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Error Estimates for Polyharmonic Cubature Formulas

Hermann Render? - Ognyan Kounchev?

Abstract

In the present article we shall present basic features of a polyharmonic cubature formula of degree
s and corresponding error estimates. Main results are Markov-type error estimates for differentiable
functions and error estimates for functions f which possess an analytic extension to a sufficiently
large ball in the complex space CY.
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1 Introduction
Let C (Rd) be the set of all continuous complex-valued functions on the euclidean space R%. A cubature formula C is a
linear functional on C (Rd) of the form

C(f)i=ayf (x1)+.c+ayf (xy)- (@)}

The points xy, ..., xy are called nodes or knots and the coefficients a;, ..., ay € R the weights. A basic problem in numerical
analysis is to approximate integrals of the form

Jf () du(x)

for a (signed) measure y in the euclidean space R4 by suitable cubature formulas.

An important characteristic of a cubature formula is exactness: the functional C is exact on a subspace U of C (Rd)
with respect to a measure y if

c(f) =Jf(X)du(X) 2

holds for all f € U. If U is the set of all polynomials P, of degree < s, and the cubature is exact on U but not on U, ;, we
say that C has order s. Exactness on the space P, can be expressed by the identities

C(x*)= J x*du(x)

for each multi-index a = (ay,...,a4) € Ng with |a| := a; + ... + a4 <s where x* = x{"...x;*. In the theory of cubature
formula it is assumed that the moments

JX“dM(X)
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for |a| < s exist and that they can be explicitly calculated. The problem is to find constructive methods for determining
nodes and weights from this information. In particular, a cubature formula leads to a solution of the so-called truncated
moment problem. For a discussion of cubature formulas we refer to [26], [27], [29] and the recent survey [7].

In [15] and [18] we have introduced a new type of functional which approximates the integral

J f(x)du(x) 3

for a class of measures u with support in the ball
BR={x€Rd:|x|<R} @

and continuous functions f : By — C where R is a positive number or co, and

r=lx|=x}+... +x3

is the euclidean norm of x = (xy, ..., x;) € RY. The unit sphere will be denoted by
Sit= {x eRe:|x|= 1},

and endowed with the rotation invariant measure d6.

Our approach is based on the Fourier-Laplace series of the function f (x). In order to make concepts simpler we shall
restrict our discussion in the introduction to the two-dimensional case where the Fourier-Laplace series is just the Fourier
series of a function. Hence we define the basis functions

1
Yoo (x) =Yy (rcost,rsint) = Wir: 5)
b3
and
. 1
Y1 (x) =Y, (rcost,rsint) = Tr coskt (6)
T
1
Yio(Xx) =Y, (rcost,rsint) = Trk sinkt (7
T

for k € N where N denotes the set of all natural numbers, and N, := NU{0}. A point x € R? is written as x = (r cos t, r sin t)
where r is the radius of x and (cost,sint) is in the unit sphere. The Fourier coefficients of a continuous function f are
defined by

2n
fre(r) = J f(rcost,rsint)- Y, (cost,sint)dt.
0

The Fourier series of the continuous function f : By — C is defined by the formal expansion

ak

DD e (MY (0) ®)

k=0 (=1

where ap =1 and a;, =2 for k €N, and 6 = (cos t,sint). It is easy to see that f; , is a continuous function if f is continuous.

Furthermore, if f is infinitely differentiable in By then the function
fre ()"

is even (and infinitely differentiable), see [6]. Finally, if f is a polynomial then f; , () 7 is a univariate polynomial in 72,
see Section 2 for more details.

If f is sufficiently smooth then the Fourier series (8) converges absolutely and uniformly on compact subsets of By to
the function f (x) and one obtains that

J f)dp Jie ()Y (8)dp(x)
R2 k=0 =1 JR?

I
M
N

Fee (D175 () dp(x).

I
M2
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We shall now call a signed measure u with support in By C R? pseudo-positive if the inequality

J h(lx) Yie (x)dp(x) 2 0
R2

holds for every non-negative continuous function h : [0,R] — [0, 00) and for all k € Ny, and £ = 1,...,q,. By the Riesz
representation theorem there exist unique non-negative measures u, , defined on [0,R], which we call component measures,
such that

J h(t)dp, (t) = J h(lx]) Yy, (x)du
0 R2

holds for all h € C [0,R]. Using this notation we obtain
co  ag 00
f Fdu=>>" f Froe () 1™y ().
R2 k=0 (=1 J0
In passing, we mention that radially symmetric measures are pseudo-positive.
The main idea in our approach is to use quadrature formulas to approximate the univariate integrals

J fre (r) r""duu (. ©

Thus we assume in our approach that the Fourier coefficients f, , () are known. One may use Fast-Fourier Transform to
find approximations of f; , and to combine these with our approach in order to find cubature formulas only involving the
function values of f — a topic which we want to consider in a future paper.

Next we want to discuss which kind of quadrature formulas for approximating (9) are useful. Due to the fact that
S (r) 7% is an even function for smooth f we shall require that the quadrature formula is exact for all polynomials
of the form r? for j = 0,...,2s — 1 where s a given natural number. By taking the transformation /7 this means that
the transformed quadrature formula should be exact for all polynomial t/ for j = 0,...,2s — 1 — and here the classical
Gaul’-Jacobi quadrature enters the game.

Our polyharmonic cubature formula is now defined in the following way: given a pseudo-positive measure u we
consider the component measures ;. , (). Let ,uzz[ be the image measure of y, , for the transformation 1 : [0, 0c0) — [0, 00)

defined by ¥ (r) = r2, so
J fre () g, (r) = J S (\/E) tfk/zdli;f,e ().
0 0

For the non-negative univariate measures ,u;fe we shall use the univariate Gaul3-Jacobi quadratures vE)

i of order 2s — 1 as

an approximation of ‘ulkp)e. The polyharmonic cubature T® (f) of degree s is then defined by

00 aj

(o 0]
1
TO(f) =Y. J Fre (V) 2kdv) ().
k=0 (=1 J0
The cubature formula T® will be defined at first only for polynomials: then the sum in the definition of T (f) is actually
a finite sum and no convergence questions occur. The cubature formula T® has the property that

T (1x1¥ Y. (x)) =J |2 ¥ () dpa ()

forall j=0,...,2s — 1 and for all k € Ny, { = 1, ..., a,. This is equivalent to the functional T being exact on the space of
all polynomials of polyharmonic order < 2s.

In [15] we investigated the truncated moment problem for pseudo-positive measures. In the present article we shall
present a Markov-type error estimate for the polyharmonic cubature formula and apply this estimate to functions f
which possess an analytic extension on the ball in C¢ with center 0 and sufficiently large radius. For an error estimate
of polyharmonic cubature formula based on complex methods we refer to [16]. As general background information we
mention as well our unpublished manuscript [18] which contains also instructive examples.

The paper is organized in the following way: in Section 2 we shall provide background material about spherical
harmonics and Fourier-Laplace series which is necessary for the case d > 2. In Section 3 we give a short review of properties
of the polyharmonic cubature formulas. Section 4 contains the main result of the paper — an error estimate for T*) which
is based on the error estimate of Markov for quadratures.
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2 Polyharmonic polynomials and Spherical harmonics

We shall write x € R¢ in spherical coordinates x = rf with 8 € S¥~1. Let H, (Rd) be the set of all harmonic homogeneous

complex-valued polynomials of degree k. Then f € H, (]Rd) is called a solid harmonic and the restriction of f to S4~! a
spherical harmonic of degree k and we set

ay = dlmHk (Rd) 5 (10)
see [28], [25], [1], [13] for details. Throughout the paper we shall assume
Ve :RESRE=1,..,q, 11

is an orthonormal basis of H,; (Rd) with respect to the scalar product

(f>8)ga :=J f(6)g(6)do.
gd-1

We shall often use the trivial identity Y) , (x) = %Y., (8) for x = r0. Further we define the surface area w, by

Wy = J 1d6.
gd-1

The Fourier-Laplace series of the continuous function f : B — C, is defined by the formal expansion

00

FaO)=D" i (Y (6) (12)

k=0 (=1

where q; is defined in (10) and the Fourier-Laplace coefficient f; ,(r) is defined by

fre (r)=f fro)y, (8)do (13)
Sd*l

for any non-negative real number r with 0 <r <R.

There is a strong interplay between algebraic and analytic properties of the function f and those of the Fourier-Laplace
coefficients f; ;. For example, if f (x) is a polynomial in the variable x = (x,...,x,) then the Fourier-Laplace coefficient f; ,
is of the form f , (r) = rk Pr¢ (r*) where p,, is a univariate polynomial, see e.g. in [28] or [26]. Hence, the Fourier-Laplace
series (12) of a polynomial f (x) is equal to

degf ax

FOO= D0 prellx )i, () (14)

k=0 (=1

where deg f is the total degree of f and p,, is a univariate polynomial of degree < deg f — k. This representation is often
called the Gauss representation.

A similar formula is valid for a much larger class of functions. Let us recall that a function f : G — C defined on an
open set G in R? is called polyharmonic of order N if f is 2N times continuously differentiable and

AMu(x)=0 (15)
for all x € G where
92 9?2
A=—+..+—
dx? et dx3

is the Laplace operator and A" the N-th iterate of A. The theorem of Almansi states that for a polyharmonic function f of
order N defined on the ball By = {x eRY:|x| < R} there exist univariate polynomials p; , (t) of degree < N — 1 such that

co  ag

£ =D prellxP )i () (16)

k=0 (=1

65

Dolomites Research Notes on Approximation ISSN 2035-6803



/O“\,\ Render - Kounchev 66

where convergence of the sum is uniform on compact subsets of By, see e.g. [26], [3], [2] and [17] for further extensions.
Neglecting at the moment questions of convergence we see that

0o ai

J F@du)=Y%" J Pre (X () du ().

k=0 (=1

Note that p; , is a univariate function depending on |x|* and note that |x|* Y, (x) is indeed a polynomial and therefore

J |X|ZS Yie () du(x)

can be expressed as a sum of monomial moments. The above mentioned Gauss decomposition just says that each
multivariate polynomial f (x) is indeed a linear combination of polynomials of the type |x|* Yy, ().

These considerations have led us to the following definition: a signed measure y with support in B, € R? is pseudo-
positive with respect to the orthonormal basis Yy ;,{ = 1, ..., a;, k € Ny if the inequality

f h(lx[) Yy, (x)dp(x) =0 17)
Rrd

holds for every non-negative continuous function h : [0,R] — [0, 00) and for all k € Ny, £ = 1,2, ..., a,. Then the following
can be proved, see [15].

Theorem 2.1. Let u be a pseudo-positive measure on R? with support in By C R, Then there exist unique non-negative
measures (i, with support in [0,R], which we call component measures, such that

J h(t)duy, (f):f h(lx]) Vi (x)du (18)
0 R4
holds for all h € C [0,R]. Further
J f)du=y>" J Fre (F)r~Fdpaye, () (19)
R4 k=0 ¢=1J0

foreach f € C (Rd) whose Fourier-Laplace series has only finitely many non-zero terms.

Let 2 : [0,00) — [0, 00) be the transformation v (t) = t2 and let uk“”[ be the image measure of u; , under v. Then (19)

becomes o @ oo
f f(x)du=ZZJ Fue (V) £735dp!, (0). (20)
R4 0

k=0 (=1
The main idea is simple and consists in replacing in formula (20) the non-negative univariate measures ‘U.ZJ[ by their

univariate Gauf3-Jacobi quadratures VIESZ of order 25— 1. Then we obtain a functional T defined on the set C [x;, x, ..., X, ]
of all polynomials by setting

00 A

TO(f) =Y. J fip (V) €735V (1), 1)
0

k=0 (=1

Since f is a polynomial the series is finite and therefore T® is well-defined.
Sometimes it is useful to rewrite the definition of T (f) using the variable r instead of t. If we define ¥~ (¢) = vt

(so ! is the inverse function of v) and if o,(f% is the image measure of vlgsg under 1!, then we may write

TO(F) =D, f fie (N r*do) (r).
0

k=0 (=1

Dolomites Research Notes on Approximation ISSN 2035-6803



/O“\,\ Render - Kounchev 67

3 Basic properties of the polyharmonic cubature

We shall recall from [15] and [18] some basic properties for the polyharmonic cubature formula:

Theorem 3.1. Let u be a pseudo-positive measure with support in the ball Bg. Then the functional T® : C [x1,X5, .., x4] = C
is continuous with respect to the supremum norm provided that the summability assumption

0o ag

ZZJ r_dek,e (N <o (22)
0

k=0 (=1

holds.
Proof. Since u has support in B the measures u; , have support in [0,R] . For the Fourier-Laplace coefficient f, , we have

[fi ()] < Cmax|f ()] for0 < r <R.

Hence
J fee (o, (M| < C‘r)r(lliglf €3] J r*do) (1)
0 - 0
and
o ag 00
|T® ()| < Cmax|f (x)| ZZJ rkdo) (r). (23)
lxI<k k=0 =1 Jo
For the convergence in (23) it suffices to prove
f rtdog (r) < f e (). 24)
0 0

This inequality follows from the extremal property of the Gaul3-Jacobi quadrature, see Theorem 4.1 in Chapter 4 of
[21]. O

By the Riesz representation theorem there exists a signed measure o with support in the closed ball B, such that
TO(f) = J f () do® (x)
Br

for all continuous functions f : By — C. Moreover, the component measures of the pseudo—positive measure o are
exactly the univariate measures o,(fz.
Note that the summability condition (22) can be rephrased in terms of the measure u by the identity

0 X
J r*dpg, (r) = J Yo (—) du.
0 R4 |X|

We summarize the results in the following

Theorem 3.2. Let u be a pseudo-positive signed measure with support in the closed ball By, satisfying the summability condition

(22). Then for each natural number s there exists a unique pseudo-positive, signed measure o with support in By, such that
(i) The support of each component measure O'l(fz of c® has cardinality <.

(i) de,u = deG(S) for dll polynomials P with A*P = 0.
Proof. The exactness of the Gaulf-Jacobi quadratures V}ESZ for polynomials of degree < 2s — 1 implies that T® and u

coincide on the set of all polynomials P such that A*P = 0. This is due to the fact that in the Laplace—Fourier expansion
the coefficients are given by f; , () = rkpkl (r*) where p,, are polynomials of degree 2s — 1. O

Definition 3.1. The measure 0 constructed in the last Theorem will be called the polyharmonic GauR-Jacobi measure
of order s for the measure u.
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The following is an analog to the theorem of Stieltjes about the convergence of the univariate Gauf3—Jacobi quadrature
formulas.

Theorem 3.3. Let o be the polyharmonic Gauf-Jacobi measure of order s for the measure w, obtained in Theorem 3.2. Then

ff(x)do(s)ejf(x)d,u fors — o0

holds for every function f € C (By).

Proof. For any polynomial P the convergence T® (P) — P holds for s —> oo. By standard results, the convergence
T® (f) — f carries over to all continuous functions f : By — C provided there exists a constant C > 0 such that

|7 (F)| = cmax|f ().

for all natural numbers s and all f € C (Bg) . O

In a similar way one can prove the following result:
Theorem 3.4. Let u be a pseudo-positive signed measure with support in By satisfying the summability condition (22) and let
o be the polyharmonic Gauf3-Jacobi measure of order s. If f € C* (Rd) has the property that

% [fue (V) 73] 20,

forall t € (0,R*) and for all k € Ny, £ = 1,2, .., a, then the following inequality

Jf (x)do® < Jf (x)du

holds.

Let us note that every signed measure du with bounded variation may be represented (non-uniquely) as a difference of
two pseudo-positive measures. We refer to [15] for instructive examples of pseudo-positive measures.

4 Error estimate of the Polyharmonic Gauss-Jacobi Cubature formula

The topic of estimation of quadrature formulas for smooth and analytic functions is a widely studied one. Beyond the
classical monographs [22], [8, p. 344], [9], we provide further and more recent publications, as [5], [10], [11], [12],
[20], [23].

We recall here the following error estimate of Markov:

Theorem 4.1. (Markov) Let v be a non-negative measure over the interval [a, b] and let v* be the Gauss-Jacobi measure of
order s. Define for every g € C [a, b] the error

b b
E (g) ::J g(t)dv(t)—J g () dv® (t).

If g € C* [a,b] then

1 b
E (8)] < sup. g (i)lj 1Q* (D) dv ()

(25)' a<é&
where Q’ (t) is the orthogonal polynomial of degree s, with leading coefficient 1, relative to v.

We shall prove now the following analogue:
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Theorem 4.2. Let 0 <R < 0o and let v : [0,00) — [0, 00) be defined by ) (t) = t2. Let u be a pseudo-positive signed measure
with support in By satisfying the summability condition (22), and let o be the polyharmonic Gauf3-Jacobi measure of order s.
Define for every f € C (Bg) the error functional

E (f) = Jf (x)dp(x) - f f(x)do® ().

Iffec*(Bg)nC (B_R) then the error E; (f) is less than or equal to

1 o0 dg dZS . R2
S [ o

k=0 (=1 0<E<R?
Here Q; , (t) is the orthogonal polynomial of degree s with respect to the measure ,u}fl, having a leading coefficient equal to 1; if
the support of i, has less than s points, Q; , is defined to be 0.

2
Qi (0 du).

Proof. Since f € C* (Bz) NC (E) it is easy to see that the Fourier-Laplace coefficients f , € C*(0,R) N C [0,R]. Let
and oy, k€Ny, £ =1,...,q, and o™ be as in Theorem 3.2. From the definitions it follows

0o aj

E(f)=>.). f Froe (M) 1 dpuy g —f fir (N r*da).
0 0

k=0 ¢=1
Further fi , (1) r~* is integrable with respect to Uy since f; , is continuous on [0,R] and condition (22) holds. Let us fix
the pair of indices (k, £). If the support of u; , has less than s points we know that u,; , = o,(fi,. So assume that the support
of o has at least s points. Then the support of ‘uklpe has at least s points and in our construction v,isg is the Gaul3-Jacobi

measure of :“;f/r Consequently

e(fir) = f Fre () dpg (r) - f fre () *dog) ()

=f S (VE) 24 duil, (0 f fea (VE) £ V2 ().

. . . _1 . .
By Markov’s error estimate one obtains with g, , (t) := f; , (ﬁ) t~z* the inequality

RZ
8 ) J
02

The proof is complete. O

2
Q. ()] auf, .

1
e (fk,i) = 2y 5P

0<E<R?

Now we are going to apply the results for holomorphic functions in several variables. We define the complex ball in C?
with center 0 and radius 7 by

d
Bf ={(wy,...,wq) € (o Z |wj|2 < 7%}
=1

We assume that f is holomorphic on Bf for T > R. For fixed 8 € S?~! we define a map
<p9:{ZE(C:IZ|<T}—>bey<p9(z)ZZQ
which is clearly holomorphic. Hence f, defined by f, (z) = f (20) = f o ¢4 (2) is holomorphic. It follows that f; , ()
defined by
fre (Z):J f(=z0)Y,,(0)do (25)
gd-1

is a holomorphic extension of f; , to {z € C: |z| < 7}. For further material about analytic extensions of Fourier-Laplace
series and Fourier-Laplace coefficients we refer to [14], [17] and [24].
Now we need the following result:

69
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Lemma 4.3. Let f be a holomorphic function on the open ball Bf for 7 > 0. Let f;, be the Fourier-Laplace coefficient of f and

define
Pre () = fiy (\/?) S

for 0 < t < 72 Then the following inequality

. >7Ks)
f (elup9)| ﬁ (26)

< Jwy max

uE[QZnLBESd’l

%pk,f (1)

holds for all 0 < t < p? < 72 and for all natural numbers s.

Proof. We apply Cauchy-Schwarz inequality to the integral (25) obtaining
2 2 2
|fie @) sf |f z0) de‘J v (0)]" d6.
gd-1 gd-1
Since Y, ; is orthonormal we obtain for z = |z| e and |z| = p

f (e“‘p@)‘z. 27)

2
[fe@)| <w; max
: uel0,2n],0es54-1

Let us recall the Cauchy estimates for a holomorphic function g in the ball |z| < 7 applied for |z| =
g™ ()] < — max|g(z)|

We apply this estimate to the holomorphic function f; , (z) and n = m + k and we use (27):

m+k

Wf e (0)

k+m)!
< —( pm+k) Vg max

uel0,21],0€84-1

f (e“‘pe) ’ (28)

Since f; ; (z) is holomorphic for [z| < T we can write f; , as a power series. Further it is known (see [6]) that

k(j) (0)=0forj=0,...k—1,
Hence we can write for |z| < T

1
fua () = Z e (©)",

It is known that r~* fre () is an even function (see [6]), hence we can obtain a description for the function p; , (r?):

d2m+k

2% (r2) =1 fro(r)= Z(k+2m)' ar ——— fie (0) - 17"

Then for t = r? we conclude that
d2m+k

Pre(t)= Z(k+2 Ndr e fre (0)- ™

We infer that
ds 1 m! d2m+k

qr Pt = ;(k-i-Zm)' G e (-7

Now (28) implies

S

< Jwy max

uel0,2n],0eS4-1

t
dtspk’[( )

) 1 & m! t\"*
ol ()

Dolomites Research Notes on Approximation ISSN 2035-6803



/O“\,\ Render - Kounchev 71

For |x| < 1 we have

>0 m! _ ds >0 ds 1 —s—1

D= T a2 =g =

m=s : m=0
and we see that

N 9 S' t —s—1

t) < Jo max e | 1-—
dtspk’z( ) due[0,2n],9€Sd’1 f( ° ) pk+25 ( PZ)

which gives (26). O

Combining the last two results we obtain:

Theorem 4.4. Let u be a pseudo-positive signed measure with support in By satisfying the summability condition (22) and let
o be the polyharmonic Gaufs-Jacobi measure of order s. Then the error E, (f) is less than or equal to

J@ip® 9 "
(p2—R2)>" weC"lw\<p|f(W)|;zZl: "L

for all functions f : By — C which possess a holomorphic extension to the complex ball BS for T > R where p is any number
withR<p <.

2
QO duf, (0

Proof. By Theorem 4.2 the error E, (f) is less than or equal

@) S [ (5 (v9) (5)”

k=0 (=1 0<€<R2
Lemma 4.3 applied for index 2s and for p; ; (t) = f, (ﬁ) ¢~2* shows that

2
i (0] du:

dZ

dtzsp“(t) Vo

max
ue[O,Zn],GESd’l
Using that p? — & > R* for 0 < & < R* we conclude that the error E; (f) is less than or equal

00 dg —k R
e e |

=0 {

2

,/a)d max

€[0,21],0€54-1

2
e O] it

and the statement is proven. O

We can simplify the estimate in the following way:

Theorem 4.5. Let u be a pseudo-positive signed measure with support in By satisfying the summability condition (22) and let
o be the polyharmonic Gauf3-Jacobi measure of order s. Then the error E, (f) is less than or equal to

2R25 0
ﬁwe@“ wi<p |f (W)|ZZ ( ) J kd.uk,z (T‘)

k=0 (=1

for all functions f : By — C which possess a holomorphic extension to the complex ball Bf for T > R where p is any number
withR<p <T.

Proof. Note that the polynomial Qi (t) of degree s is of the form

(f)—(f—f1u) ( ské)

where the points t;, , are in the interval (0,R?) . It follows that |t —t j,u| < R? and we obtain the estimate
R2
Jo

Dolomites Research Notes on Approximation ISSN 2035-6803
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0

2,
0 (0] duaf () <R f

0
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Since
R

R R
J 1d.uk,z(r)=J rkrkduk,g(r)SRkJ r*d . (r)
0

0 0
R2
J
pk

and in view of Theorem 4.4 the statement is proved. O

we can finally estimate

2 RNk (R
@}, (0 duf, (0 <R> (E) J rdpig (r)
0

Finally we see that
RZ
—p TR <1

is equivalent to the condition 2R? < p2. Thus for functions f which have a holomorphic extension to the complex ball with
radius T > 2R? we obtain an estimate where the error decreases rapidly when the order of the polyharmonic cubature is
increased.
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