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Error Estimates for Polyharmonic Cubature Formulas

Hermann Render a · Ognyan Kounchev b

Abstract

In the present article we shall present basic features of a polyharmonic cubature formula of degree
s and corresponding error estimates. Main results are Markov-type error estimates for differentiable
functions and error estimates for functions f which possess an analytic extension to a sufficiently
large ball in the complex space Cd .
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1 Introduction
Let C

�

Rd
�

be the set of all continuous complex-valued functions on the euclidean space Rd . A cubature formula C is a

linear functional on C
�

Rd
�

of the form

C
�

f
�

:= α1 f
�

x1

�

+ ....+αN f
�

xN
�

. (1)

The points x1, ..., xN are called nodes or knots and the coefficients α1, ...,αN ∈ R the weights. A basic problem in numerical
analysis is to approximate integrals of the form

∫

f (x) dµ (x)

for a (signed) measure µ in the euclidean space Rd by suitable cubature formulas.
An important characteristic of a cubature formula is exactness: the functional C is exact on a subspace U of C

�

Rd
�

with respect to a measure µ if

C
�

f
�

=

∫

f (x) dµ (x) (2)

holds for all f ∈ U . If Us is the set of all polynomials Ps of degree ≤ s, and the cubature is exact on Us but not on Us+1, we
say that C has order s. Exactness on the space Ps can be expressed by the identities

C (xα) =

∫

xαdµ (x)

for each multi-index α =
�

α1, ...,αd
�

∈ Nd
0 with |α| := α1 + ...+ αd ≤ s where xα = xα1

1 ...xαd
d . In the theory of cubature

formula it is assumed that the moments
∫

xαdµ (x)
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for |α| ≤ s exist and that they can be explicitly calculated. The problem is to find constructive methods for determining
nodes and weights from this information. In particular, a cubature formula leads to a solution of the so-called truncated
moment problem. For a discussion of cubature formulas we refer to [26], [27], [29] and the recent survey [7].

In [15] and [18] we have introduced a new type of functional which approximates the integral
∫

f (x) dµ (x) (3)

for a class of measures µ with support in the ball

BR =
¦

x ∈ Rd : |x |< R
©

(4)

and continuous functions f : BR→ C where R is a positive number or∞, and

r = |x |=
p

x2
1 + ....+ x2

d

is the euclidean norm of x =
�

x1, ..., xd
�

∈ Rd . The unit sphere will be denoted by

Sd−1 :=
¦

x ∈ Rd : |x |= 1
©

,

and endowed with the rotation invariant measure dθ .
Our approach is based on the Fourier-Laplace series of the function f (x) . In order to make concepts simpler we shall

restrict our discussion in the introduction to the two-dimensional case where the Fourier-Laplace series is just the Fourier
series of a function. Hence we define the basis functions

Y0,0 (x) = Y0,0 (r cos t, r sin t) =
1
p

2π
(5)

and

Yk,1 (x) = Yk,1 (r cos t, r sin t) =
1
p
π

rk cos kt (6)

Yk,2 (x) = Yk,2 (r cos t, r sin t) =
1
p
π

rk sin kt (7)

for k ∈ N where N denotes the set of all natural numbers, and N0 := N∪{0} . A point x ∈ R2 is written as x = (r cos t, r sin t)
where r is the radius of x and (cos t, sin t) is in the unit sphere. The Fourier coefficients of a continuous function f are
defined by

fk,` (r) =

∫ 2π

0

f (r cos t, r sin t) · Yk,` (cos t, sin t) d t.

The Fourier series of the continuous function f : BR→ C is defined by the formal expansion
∞
∑

k=0

ak
∑

`=1

fk,` (r)Yk,` (θ) (8)

where a0 = 1 and ak = 2 for k ∈ N, and θ = (cos t, sin t) . It is easy to see that fk,` is a continuous function if f is continuous.
Furthermore, if f is infinitely differentiable in BR then the function

fk,` (r) r
−k

is even (and infinitely differentiable), see [6]. Finally, if f is a polynomial then fk,` (r) r−k is a univariate polynomial in r2,
see Section 2 for more details.

If f is sufficiently smooth then the Fourier series (8) converges absolutely and uniformly on compact subsets of BR to
the function f (x) and one obtains that

∫

R2

f (x) dµ =
∞
∑

k=0

ak
∑

`=1

∫

R2

fk,` (r)Yk,` (θ) dµ (x)

=
∞
∑

k=0

ak
∑

`=1

∫

R2

fk,` (r) r
−kYk,` (x) dµ (x) .
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We shall now call a signed measure µ with support in BR ⊂ R2 pseudo-positive if the inequality
∫

R2

h(|x |)Yk,` (x) dµ (x)≥ 0

holds for every non-negative continuous function h : [0, R]→ [0,∞) and for all k ∈ N0, and ` = 1, ..., ak. By the Riesz
representation theorem there exist unique non-negative measures µk,` defined on [0, R] , which we call component measures,
such that

∫ ∞

0

h(t) dµk,` (t) =

∫

R2

h(|x |)Yk,` (x) dµ

holds for all h ∈ C [0, R]. Using this notation we obtain
∫

R2

f (x) dµ=
∞
∑

k=0

ak
∑

`=1

∫ ∞

0

fk,` (r) r
−kdµk,` (r) .

In passing, we mention that radially symmetric measures are pseudo-positive.
The main idea in our approach is to use quadrature formulas to approximate the univariate integrals

∫ ∞

0

fk,` (r) r
−kdµk,` (r) . (9)

Thus we assume in our approach that the Fourier coefficients fk,` (r) are known. One may use Fast-Fourier Transform to
find approximations of fk,` and to combine these with our approach in order to find cubature formulas only involving the
function values of f – a topic which we want to consider in a future paper.

Next we want to discuss which kind of quadrature formulas for approximating (9) are useful. Due to the fact that
fk,` (r) r−k is an even function for smooth f we shall require that the quadrature formula is exact for all polynomials
of the form r2 j for j = 0, ..., 2s − 1 where s a given natural number. By taking the transformation

p
r this means that

the transformed quadrature formula should be exact for all polynomial t j for j = 0, ..., 2s − 1 – and here the classical
Gauß-Jacobi quadrature enters the game.

Our polyharmonic cubature formula is now defined in the following way: given a pseudo-positive measure µ we
consider the component measures µk,` (r) . Let µψk,` be the image measure of µk,` for the transformationψ : [0,∞)→ [0,∞)
defined by ψ (r) = r2, so

∫ ∞

0

fk,` (r) r
−kdµk,` (r) =

∫ ∞

0

fk,`

�p
t
�

t−k/2dµψk,` (t) .

For the non-negative univariate measures µψk,` we shall use the univariate Gauß-Jacobi quadratures ν (s)k,` of order 2s− 1 as

an approximation of µψk,`. The polyharmonic cubature T (s)
�

f
�

of degree s is then defined by

T (s)
�

f
�

:=
∞
∑

k=0

ak
∑

`=1

∫ ∞

0

fk,`

�p
t
�

t−
1
2 kdν (s)k,` (t) .

The cubature formula T (s) will be defined at first only for polynomials: then the sum in the definition of T (s)
�

f
�

is actually
a finite sum and no convergence questions occur. The cubature formula T (s) has the property that

T (s)
�

|x |2 j Yk,` (x)
�

=

∫

|x |2 j Yk,` (x) dµ (x)

for all j = 0, ..., 2s− 1 and for all k ∈ N0, `= 1, ..., ak. This is equivalent to the functional T (s) being exact on the space of
all polynomials of polyharmonic order ≤ 2s.

In [15] we investigated the truncated moment problem for pseudo-positive measures. In the present article we shall
present a Markov-type error estimate for the polyharmonic cubature formula and apply this estimate to functions f
which possess an analytic extension on the ball in Cd with center 0 and sufficiently large radius. For an error estimate
of polyharmonic cubature formula based on complex methods we refer to [16]. As general background information we
mention as well our unpublished manuscript [18] which contains also instructive examples.

The paper is organized in the following way: in Section 2 we shall provide background material about spherical
harmonics and Fourier-Laplace series which is necessary for the case d > 2. In Section 3 we give a short review of properties
of the polyharmonic cubature formulas. Section 4 contains the main result of the paper – an error estimate for T (s) which
is based on the error estimate of Markov for quadratures.
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2 Polyharmonic polynomials and Spherical harmonics

We shall write x ∈ Rd in spherical coordinates x = rθ with θ ∈ Sd−1. Let Hk

�

Rd
�

be the set of all harmonic homogeneous

complex-valued polynomials of degree k. Then f ∈Hk

�

Rd
�

is called a solid harmonic and the restriction of f to Sd−1 a
spherical harmonic of degree k and we set

ak := dimHk

�

Rd
�

, (10)

see [28], [25], [1], [13] for details. Throughout the paper we shall assume

Yk,` : Rd → R,`= 1, ..., ak, (11)

is an orthonormal basis of Hk

�

Rd
�

with respect to the scalar product




f , g
�

Sd−1 :=

∫

Sd−1

f (θ) g (θ)dθ .

We shall often use the trivial identity Yk,` (x) = rkYk` (θ) for x = rθ . Further we define the surface area ωd by

ωd =

∫

Sd−1

1dθ .

The Fourier-Laplace series of the continuous function f : BR→ C, is defined by the formal expansion

f (rθ) =
∞
∑

k=0

ak
∑

`=1

fk,` (r)Yk,` (θ) (12)

where ak is defined in (10) and the Fourier-Laplace coefficient fk,` (r) is defined by

fk,` (r) =

∫

Sd−1

f (rθ)Yk,` (θ) dθ (13)

for any non-negative real number r with 0≤ r < R.
There is a strong interplay between algebraic and analytic properties of the function f and those of the Fourier-Laplace

coefficients fk,`. For example, if f (x) is a polynomial in the variable x =
�

x1, ..., xd
�

then the Fourier-Laplace coefficient fk,`

is of the form fk,` (r) = rk pk,`

�

r2� where pk,` is a univariate polynomial, see e.g. in [28] or [26]. Hence, the Fourier-Laplace
series (12) of a polynomial f (x) is equal to

f (x) =
deg f
∑

k=0

ak
∑

`=1

pk,`(|x |
2)Yk,` (x) (14)

where deg f is the total degree of f and pk,` is a univariate polynomial of degree ≤ deg f − k. This representation is often
called the Gauss representation.

A similar formula is valid for a much larger class of functions. Let us recall that a function f : G→ C defined on an
open set G in Rd is called polyharmonic of order N if f is 2N times continuously differentiable and

∆N u (x) = 0 (15)

for all x ∈ G where

∆=
∂ 2

∂ x2
1

+ ...+
∂ 2

∂ x2
d

is the Laplace operator and ∆N the N -th iterate of ∆. The theorem of Almansi states that for a polyharmonic function f of
order N defined on the ball BR =

¦

x ∈ Rd : |x |< R
©

there exist univariate polynomials pk,` (t) of degree ≤ N −1 such that

f (x) =
∞
∑

k=0

ak
∑

`=1

pk,`(|x |
2)Yk,` (x) (16)
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where convergence of the sum is uniform on compact subsets of BR, see e.g. [26], [3], [2] and [17] for further extensions.
Neglecting at the moment questions of convergence we see that

∫

f (x) dµ (x) =
∞
∑

k=0

ak
∑

`=1

∫

pk,`(|x |
2)Yk,` (x) dµ (x) .

Note that pk,` is a univariate function depending on |x |2 and note that |x |2s Yk,` (x) is indeed a polynomial and therefore
∫

|x |2s Yk,` (x) dµ (x)

can be expressed as a sum of monomial moments. The above mentioned Gauss decomposition just says that each
multivariate polynomial f (x) is indeed a linear combination of polynomials of the type |x |2s Yk,` (x) .

These considerations have led us to the following definition: a signed measure µ with support in BR ⊂ Rd is pseudo-
positive with respect to the orthonormal basis Yk,`,`= 1, ..., ak, k ∈ N0 if the inequality

∫

Rd

h(|x |)Yk,` (x) dµ (x)≥ 0 (17)

holds for every non-negative continuous function h : [0, R]→ [0,∞) and for all k ∈ N0, `= 1, 2, ..., ak. Then the following
can be proved, see [15].

Theorem 2.1. Let µ be a pseudo-positive measure on Rd with support in BR ⊂ Rd . Then there exist unique non-negative
measures µk,` with support in [0, R], which we call component measures, such that

∫ ∞

0

h(t) dµk,` (t) =

∫

Rd

h(|x |)Yk,` (x) dµ (18)

holds for all h ∈ C [0, R]. Further
∫

Rd

f (x) dµ=
∞
∑

k=0

ak
∑

`=1

∫ ∞

0

fk,` (r) r
−kdµk,` (r) (19)

for each f ∈ C
�

Rd
�

whose Fourier-Laplace series has only finitely many non-zero terms.

Let ψ : [0,∞)→ [0,∞) be the transformation ψ (t) = t2 and let µψk,` be the image measure of µk,` under ψ. Then (19)
becomes

∫

Rd

f (x) dµ=
∞
∑

k=0

ak
∑

`=1

∫ ∞

0

fk,`

�p
t
�

t−
1
2 kdµψk,` (t) . (20)

The main idea is simple and consists in replacing in formula (20) the non-negative univariate measures µψk,` by their

univariate Gauß-Jacobi quadratures ν (s)k,` of order 2s−1. Then we obtain a functional T (s) defined on the set C
�

x1, x2, ..., xd
�

of all polynomials by setting

T (s)
�

f
�

:=
∞
∑

k=0

ak
∑

`=1

∫ ∞

0

fk,`

�p
t
�

t−
1
2 kdν (s)k,` (t) . (21)

Since f is a polynomial the series is finite and therefore T (s) is well-defined.
Sometimes it is useful to rewrite the definition of T (s)

�

f
�

using the variable r instead of t. If we define ψ−1 (t) =
p

t
(so ψ−1 is the inverse function of ψ) and if σ(s)k,` is the image measure of ν (s)k,` under ψ−1, then we may write

T (s)
�

f
�

=
∞
∑

k=0

ak
∑

`=1

∫ ∞

0

fk,` (r) r
−kdσ(s)k,` (r) .
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3 Basic properties of the polyharmonic cubature
We shall recall from [15] and [18] some basic properties for the polyharmonic cubature formula:

Theorem 3.1. Let µ be a pseudo-positive measure with support in the ball BR. Then the functional T (s) : C
�

x1, x2, ..., xd
�

→ C
is continuous with respect to the supremum norm provided that the summability assumption

∞
∑

k=0

ak
∑

`=1

∫ ∞

0

r−kdµk,` (r)<∞ (22)

holds.

Proof. Since µ has support in BR the measures µk,` have support in [0, R] . For the Fourier-Laplace coefficient fk,` we have
�

� fk,` (r)
�

�≤ C max
|x |≤R

�

� f (x)
�

� for 0≤ r ≤ R.

Hence
�

�

�

�

�

∫ ∞

0

fk,` (r) r
−kdσ(s)k,` (r)

�

�

�

�

�

≤ C max
|x |≤R

�

� f (x)
�

�

∫ ∞

0

r−kdσ(s)k,` (r)

and
�

�T (s)
�

f
�

�

�≤ C max
|x |≤R

�

� f (x)
�

�

∞
∑

k=0

ak
∑

`=1

∫ ∞

0

r−kdσ(s)k,` (r) . (23)

For the convergence in (23) it suffices to prove
∫ ∞

0

r−kdσ(s)k,` (r)≤
∫ ∞

0

r−kdµk,` (r) . (24)

This inequality follows from the extremal property of the Gauß–Jacobi quadrature, see Theorem 4.1 in Chapter 4 of
[21].

By the Riesz representation theorem there exists a signed measure σ(s) with support in the closed ball BR such that

T (s)
�

f
�

=

∫

BR

f (x) dσ(s) (x)

for all continuous functions f : BR → C. Moreover, the component measures of the pseudo–positive measure σ(s) are
exactly the univariate measures σ(s)k,`.

Note that the summability condition (22) can be rephrased in terms of the measure µ by the identity
∫ ∞

0

r−kdµk,` (r) =

∫

Rd

Yk,`

�

x

|x |

�

dµ.

We summarize the results in the following

Theorem 3.2. Let µ be a pseudo-positive signed measure with support in the closed ball BR satisfying the summability condition
(22). Then for each natural number s there exists a unique pseudo-positive, signed measure σ(s) with support in BR such that

(i) The support of each component measure σ(s)k,` of σ(s) has cardinality ≤ s.

(ii)
∫

Pdµ=
∫

Pdσ(s) for all polynomials P with ∆2s P = 0.

Proof. The exactness of the Gauß-Jacobi quadratures ν (s)k,` for polynomials of degree ≤ 2s − 1 implies that T (s) and µ
coincide on the set of all polynomials P such that ∆2s P = 0. This is due to the fact that in the Laplace–Fourier expansion
the coefficients are given by fk,` (r) = rk pk,`

�

r2� where pk,` are polynomials of degree 2s− 1.

Definition 3.1. The measure σ(s) constructed in the last Theorem will be called the polyharmonic Gauß-Jacobi measure
of order s for the measure µ.
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The following is an analog to the theorem of Stieltjes about the convergence of the univariate Gauß–Jacobi quadrature
formulas.

Theorem 3.3. Let σ(s) be the polyharmonic Gauß-Jacobi measure of order s for the measure µ, obtained in Theorem 3.2. Then
∫

f (x) dσ(s)→
∫

f (x) dµ for s→∞

holds for every function f ∈ C
�

BR
�

.

Proof. For any polynomial P the convergence T (s) (P) → P holds for s −→ ∞. By standard results, the convergence
T (s)
�

f
�

→ f carries over to all continuous functions f : BR→ C provided there exists a constant C > 0 such that
�

�T (s)
�

f
�

�

�≤ C max
|x |≤R

�

� f (x)
�

� .

for all natural numbers s and all f ∈ C
�

BR
�

.

In a similar way one can prove the following result:

Theorem 3.4. Let µ be a pseudo-positive signed measure with support in BR satisfying the summability condition (22) and let
σ(s) be the polyharmonic Gauß-Jacobi measure of order s. If f ∈ C2s

�

Rd
�

has the property that

d2s

d t2s

h

fk,`

�p
t
�

t−
1
2 k
i

≥ 0,

for all t ∈
�

0, R2� and for all k ∈ N0, `= 1,2, ..., ak, then the following inequality
∫

f (x) dσ(s) ≤
∫

f (x) dµ

holds.

Let us note that every signed measure dµ with bounded variation may be represented (non-uniquely) as a difference of
two pseudo-positive measures. We refer to [15] for instructive examples of pseudo-positive measures.

4 Error estimate of the Polyharmonic Gauss-Jacobi Cubature formula
The topic of estimation of quadrature formulas for smooth and analytic functions is a widely studied one. Beyond the
classical monographs [22], [8, p. 344], [9], we provide further and more recent publications, as [5], [10], [11], [12],
[20], [23].

We recall here the following error estimate of Markov:

Theorem 4.1. (Markov) Let ν be a non-negative measure over the interval [a, b] and let ν s be the Gauss-Jacobi measure of
order s. Define for every g ∈ C [a, b] the error

Es
�

g
�

:=

∫ b

a

g (t) dν (t)−
∫ b

a

g (t) dν (s) (t) .

If g ∈ C2s [a, b] then
�

�Es
�

g
�

�

�≤
1

(2s)!
sup

a<ξ<b

�

�g(2s) (ξ)
�

�

∫ b

a

|Qs (t)|2 dν (t)

where Qs (t) is the orthogonal polynomial of degree s, with leading coefficient 1, relative to v.

We shall prove now the following analogue:
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Theorem 4.2. Let 0< R<∞ and letψ : [0,∞)→ [0,∞) be defined byψ (t) = t2. Let µ be a pseudo-positive signed measure
with support in BR satisfying the summability condition (22), and let σ(s) be the polyharmonic Gauß-Jacobi measure of order s.
Define for every f ∈ C

�

BR
�

the error functional

Es
�

f
�

:=

∫

f (x) dµ (x)−
∫

f (x) dσ(s) (x) .

If f ∈ C2s �BR
�

∩ C
�

BR

�

then the error Es
�

f
�

is less than or equal to

1

(2s)!

∞
∑

k=0

ak
∑

`=1

sup
0<ξ<R2

�

�

�

�

d2s

d t2s

h

fk,`

�p
t
�

t−
1
2 k
i

(ξ)

�

�

�

�

∫ R2

0

�

�

�Qs
k,` (t)

�

�

�

2
dµψk`.

Here Qs
k,` (t) is the orthogonal polynomial of degree s with respect to the measure µψk`, having a leading coefficient equal to 1; if

the support of µk,` has less than s points, Qs
k,` is defined to be 0.

Proof. Since f ∈ C2s �BR
�

∩ C
�

BR

�

it is easy to see that the Fourier-Laplace coefficients fk,` ∈ C2s (0, R)∩ C [0, R]. Let µk,`

and σk,`, k ∈ N0, `= 1, ..., ak, and σ(s) be as in Theorem 3.2. From the definitions it follows

Es
�

f
�

=
∞
∑

k=0

ak
∑

`=1

∫ R

0

fk,` (r) r
−kdµk,` −

∫ R

0

fk,` (r) r
−kdσ(s)k,`.

Further fk,` (r) r−k is integrable with respect to µk,` since fk,` is continuous on [0, R] and condition (22) holds. Let us fix
the pair of indices (k,`) . If the support of µk,` has less than s points we know that µk,` = σ

(s)
k,`. So assume that the support

of µk,` has at least s points. Then the support of µψk,` has at least s points and in our construction ν (s)k,` is the Gauß-Jacobi

measure of µψk,`. Consequently

e
�

fk,`

�

:=

∫ R

0

fk,` (r) r
−kdµk,` (r)−

∫ R

0

fk,` (r) r
−kdσ(s)k,` (r)

=

∫ R2

0

fk,`

�p
t
�

t−
1
2 kdµψk,` (t)−

∫ R2

0

fk,`

�p
t
�

t−
1
2 kdν (s)k,` (t) .

By Markov’s error estimate one obtains with gk,` (t) := fk,`

�p
t
�

t−
1
2 k the inequality

e
�

fk,`

�

≤
1

(2s)!
sup

0<ξ<R2

�

�

�g(2s)
k,` (ξ)

�

�

�

∫ R2

02

�

�

�Qs
k,` (t)

�

�

�

2
dµψk,` (t) .

The proof is complete.

Now we are going to apply the results for holomorphic functions in several variables. We define the complex ball in Cd

with center 0 and radius τ by

BC
τ
= {
�

w1, ..., wd
�

∈ Cd :
d
∑

j=1

�

�w j

�

�

2
< τ2}.

We assume that f is holomorphic on BC
τ

for τ > R. For fixed θ ∈ Sd−1 we define a map

ϕθ : {z ∈ C : |z|< τ} → BC
τ by ϕθ (z) = zθ

which is clearly holomorphic. Hence fθ defined by fθ (z) = f (zθ) = f ◦ ϕθ (z) is holomorphic. It follows that fk,` (z)
defined by

fk,` (z) =

∫

Sd−1

f (zθ)Yk,` (θ) dθ (25)

is a holomorphic extension of fk,` to {z ∈ C : |z|< τ}. For further material about analytic extensions of Fourier-Laplace
series and Fourier-Laplace coefficients we refer to [14], [17] and [24].

Now we need the following result:
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Lemma 4.3. Let f be a holomorphic function on the open ball BC
τ

for τ > 0. Let fk,` be the Fourier-Laplace coefficient of f and
define

pk,` (t) = fk,`

�p
t
�

· t−k/2

for 0< t < τ2 Then the following inequality
�

�

�

�

d s

d t s pk,` (t)

�

�

�

�

≤pωd max
u∈[0,2π],θ∈Sd−1

�

�

� f
�

eiuρθ
�

�

�

�

ρ2−ks!
�

ρ2 − t
�s+1 (26)

holds for all 0< t < ρ2 < τ2 and for all natural numbers s.

Proof. We apply Cauchy-Schwarz inequality to the integral (25) obtaining

�

� fk,` (z)
�

�

2 ≤
∫

Sd−1

�

� f (zθ)
�

�

2
dθ ·

∫

Sd−1

�

�Yk,` (θ)
�

�

2
dθ .

Since Yk,` is orthonormal we obtain for z = |z| eiu and |z|= ρ

�

� fk,` (z)
�

�

2 ≤ωd max
u∈[0,2π],θ∈Sd−1

�

�

� f
�

eiuρθ
�

�

�

�

2
. (27)

Let us recall the Cauchy estimates for a holomorphic function g in the ball |z|< τ applied for |z|= ρ

�

�g(n) (0)
�

�≤
n!

ρn max
|z|=ρ

�

�g (z)
�

�

We apply this estimate to the holomorphic function fk,` (z) and n= m+ k and we use (27):
�

�

�

�

�

dm+k

dzm+k fk,` (0)

�

�

�

�

�

≤
(k+m)!
ρm+k

p
ωd max

u∈[0,2π],θ∈Sd−1

�

�

� f
�

eiuρθ
�

�

�

� . (28)

Since fk,` (z) is holomorphic for |z|< τ we can write fk,` as a power series. Further it is known (see [6]) that

f (
j)

k,` (0) = 0 for j = 0, ..., k− 1,

Hence we can write for |z|< τ

fk,` (z) =
∞
∑

m=k

1

m!

dm

drm fk,` (0) · zm.

It is known that r−k fk,` (r) is an even function (see [6]), hence we can obtain a description for the function pk,`

�

r2�:

pk,`

�

r2
�

= r−k fk,` (r) =
∞
∑

m=0

1

(k+ 2m)!
d2m+k

dr2m+k fk,` (0) · r2m.

Then for t = r2 we conclude that

pk,` (t) =
∞
∑

m=0

1

(k+ 2m)!
d2m+k

dr2m+k fk,` (0) · tm.

We infer that
d s

d t s pk,` (t) =
∞
∑

m=s

1

(k+ 2m)!
m!

(m− s)!
d2m+k

dr2m+k fk,` (0) · t(m−s).

Now (28) implies
�

�

�

�

d s

d t s pk,` (t)

�

�

�

�

≤pωd max
u∈[0,2π],θ∈Sd−1

�

�

� f
�

eiuρθ
�

�

�

�

1

ρk+2s

∞
∑

m=s

m!

(m− s)!

�

t

ρ2

�m−s

.
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For |x |< 1 we have
∞
∑

m=s

m!

(m− s)!
xm−s =

d s

d x s

∞
∑

m=0

xm =
d s

d t s

1

1− x
= s! (1− x)−s−1

and we see that
�

�

�

�

d s

d t s pk,` (t)

�

�

�

�

≤pωd max
u∈[0,2π],θ∈Sd−1

�

�

� f
�

eiuρθ
�

�

�

�

s!

ρk+2s

�

1−
t

ρ2

�−s−1

which gives (26).

Combining the last two results we obtain:

Theorem 4.4. Let µ be a pseudo-positive signed measure with support in BR satisfying the summability condition (22) and let
σ(s) be the polyharmonic Gauß-Jacobi measure of order s. Then the error Es

�

f
�

is less than or equal to

p
ωdρ

2

�

ρ2 − R2
�2s+1 max

w∈Cn ,|w|≤ρ

�

� f (w)
�

�

∞
∑

k=0

ak
∑

`=1

1

ρk

∫ R2

0

�

�

�Qs
k,` (t)

�

�

�

2
dµψk,` (t)

for all functions f : BR→ C which possess a holomorphic extension to the complex ball BC
τ

for τ > R where ρ is any number
with R< ρ < τ.

Proof. By Theorem 4.2 the error Es
�

f
�

is less than or equal

1

(2s)!

∞
∑

k=0

ak
∑

`=1

sup
0<ξ<R2

�

�

�

�

d2s

d t2s

h

fk,`

�p
t
�

t−
1
2 k
i

(ξ)

�

�

�

�

∫ R2

0

�

�

�Qs
k,` (t)

�

�

�

2
dµψk`.

Lemma 4.3 applied for index 2s and for pk,` (t) = fk,`

�p
t
�

t−
1
2 k shows that

�

�

�

�

d2s

d t2s pk,` (t)

�

�

�

�

≤pωd max
u∈[0,2π],θ∈Sd−1

�

�

� f
�

eiuρθ
�

�

�

�

ρ2−k (2s)!
�

ρ2 − t
�2s+1 .

Using that ρ2 − ξ≥ R2 for 0< ξ < R2 we conclude that the error Es
�

f
�

is less than or equal

p
ωd max

u∈[0,2π],θ∈Sd−1

�

�

� f
�

eiuρθ
�

�

�

�

∞
∑

k=0

ak
∑

`=1

ρ2−k

�

ρ2 − R2
�2s+1

∫ R2

0

�

�

�Qs
k,` (t)

�

�

�

2
dµψk`

and the statement is proven.

We can simplify the estimate in the following way:

Theorem 4.5. Let µ be a pseudo-positive signed measure with support in BR satisfying the summability condition (22) and let
σ(s) be the polyharmonic Gauß-Jacobi measure of order s. Then the error Es

�

f
�

is less than or equal to

p
ωdρ

2R2s

�

ρ2 − R2
�2s+1 max

w∈Cn ,|w|≤ρ

�

� f (w)
�

�

∞
∑

k=0

ak
∑

`=1

�

R

ρ

�k ∫ R

0

r−kdµk,` (r)

for all functions f : BR→ C which possess a holomorphic extension to the complex ball BC
τ

for τ > R where ρ is any number
with R< ρ < τ.

Proof. Note that the polynomial Qs
k,` (t) of degree s is of the form

Qs
k,` (t) =

�

t − t1,k,`

�

....
�

t − ts,k,`

�

where the points t j,k,` are in the interval
�

0, R2� . It follows that
�

�t − t j,k.`

�

�< R2 and we obtain the estimate

∫ R2

0

�

�

�Qs
k,` (t)

�

�

�

2
dµψk,` (t)≤ R2s

∫ R2

0

1dµψk,` (t) = R2s

∫ R

0

1dµk,` (r) .
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Since
∫ R

0

1dµk,` (r) =

∫ R

0

rk r−kdµk,` (r)≤ Rk

∫ R

0

r−kdµk,` (r)

we can finally estimate

1

ρk

∫ R2

0

�

�

�Qs
k,` (t)

�

�

�

2
dµψk,` (t)≤ R2s

�

R

ρ

�k ∫ R

0

r−kdµk,` (r)

and in view of Theorem 4.4 the statement is proved.

Finally we see that
R2

ρ2 − R2 < 1

is equivalent to the condition 2R2 < ρ2. Thus for functions f which have a holomorphic extension to the complex ball with
radius τ > 2R2 we obtain an estimate where the error decreases rapidly when the order of the polyharmonic cubature is
increased.
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