is shown that the sets of limit points of pseudo Leja sequences for many plane
compact sets constructed below contain neighborhoods of boundaries of these compact sets, and is even
equal to the whole set when the compact set is the unit disk.

Notation. The closed disk of center about a ∈ C and radius r > 0 is denoted by D(a,r). For
simplicity, we write D := D(0,1). Let Z = (zn : n ∈ N) be a sequence of distinct complex numbers.
The index of z ∈ Z is denoted by sZ(z), which shows the position of z in Z, so that sZ(z j) = j+ 1 for
j ≥ 0. For each d ≥ 1, we define Zd := (z0, . . . ,zd−1). For Tk = (t0, . . . , tk−1), we write (Zd ,Tk) :=
(z0, . . . ,zd−1, t0, . . . , tk−1).

2 Pseudo Leja sequences for the unit disk

Given a Leja sequence A for D and a sequence B of distinct points in int(D), we show how to insert
the entries of B into A in order that the resulting sequence is a pseudo Leja sequence for D. We exploit
the structure of Leja sequences for D that is given in [2, Theorem 5] and that we recall below. Here a
d-tuple Ad := (a0, . . . ,ad−1) is called a d-Leja section of the sequence A. The underlying sets of Ad and
A are {a0, . . . ,ad−1} and {an : n≥ 0} respectively.

Theorem 2.1 (Białas-Cież and Calvi). The structure of a Leja sequence A = (an : n ∈ N) for the unit
disk D with a0 = 1 is given by the following rules.

1. The underlying set of the 2n-Leja section A2n consists of the 2n-th roots of unity;

2. The 2n+1-Leja section A2n+1 is (A2n ,ρU2n), where ρ is a 2n-th root of -1 and U2n is the 2n-Leja
section of a Leja sequence U = (un : n ∈ N) for D with u0 = 1.

Theorem 2.2. Let A = (an : n ∈ N) be a Leja sequence for D with a0 ∈ ∂D and B = (bn : n ∈ N) a
sequence of distinct points in int(D). Then there exists a pseudo Leja sequence for D whose underlying
set is A∪B.

Proof. Without loss of generality, we assume that a0 = 1. We consider three sequences of positive real
numbers whose entries are defined by

α j = dist(B j,∂D) = inf{|bk−a| : 0≤ k ≤ j−1, |a|= 1}, j ≥ 1. (2.1)

β j = |w(B,b j;b j)| and γ j = sup
z∈D
|w(B,b j;z)|, j ≥ 1, (2.2)

where w(B,b j;z) is defined as (1.1). Take a subsequence 4 < n0 < n1 < · · ·< nk < · · · such that

lim
j→∞

( 2
α j+1

) j+1
2
n j

= lim
j→∞

( 2γ j

(1−|b j|)β j

) 1
2

n j
= 1. (2.3)

Let X be a new sequence obtained by inserting the entries of B into A such that b j is inserted between
a2n j−1 and a2n j for all j ≥ 0,

a0,a1 . . . ,a2n0−1,b0,a2n0 , . . . ,a2n1−1,b1,a2n1 , . . . ,a2n j−1,b j,a2n j , . . . ,a2n j+1−1,b j+1,a2n j+1 , . . . (2.4)
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We will show that X is a pseudo Leja sequence for D. To do this, we construct a discrete function
MX : X 7−→ [1,∞) (of subexponential growth of sX(x)) such that

MX(x)|w(X ,x;x)| ≥ sup
z∈D
|w(X ,x;z)|, x ∈ X . (2.5)

We shall define differently MX on A and on B and prove first for x = ad and then for x = b j.
Assume first that x = ad . Since the first entries of X play no role in the required property that X is a

pseudo Leja sequence, we may assume that 2n j ≤ d ≤ 2n j+1 −1 for j ≥ 1. Looking at the definition of
X in (2.4) and relation (1.1), we have

w(X ,ad ;z) = w(A,ad ;z) ·w(B,b j+1;z). (2.6)

Since the second factor at the right hand side of (2.6) contains j + 1 factors z− bk, 0 ≤ k ≤ j, and
|z−bk| ≤ 2 for every z ∈ D, the hypothesis that A is a Leja sequence for D implies

sup
z∈D
|w(X ,ad ;z)| ≤ sup

z∈D
|w(A,ad ;z)| · sup

z∈D
|w(B,b j+1;z)| ≤ 2 j+1|w(A,ad ;ad)|. (2.7)

On the other hand, relation (2.1) gives |ad−bk| ≥ α j+1 for all 0≤ k ≤ j. Thus

|w(X ,ad ;ad)| ≥ (α j+1)
j+1|w(A,ad ;ad)|. (2.8)

From (2.7) and (2.8) we obtain

MX(ad)|w(X ,ad ;ad)| ≥ sup
z∈D
|w(X ,ad ;z)| with MX(ad) =

( 2
α j+1

) j+1
. (2.9)

Since the index of ad in X is sX(ad) = d + j+2 > 2n j , equation (2.3) yields

lim
d→∞

(
MX(ad)

) 1
sX (ad ) = lim

j→∞

( 2
α j+1

) j+1
2

n j
= 1. (2.10)

Second, we work with x = b j for j ≥ 1. We have

w(X ,b j;z) = w(A,a2n j ;z) ·w(B,b j;z) = (z2n j −1)w(B,b j;z). (2.11)

Here we use the fact that w(A,a2n j ;z) = z2n j −1, since the set {a0, . . . ,a2n j−1} forms a complete set of
the 2n j -roots of unity (see Theorem 2.1). It follows that

sup
z∈D
|w(X ,b j;z)| ≤ 2sup

z∈D
|w(B,b j;z)|= 2γ j, (2.12)

and
|w(X ,b j;b j)|= |b2n j

j −1| · |w(B,b j;b j)| ≥ (1−|b j|)β j. (2.13)

We get from (2.12) and (2.13) the following estimate

MX(b j)|w(X ,b j;b j)| ≥ sup
z∈D
|w(X ,b j;z)| with MX(b j) =

2γ j

(1−|b j|)β j
. (2.14)

Since the index of b j in X is sX(b j) = 2n j + j+1 > 2n j , equation (2.3) gives

lim
j→∞

(
MX(b j)

) 1
sX (b j) = lim

j→∞

( 2γ j

(1−|b j|)β j

) 1
2

n j
= 1. (2.15)

This completes the proof of the theorem.

If we choose the sequence B in Theorem 2.2 to be dense in D, then we have the following corollary.

Corollary 2.3. There exist pseudo Leja sequences for D such that the set of their limit points is D.
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3 Pseudo Leja sequences for compact sets in C

This section is devoted to the construction of pseudo Leja sequences for more general compact sets.
Our idea is similar in spirit to [2, Theorem 6], but original arguments come from the work of Alper [1,
p. 48-49] with a weaker assumption on K.

Let K be a compact set in C such that ∂K is an analytic Jordan curve. Suppose that φ(z) is a
conformal mapping of C\D onto C\K. It is known that

φ(z) = cz+ c0 + c1z−1 + c2z−2 + · · · with |c|=C(K). (3.1)

Since ∂K is assumed to be an analytic Jordan curve, there exists an analytic and univalent continuation
of φ to the domain C \D(0,ρ0) for some ρ0 < 1 (see for instance [4, p.12]). If 1 > ρ1 > ρ0, then the
function

ψ(t,z) =

{
φ(t)−φ(z)

t−z if t 6= z
φ ′(z) if t = z

is continuous and does not vanish when t,z ∈ D\ int(D(0,ρ1)). Thus, there exist M1,M2 > 0 such that

M1 ≤
∣∣φ(t)−φ(z)

t− z

∣∣≤M2, t,z ∈ D\ int(D(0,ρ1)), t 6= z. (3.2)

Lemma 3.1. Under the above assumptions. If ρ0 < ρ1 < 1 and ek = exp(2kπi/d) for 0 ≤ k ≤ d− 1,
then

C(K)d

V
≤

d−1

∏
k=0

|φ(t)−φ(ek)|
|t− ek|

≤VC(K)d , ρ1 ≤ |t| ≤ 1, (3.3)

where V is a positive constant independent of d.

Proof. The proof is a slight adaptation of the reasoning used in [2]. Since z 7→ ψ(z, t) is a nowhere-
vanishing holomorphic function on C\D for all ρ1 ≤ |t| ≤ 1, there exists a branch of logψ(z, t) that, as
a function of z, is holomorphic on C\D and continuous on C\ int(D). For convenience, we set

ft(z) = log
φ(t)−φ(z)

t− z
, |z| ≥ 1, ρ1 ≤ |t| ≤ 1. (3.4)

The real part of ft(z), say ℜ ft(z), is harmonic on C \D and continuous on C \ int(D). It is clear that
ℜ ft(z) = log

∣∣φ(t)−φ(z)
t−z

∣∣. By the mean value theorem for harmonic functions we have

1
2π

2π∫
0

ℜ ft(eiθ )dθ = lim
z→∞

ℜ ft(z) = log |c|= logC(K). (3.5)

From (3.4) we have

d
dθ

ft(eiθ ) = ieiθ( φ ′(eiθ )

φ(eiθ )−φ(t)
− 1

eiθ − t

)
, θ ∈ [0,2π], ρ1 ≤ |t| ≤ 1, t 6= eiθ . (3.6)

The limit limt→eiθ
d

dθ
ft(eiθ ) exists and is denoted by d

dθ
feiθ (eiθ ), since

lim
t→eiθ

d
dθ

ft(eiθ ) = ieiθ lim
t→eiθ

φ ′(eiθ )− φ(eiθ )−φ(t)
eiθ−t

(eiθ − t)φ(eiθ )−φ(t)
eiθ−t

=
ieiθ φ

′′
(eiθ )

2φ ′(eiθ )
. (3.7)
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Here we use the Taylor expansion of the holomorphic function φ at eiθ to get the second equality in
(3.7). Thus, the function (θ , t) 7→ d

dθ
ft(eiθ ) is continuous on [0,2π]×{ρ1 ≤ |t| ≤ 1}. It follows that

there exists V0 < ∞ such that

2π∫
0

∣∣∣ d
dθ

ft(eiθ )
∣∣∣dθ <V0, ρ1 ≤ |t| ≤ 1. (3.8)

Consequently, ft(eiθ ) is a function of total variation bounded by V0 for all ρ1 ≤ |t| ≤ 1. Therefore, so
is its real part ℜ ft(eiθ ). Using [2, Lemma 1] for ℜ ft , the formula for ℜ ft(eiθ ) and relation (3.5), we
obtain ∣∣∣ logC(K)− 1

d

d−1

∑
k=1

log
∣∣φ(t)−φ(ek)

t− ek

∣∣∣∣∣≤ V0

d
, ρ1 ≤ |t| ≤ 1. (3.9)

This estimate implies the conclusion of the lemma.

Theorem 3.2. Let K be a compact set in C such that ∂K is an analytic Jordan curve. Then there exists a
pseudo Leja sequence for K whose set of limit points contains {z ∈ K : dist(z,∂K)≤ r} for some r > 0.

Proof. Let φ(z) be a conformal mapping of C\D onto C\K. Then φ admits an analytic and univalent
continuation to the domain C \D(0,ρ0) for ρ0 < 1. Let A = (an : n ∈ N) be a Leja sequence for D
with a0 = 1. Take ρ1 ∈ (ρ0,1) and a sequence B = (bn : n ∈ N) of distinct points in the open annulus
{ρ1 < |z|< 1} such that B is dense in the closure of this annulus. Let X be a sequence defined as in (2.4)
such that X is a pseudo Leja sequence for D. Since the closure of B is {ρ1 ≤ |z| ≤ 1}, the set of limit
points of φ(X) contains φ({ρ1 ≤ |z| ≤ 1}), a compact subset of K containing {z ∈ K : dist(z,∂K)≤ r}
for some r > 0. Thus, it remains to verify that φ(X) is a pseudo Leja sequence for K. For simplicity,
we write

Ã := φ(A), B̃ := φ(B), X̃ := φ(X),

z̃ := φ(z), ãd := φ(ad), and b̃k := φ(bk), d ≥ 0, k ≥ 0. (3.10)

With this notation, the sequence X̃ is given by

ã0, ã1 . . . , ã2n0−1, b̃0, ã2n0 , . . . , ã2n1−1, b̃1, ã2n1 , . . . , ã2n j−1, b̃ j, ã2n j , . . . , ã2n j+1−1, b̃ j+1, ã2n j+1 , . . . (3.11)

We also consider two cases as in the proof of Theorem 2.2 and use the formula for the product defined
in (1.1).

For 2n j ≤ d ≤ 2n j+1−1 with j ≥ 1, we have

w
(
X̃ , ãd ; z̃

)
= w

(
Ã, ãd ; z̃

)
·w
(
B̃, b̃ j+1; z̃

)
. (3.12)

Using [2, Lemma 3] we get

c−1
d C(K)d |w(A,ad ;z)| ≤ |w

(
Ã, ãd ; z̃

)
| ≤ cdC(K)d |w(A,ad ;z)|, z ∈ ∂D, (3.13)

where cd < (d +1)C/ log2 and C is a positive constant depending only on K, see [2, Subsection 3.2] for
the precise definition for cd . On the other hand, inequality (3.2) gives

M1|z−bk| ≤
∣∣z̃− b̃k

∣∣≤M2|z−bk|, ρ1 ≤ |z| ≤ 1, k ≥ 0. (3.14)

Hence
M j+1

1 |w(B,b j+1;z)| ≤
∣∣w(B̃, b̃ j+1; z̃)

∣∣≤M j+1
2 |w(B,b j+1;z)|, z ∈ ∂D. (3.15)
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Multiplying sides by sides of (3.13) and (3.15), and using (3.12), we obtain

c−1
d C(K)dM j+1

1 |w(X ,ad ;z)| ≤ |w
(
X̃ , ãd ; z̃

)
| ≤ cdC(K)dM j+1

2 |w(X ,ad ;z)|, z ∈ ∂D (3.16)

Since φ(∂D) = ∂K, the maximum principle and the relations in (3.16) (for z ∈ ∂D and ad) now give

sup
t∈K
|w
(
X̃ , ãd ; t

)
| = sup

z̃=φ(z),|z|=1
|w
(
X̃ , ãd ; z̃

)
|

≤ cdC(K)dM j+1
2 sup

|z|=1
|w(X ,ad ;z)|

≤ cdC(K)dM j+1
2 MX(ad)|w(X ,ad ;ad)|

≤ c2
d
(M2

M1

) j+1MX(ad)|w
(
X̃ , ãd ; ãd

)
|.

Let us set MX̃(ãd) = c2
d

(M2
M1

) j+1MX(ad). Since sX̃(ãd) = sX(ad) = d +2+ j > 2n j ≥ 2 j, we have

lim
d→∞

c
2

sX̃ (ãd )

d = lim
d→∞

c
2
d
d = 1, lim

d→∞

(M2

M1

) j+1
sX̃ (ãd ) = lim

j→∞

(M2

M1

) j+1
2 j

= 1,

lim
d→∞

(
MX(ad)

) 1
sX̃ (ãd ) = lim

d→∞

(
MX(ad)

) 1
sX (ad ) = 1. (3.17)

Here we use the fact that cd grows at most like a polynomial in d and the hypothesis that X is a pseudo
Leja sequence for D. Hence

lim
d→∞

(
MX̃(ãd)

) 1
sX̃ (ãd ) = 1. (3.18)

We now turn to b̃ j for j ≥ 1. We have

w
(
X̃ , b̃ j; z̃

)
= w

(
Ã, ã2n j ; z̃

)
·w
(
B̃, b̃ j; z̃

)
. (3.19)

Using relation (3.13) for d = 2n j and relation (3.14) to estimate the first and the second factor at the
right hand side of (3.19) respectively, we obtain

|w
(
X̃ , b̃ j; z̃

)
| ≤ c2n j C(K)2n j

M j
2|w
(
X ,b j;z

)
|, z ∈ ∂D. (3.20)

On the other hand, since {a0, . . . ,a2n j−1} is a complete set of the 2n j -th roots of unity, Lemma 3.1 gives

|w
(
Ã, ã2n j ; b̃ j

)
| ≥ C(K)2n j

V
|w(A,a2n j ;b j)|. (3.21)

By |b̃ j− b̃k| ≥M1|b j−bk| for all 0≤ k ≤ j−1, relations (3.19) and (3.21) show that

|w
(
X̃ , b̃ j; b̃ j

)
| ≥ C(K)2n j

V
M j

1|w
(
X ,b j;b j

)
|. (3.22)

Combining (3.20) and (3.22), and using the maximum principle again, we have

sup
t∈K
|w
(
X̃ , b̃ j; t

)
| = sup

z̃=φ(z),|z|=1
|w
(
X̃ , b̃ j; z̃

)
|

≤ c2n j C(K)2n j
M j

2 sup
|z|=1
|w(X ,b j;z)|

≤ c2n j C(K)2n j
M j

2MX(b j)|w(X ,b j;b j)|

≤ c2n j V (
M2

M1
) jMX(b j)|w

(
X̃ , b̃ j; b̃ j

)
|.
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Set MX̃(b̃ j) = c2n j V (M2

M1
) jMX(b j). We also have sX̃(b̃ j) = sX(b j) = 2n j + j+1≥ 2 j + j+1. A passage

to the limit similar to (3.17) implies that

lim
j→∞

(
MX̃(b̃ j)

) 1
sX̃ (b̃ j) = 1. (3.23)

This completes the proof of the theorem.
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