Error Estimates for Polyharmonic Cubature Formulas

Hermann Render ${ }^{a}$. Ognyan Kounchev ${ }^{b}$

Abstract

In the present article we shall present basic features of a polyharmonic cubature formula of degree s and corresponding error estimates. Main results are Markov-type error estimates for differentiable functions and error estimates for functions f which possess an analytic extension to a sufficiently large ball in the complex space \mathbb{C}^{d}.

2000 AMS subject classification: 65D30, 32A35

Keywords: Numerical integration, cubature formula, Fourier-Laplace series.

1 Introduction

Let $C\left(\mathbb{R}^{d}\right)$ be the set of all continuous complex-valued functions on the euclidean space \mathbb{R}^{d}. A cubature formula C is a linear functional on $C\left(\mathbb{R}^{d}\right)$ of the form

$$
\begin{equation*}
C(f):=\alpha_{1} f\left(x_{1}\right)+\ldots .+\alpha_{N} f\left(x_{N}\right) . \tag{1}
\end{equation*}
$$

The points x_{1}, \ldots, x_{N} are called nodes or knots and the coefficients $\alpha_{1}, \ldots, \alpha_{N} \in \mathbb{R}$ the weights. A basic problem in numerical analysis is to approximate integrals of the form

$$
\int f(x) d \mu(x)
$$

for a (signed) measure μ in the euclidean space \mathbb{R}^{d} by suitable cubature formulas.
An important characteristic of a cubature formula is exactness: the functional C is exact on a subspace U of $C\left(\mathbb{R}^{d}\right)$ with respect to a measure μ if

$$
\begin{equation*}
C(f)=\int f(x) d \mu(x) \tag{2}
\end{equation*}
$$

holds for all $f \in U$. If U_{s} is the set of all polynomials \mathcal{P}_{s} of degree $\leq s$, and the cubature is exact on U_{s} but not on U_{s+1}, we say that C has order s. Exactness on the space \mathcal{P}_{s} can be expressed by the identities

$$
C\left(x^{\alpha}\right)=\int x^{\alpha} d \mu(x)
$$

for each multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}_{0}^{d}$ with $|\alpha|:=\alpha_{1}+\ldots+\alpha_{d} \leq s$ where $x^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{d}^{\alpha_{d}}$. In the theory of cubature formula it is assumed that the moments

$$
\int x^{\alpha} d \mu(x)
$$

[^0]for $|\alpha| \leq s$ exist and that they can be explicitly calculated. The problem is to find constructive methods for determining nodes and weights from this information. In particular, a cubature formula leads to a solution of the so-called truncated moment problem. For a discussion of cubature formulas we refer to [26], [27], [29] and the recent survey [7].

In [15] and [18] we have introduced a new type of functional which approximates the integral

$$
\begin{equation*}
\int f(x) d \mu(x) \tag{3}
\end{equation*}
$$

for a class of measures μ with support in the ball

$$
\begin{equation*}
B_{R}=\left\{x \in \mathbb{R}^{d}:|x|<R\right\} \tag{4}
\end{equation*}
$$

and continuous functions $f: B_{R} \rightarrow \mathbb{C}$ where R is a positive number or ∞, and

$$
r=|x|=\sqrt{x_{1}^{2}+\ldots .+x_{d}^{2}}
$$

is the euclidean norm of $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$. The unit sphere will be denoted by

$$
\mathbb{S}^{d-1}:=\left\{x \in \mathbb{R}^{d}:|x|=1\right\},
$$

and endowed with the rotation invariant measure $d \theta$.
Our approach is based on the Fourier-Laplace series of the function $f(x)$. In order to make concepts simpler we shall restrict our discussion in the introduction to the two-dimensional case where the Fourier-Laplace series is just the Fourier series of a function. Hence we define the basis functions

$$
\begin{equation*}
Y_{0,0}(x)=Y_{0,0}(r \cos t, r \sin t)=\frac{1}{\sqrt{2 \pi}} \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
& Y_{k, 1}(x)=Y_{k, 1}(r \cos t, r \sin t)=\frac{1}{\sqrt{\pi}} r^{k} \cos k t \tag{6}\\
& Y_{k, 2}(x)=Y_{k, 2}(r \cos t, r \sin t)=\frac{1}{\sqrt{\pi}} r^{k} \sin k t \tag{7}
\end{align*}
$$

for $k \in \mathbb{N}$ where \mathbb{N} denotes the set of all natural numbers, and $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$. A point $x \in \mathbb{R}^{2}$ is written as $x=(r \cos t, r \sin t)$ where r is the radius of x and $(\cos t, \sin t)$ is in the unit sphere. The Fourier coefficients of a continuous function f are defined by

$$
f_{k, \ell}(r)=\int_{0}^{2 \pi} f(r \cos t, r \sin t) \cdot Y_{k, \ell}(\cos t, \sin t) d t
$$

The Fourier series of the continuous function $f: B_{R} \rightarrow \mathbb{C}$ is defined by the formal expansion

$$
\begin{equation*}
\sum_{k=0}^{\infty} \sum_{\ell=1}^{a_{k}} f_{k, \ell}(r) Y_{k, \ell}(\theta) \tag{8}
\end{equation*}
$$

where $a_{0}=1$ and $a_{k}=2$ for $k \in \mathbb{N}$, and $\theta=(\cos t, \sin t)$. It is easy to see that $f_{k, \ell}$ is a continuous function if f is continuous. Furthermore, if f is infinitely differentiable in B_{R} then the function

$$
f_{k, \ell}(r) r^{-k}
$$

is even (and infinitely differentiable), see [6]. Finally, if f is a polynomial then $f_{k, \ell}(r) r^{-k}$ is a univariate polynomial in r^{2}, see Section 2 for more details.

If f is sufficiently smooth then the Fourier series (8) converges absolutely and uniformly on compact subsets of B_{R} to the function $f(x)$ and one obtains that

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} f(x) d \mu & =\sum_{k=0}^{\infty} \sum_{\ell=1}^{a_{k}} \int_{\mathbb{R}^{2}} f_{k, \ell}(r) Y_{k, \ell}(\theta) d \mu(x) \\
& =\sum_{k=0}^{\infty} \sum_{\ell=1}^{a_{k}} \int_{\mathbb{R}^{2}} f_{k, \ell}(r) r^{-k} Y_{k, \ell}(x) d \mu(x) .
\end{aligned}
$$

We shall now call a signed measure μ with support in $B_{R} \subset \mathbb{R}^{2}$ pseudo-positive if the inequality

$$
\int_{\mathbb{R}^{2}} h(|x|) Y_{k, \ell}(x) d \mu(x) \geq 0
$$

holds for every non-negative continuous function $h:[0, R] \rightarrow[0, \infty)$ and for all $k \in \mathbb{N}_{0}$, and $\ell=1, \ldots, a_{k}$. By the Riesz representation theorem there exist unique non-negative measures $\mu_{k, \ell}$ defined on $[0, R]$, which we call component measures, such that

$$
\int_{0}^{\infty} h(t) d \mu_{k, \ell}(t)=\int_{\mathbb{R}^{2}} h(|x|) Y_{k, \ell}(x) d \mu
$$

holds for all $h \in C[0, R]$. Using this notation we obtain

$$
\int_{\mathbb{R}^{2}} f(x) d \mu=\sum_{k=0}^{\infty} \sum_{\ell=1}^{a_{k}} \int_{0}^{\infty} f_{k, \ell}(r) r^{-k} d \mu_{k, \ell}(r)
$$

In passing, we mention that radially symmetric measures are pseudo-positive.
The main idea in our approach is to use quadrature formulas to approximate the univariate integrals

$$
\begin{equation*}
\int_{0}^{\infty} f_{k, \ell}(r) r^{-k} d \mu_{k, \ell}(r) \tag{9}
\end{equation*}
$$

Thus we assume in our approach that the Fourier coefficients $f_{k, \ell}(r)$ are known. One may use Fast-Fourier Transform to find approximations of $f_{k, \ell}$ and to combine these with our approach in order to find cubature formulas only involving the function values of $f-$ a topic which we want to consider in a future paper.

Next we want to discuss which kind of quadrature formulas for approximating (9) are useful. Due to the fact that $f_{k, \ell}(r) r^{-k}$ is an even function for smooth f we shall require that the quadrature formula is exact for all polynomials of the form $r^{2 j}$ for $j=0, \ldots, 2 s-1$ where s a given natural number. By taking the transformation \sqrt{r} this means that the transformed quadrature formula should be exact for all polynomial t^{j} for $j=0, \ldots, 2 s-1$ - and here the classical Gauß-Jacobi quadrature enters the game.

Our polyharmonic cubature formula is now defined in the following way: given a pseudo-positive measure μ we consider the component measures $\mu_{k, \ell}(r)$. Let $\mu_{k, \ell}^{\psi}$ be the image measure of $\mu_{k, \ell}$ for the transformation $\psi:[0, \infty) \rightarrow[0, \infty)$ defined by $\psi(r)=r^{2}$, so

$$
\int_{0}^{\infty} f_{k, \ell}(r) r^{-k} d \mu_{k, \ell}(r)=\int_{0}^{\infty} f_{k, \ell}(\sqrt{t}) t^{-k / 2} d \mu_{k, \ell}^{\psi}(t)
$$

For the non-negative univariate measures $\mu_{k, \ell}^{\psi}$ we shall use the univariate Gauß-Jacobi quadratures $v_{k, \ell}^{(s)}$ of order $2 s-1$ as an approximation of $\mu_{k, \ell}^{\psi}$. The polyharmonic cubature $T^{(s)}(f)$ of degree s is then defined by

$$
T^{(s)}(f):=\sum_{k=0}^{\infty} \sum_{\ell=1}^{a_{k}} \int_{0}^{\infty} f_{k, \ell}(\sqrt{t}) t^{-\frac{1}{2} k} d v_{k, \ell}^{(s)}(t)
$$

The cubature formula $T^{(s)}$ will be defined at first only for polynomials: then the sum in the definition of $T^{(s)}(f)$ is actually a finite sum and no convergence questions occur. The cubature formula $T^{(s)}$ has the property that

$$
T^{(s)}\left(|x|^{2 j} Y_{k, \ell}(x)\right)=\int|x|^{2 j} Y_{k, \ell}(x) d \mu(x)
$$

for all $j=0, \ldots, 2 s-1$ and for all $k \in \mathbb{N}_{0}, \ell=1, \ldots, a_{k}$. This is equivalent to the functional $T^{(s)}$ being exact on the space of all polynomials of polyharmonic order $\leq 2 s$.

In [15] we investigated the truncated moment problem for pseudo-positive measures. In the present article we shall present a Markov-type error estimate for the polyharmonic cubature formula and apply this estimate to functions f which possess an analytic extension on the ball in \mathbb{C}^{d} with center 0 and sufficiently large radius. For an error estimate of polyharmonic cubature formula based on complex methods we refer to [16]. As general background information we mention as well our unpublished manuscript [18] which contains also instructive examples.

The paper is organized in the following way: in Section 2 we shall provide background material about spherical harmonics and Fourier-Laplace series which is necessary for the case $d>2$. In Section 3 we give a short review of properties of the polyharmonic cubature formulas. Section 4 contains the main result of the paper - an error estimate for $T^{(s)}$ which is based on the error estimate of Markov for quadratures.

2 Polyharmonic polynomials and Spherical harmonics

We shall write $x \in \mathbb{R}^{d}$ in spherical coordinates $x=r \theta$ with $\theta \in \mathbb{S}^{d-1}$. Let $\mathcal{H}_{k}\left(\mathbb{R}^{d}\right)$ be the set of all harmonic homogeneous complex-valued polynomials of degree k. Then $f \in \mathcal{H}_{k}\left(\mathbb{R}^{d}\right)$ is called a solid harmonic and the restriction of f to \mathbb{S}^{d-1} a spherical harmonic of degree k and we set

$$
\begin{equation*}
a_{k}:=\operatorname{dim} \mathcal{H}_{k}\left(\mathbb{R}^{d}\right) \tag{10}
\end{equation*}
$$

see [28], [25], [1], [13] for details. Throughout the paper we shall assume

$$
\begin{equation*}
Y_{k, \ell}: \mathbb{R}^{d} \rightarrow \mathbb{R}, \ell=1, \ldots, a_{k} \tag{11}
\end{equation*}
$$

is an orthonormal basis of $\mathcal{H}_{k}\left(\mathbb{R}^{d}\right)$ with respect to the scalar product

$$
\langle f, g\rangle_{\mathbb{S}^{d}-1}:=\int_{\mathbb{S}^{d-1}} f(\theta) \overline{g(\theta)} d \theta
$$

We shall often use the trivial identity $Y_{k, \ell}(x)=r^{k} Y_{k \ell}(\theta)$ for $x=r \theta$. Further we define the surface area ω_{d} by

$$
\omega_{d}=\int_{\mathbb{S}^{d}-1} 1 d \theta
$$

The Fourier-Laplace series of the continuous function $f: B_{R} \rightarrow \mathbb{C}$, is defined by the formal expansion

$$
\begin{equation*}
f(r \theta)=\sum_{k=0}^{\infty} \sum_{\ell=1}^{a_{k}} f_{k, \ell}(r) Y_{k, \ell}(\theta) \tag{12}
\end{equation*}
$$

where a_{k} is defined in (10) and the Fourier-Laplace coefficient $f_{k, \ell}(r)$ is defined by

$$
\begin{equation*}
f_{k, \ell}(r)=\int_{\mathbb{S}^{d-1}} f(r \theta) Y_{k, \ell}(\theta) d \theta \tag{13}
\end{equation*}
$$

for any non-negative real number r with $0 \leq r<R$.
There is a strong interplay between algebraic and analytic properties of the function f and those of the Fourier-Laplace coefficients $f_{k, \ell}$. For example, if $f(x)$ is a polynomial in the variable $x=\left(x_{1}, \ldots, x_{d}\right)$ then the Fourier-Laplace coefficient $f_{k, \ell}$ is of the form $f_{k, \ell}(r)=r^{k} p_{k, \ell}\left(r^{2}\right)$ where $p_{k, \ell}$ is a univariate polynomial, see e.g. in [28] or [26]. Hence, the Fourier-Laplace series (12) of a polynomial $f(x)$ is equal to

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\operatorname{deg} f} \sum_{\ell=1}^{a_{k}} p_{k, \ell}\left(|x|^{2}\right) Y_{k, \ell}(x) \tag{14}
\end{equation*}
$$

where $\operatorname{deg} f$ is the total degree of f and $p_{k, \ell}$ is a univariate polynomial of degree $\leq \operatorname{deg} f-k$. This representation is often called the Gauss representation.

A similar formula is valid for a much larger class of functions. Let us recall that a function $f: G \rightarrow \mathbb{C}$ defined on an open set G in \mathbb{R}^{d} is called polyharmonic of order N if f is $2 N$ times continuously differentiable and

$$
\begin{equation*}
\Delta^{N} u(x)=0 \tag{15}
\end{equation*}
$$

for all $x \in G$ where

$$
\Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\ldots+\frac{\partial^{2}}{\partial x_{d}^{2}}
$$

is the Laplace operator and Δ^{N} the N-th iterate of Δ. The theorem of Almansi states that for a polyharmonic function f of order N defined on the ball $B_{R}=\left\{x \in \mathbb{R}^{d}:|x|<R\right\}$ there exist univariate polynomials $p_{k, \ell}(t)$ of degree $\leq N-1$ such that

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty} \sum_{\ell=1}^{a_{k}} p_{k, \ell}\left(|x|^{2}\right) Y_{k, \ell}(x) \tag{16}
\end{equation*}
$$

where convergence of the sum is uniform on compact subsets of B_{R}, see e.g. [26], [3], [2] and [17] for further extensions. Neglecting at the moment questions of convergence we see that

$$
\int f(x) d \mu(x)=\sum_{k=0}^{\infty} \sum_{\ell=1}^{a_{k}} \int p_{k, \ell}\left(|x|^{2}\right) Y_{k, \ell}(x) d \mu(x)
$$

Note that $p_{k, \ell}$ is a univariate function depending on $|x|^{2}$ and note that $|x|^{2 s} Y_{k, \ell}(x)$ is indeed a polynomial and therefore

$$
\int|x|^{2 s} Y_{k, \ell}(x) d \mu(x)
$$

can be expressed as a sum of monomial moments. The above mentioned Gauss decomposition just says that each multivariate polynomial $f(x)$ is indeed a linear combination of polynomials of the type $|x|^{2 s} Y_{k, \ell}(x)$.

These considerations have led us to the following definition: a signed measure μ with support in $B_{R} \subset \mathbb{R}^{d}$ is pseudopositive with respect to the orthonormal basis $Y_{k, \ell}, \ell=1, \ldots, a_{k}, k \in \mathbb{N}_{0}$ if the inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} h(|x|) Y_{k, \ell}(x) d \mu(x) \geq 0 \tag{17}
\end{equation*}
$$

holds for every non-negative continuous function $h:[0, R] \rightarrow[0, \infty)$ and for all $k \in \mathbb{N}_{0}, \ell=1,2, \ldots, a_{k}$. Then the following can be proved, see [15].
Theorem 2.1. Let μ be a pseudo-positive measure on \mathbb{R}^{d} with support in $B_{R} \subset \mathbb{R}^{d}$. Then there exist unique non-negative measures $\mu_{k, \ell}$ with support in $[0, R]$, which we call component measures, such that

$$
\begin{equation*}
\int_{0}^{\infty} h(t) d \mu_{k, \ell}(t)=\int_{\mathbb{R}^{d}} h(|x|) Y_{k, \ell}(x) d \mu \tag{18}
\end{equation*}
$$

holds for all $h \in C[0, R]$. Further

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} f(x) d \mu=\sum_{k=0}^{\infty} \sum_{\ell=1}^{a_{k}} \int_{0}^{\infty} f_{k, \ell}(r) r^{-k} d \mu_{k, \ell}(r) \tag{19}
\end{equation*}
$$

for each $f \in C\left(\mathbb{R}^{d}\right)$ whose Fourier-Laplace series has only finitely many non-zero terms.
Let $\psi:[0, \infty) \rightarrow[0, \infty)$ be the transformation $\psi(t)=t^{2}$ and let $\mu_{k, \ell}^{\psi}$ be the image measure of $\mu_{k, \ell}$ under ψ. Then (19) becomes

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} f(x) d \mu=\sum_{k=0}^{\infty} \sum_{\ell=1}^{a_{k}} \int_{0}^{\infty} f_{k, \ell}(\sqrt{t}) t^{-\frac{1}{2} k} d \mu_{k, \ell}^{\psi}(t) . \tag{20}
\end{equation*}
$$

The main idea is simple and consists in replacing in formula (20) the non-negative univariate measures $\mu_{k, \ell}^{\psi}$ by their univariate Gauß-Jacobi quadratures $v_{k, \ell}^{(s)}$ of order $2 s-1$. Then we obtain a functional $T^{(s)}$ defined on the set $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{d}\right]$ of all polynomials by setting

$$
\begin{equation*}
T^{(s)}(f):=\sum_{k=0}^{\infty} \sum_{\ell=1}^{a_{k}} \int_{0}^{\infty} f_{k, \ell}(\sqrt{t}) t^{-\frac{1}{2} k} d v_{k, \ell}^{(s)}(t) . \tag{21}
\end{equation*}
$$

Since f is a polynomial the series is finite and therefore $T^{(s)}$ is well-defined.
Sometimes it is useful to rewrite the definition of $T^{(s)}(f)$ using the variable r instead of t. If we define $\psi^{-1}(t)=\sqrt{t}$ (so ψ^{-1} is the inverse function of ψ) and if $\sigma_{k, \ell}^{(s)}$ is the image measure of $v_{k, \ell}^{(s)}$ under ψ^{-1}, then we may write

$$
T^{(s)}(f)=\sum_{k=0}^{\infty} \sum_{\ell=1}^{a_{k}} \int_{0}^{\infty} f_{k, \ell}(r) r^{-k} d \sigma_{k, \ell}^{(s)}(r) .
$$

3 Basic properties of the polyharmonic cubature

We shall recall from [15] and [18] some basic properties for the polyharmonic cubature formula:
Theorem 3.1. Let μ be a pseudo-positive measure with support in the ball B_{R}. Then the functional $T^{(s)}: \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{d}\right] \rightarrow \mathbb{C}$ is continuous with respect to the supremum norm provided that the summability assumption

$$
\begin{equation*}
\sum_{k=0}^{\infty} \sum_{\ell=1}^{a_{k}} \int_{0}^{\infty} r^{-k} d \mu_{k, \ell}(r)<\infty \tag{22}
\end{equation*}
$$

holds.
Proof. Since μ has support in B_{R} the measures $\mu_{k, \ell}$ have support in $[0, R]$. For the Fourier-Laplace coefficient $f_{k, \ell}$ we have

$$
\left|f_{k, \ell}(r)\right| \leq C \max _{|x| \leq R}|f(x)| \text { for } 0 \leq r \leq R .
$$

Hence

$$
\left|\int_{0}^{\infty} f_{k, \ell}(r) r^{-k} d \sigma_{k, \ell}^{(s)}(r)\right| \leq C \max _{|x| \leq R}|f(x)| \int_{0}^{\infty} r^{-k} d \sigma_{k, \ell}^{(s)}(r)
$$

and

$$
\begin{equation*}
\left|T^{(s)}(f)\right| \leq C \max _{|x| \leq R}|f(x)| \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_{k}} \int_{0}^{\infty} r^{-k} d \sigma_{k, \ell}^{(s)}(r) . \tag{23}
\end{equation*}
$$

For the convergence in (23) it suffices to prove

$$
\begin{equation*}
\int_{0}^{\infty} r^{-k} d \sigma_{k, \ell}^{(s)}(r) \leq \int_{0}^{\infty} r^{-k} d \mu_{k, \ell}(r) \tag{24}
\end{equation*}
$$

This inequality follows from the extremal property of the Gauß-Jacobi quadrature, see Theorem 4.1 in Chapter 4 of [21].

By the Riesz representation theorem there exists a signed measure $\sigma^{(s)}$ with support in the closed ball B_{R} such that

$$
T^{(s)}(f)=\int_{B_{R}} f(x) d \sigma^{(s)}(x)
$$

for all continuous functions $f: B_{R} \rightarrow \mathbb{C}$. Moreover, the component measures of the pseudo-positive measure $\sigma^{(s)}$ are exactly the univariate measures $\sigma_{k, \ell}^{(s)}$.

Note that the summability condition (22) can be rephrased in terms of the measure μ by the identity

$$
\int_{0}^{\infty} r^{-k} d \mu_{k, \ell}(r)=\int_{\mathbb{R}^{d}} Y_{k, \ell}\left(\frac{x}{|x|}\right) d \mu
$$

We summarize the results in the following
Theorem 3.2. Let μ be a pseudo-positive signed measure with support in the closed ball B_{R} satisfying the summability condition (22). Then for each natural number s there exists a unique pseudo-positive, signed measure $\sigma^{(s)}$ with support in B_{R} such that
(i) The support of each component measure $\sigma_{k, \ell}^{(s)}$ of $\sigma^{(s)}$ has cardinality $\leq s$.
(ii) $\int P d \mu=\int P d \sigma^{(s)}$ for all polynomials P with $\Delta^{2 s} P=0$.

Proof. The exactness of the Gauß-Jacobi quadratures $v_{k, \ell}^{(s)}$ for polynomials of degree $\leq 2 s-1 \operatorname{implies}$ that $T^{(s)}$ and μ coincide on the set of all polynomials P such that $\Delta^{2 s} P=0$. This is due to the fact that in the Laplace-Fourier expansion the coefficients are given by $f_{k, \ell}(r)=r^{k} p_{k, \ell}\left(r^{2}\right)$ where $p_{k, \ell}$ are polynomials of degree $2 s-1$.

Definition 3.1. The measure $\sigma^{(s)}$ constructed in the last Theorem will be called the polyharmonic Gauß-Jacobi measure of order s for the measure μ.

The following is an analog to the theorem of Stieltjes about the convergence of the univariate Gauß-Jacobi quadrature formulas.
Theorem 3.3. Let $\sigma^{(s)}$ be the polyharmonic Gau β-Jacobi measure of order s for the measure μ, obtained in Theorem 3.2. Then

$$
\int f(x) d \sigma^{(s)} \rightarrow \int f(x) d \mu \quad \text { for } s \rightarrow \infty
$$

holds for every function $f \in C\left(B_{R}\right)$.
Proof. For any polynomial P the convergence $T^{(s)}(P) \rightarrow P$ holds for $s \longrightarrow \infty$. By standard results, the convergence $T^{(s)}(f) \rightarrow f$ carries over to all continuous functions $f: B_{R} \rightarrow \mathbb{C}$ provided there exists a constant $C>0$ such that

$$
\left|T^{(s)}(f)\right| \leq C \max _{|x| \leq R}|f(x)| .
$$

for all natural numbers s and all $f \in C\left(B_{R}\right)$.
In a similar way one can prove the following result:
Theorem 3.4. Let μ be a pseudo-positive signed measure with support in B_{R} satisfying the summability condition (22) and let $\sigma^{(s)}$ be the polyharmonic Gau β-Jacobi measure of order s. If $f \in C^{2 s}\left(\mathbb{R}^{d}\right)$ has the property that

$$
\frac{d^{2 s}}{d t^{2 s}}\left[f_{k, \ell}(\sqrt{t}) t^{-\frac{1}{2} k}\right] \geq 0
$$

for all $t \in\left(0, R^{2}\right)$ and for all $k \in \mathbb{N}_{0}, \ell=1,2, \ldots, a_{k}$, then the following inequality

$$
\int f(x) d \sigma^{(s)} \leq \int f(x) d \mu
$$

holds.
Let us note that every signed measure $d \mu$ with bounded variation may be represented (non-uniquely) as a difference of two pseudo-positive measures. We refer to [15] for instructive examples of pseudo-positive measures.

4 Error estimate of the Polyharmonic Gauss-Jacobi Cubature formula

The topic of estimation of quadrature formulas for smooth and analytic functions is a widely studied one. Beyond the classical monographs [22], [8, p. 344], [9], we provide further and more recent publications, as [5], [10], [11], [12], [20], [23].

We recall here the following error estimate of Markov:
Theorem 4.1. (Markov) Let v be a non-negative measure over the interval $[a, b]$ and let v^{s} be the Gauss-Jacobi measure of order s. Define for every $g \in C[a, b]$ the error

$$
E_{s}(g):=\int_{a}^{b} g(t) d v(t)-\int_{a}^{b} g(t) d v^{(s)}(t) .
$$

If $g \in C^{2 s}[a, b]$ then

$$
\left|E_{s}(g)\right| \leq \frac{1}{(2 s)!} \sup _{a<\xi<b}\left|g^{(2 s)}(\xi)\right| \int_{a}^{b}\left|Q^{s}(t)\right|^{2} d v(t)
$$

where $Q^{s}(t)$ is the orthogonal polynomial of degree s, with leading coefficient 1 , relative to v.
We shall prove now the following analogue:

Theorem 4.2. Let $0<R<\infty$ and let $\psi:[0, \infty) \rightarrow[0, \infty)$ be defined by $\psi(t)=t^{2}$. Let μ be a pseudo-positive signed measure with support in B_{R} satisfying the summability condition (22), and let $\sigma^{(s)}$ be the polyharmonic Gau β-Jacobi measure of order s. Define for every $f \in C\left(B_{R}\right)$ the error functional

$$
E_{s}(f):=\int f(x) d \mu(x)-\int f(x) d \sigma^{(s)}(x)
$$

If $f \in C^{2 s}\left(B_{R}\right) \cap C\left(\overline{B_{R}}\right)$ then the error $E_{s}(f)$ is less than or equal to

$$
\frac{1}{(2 s)!} \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_{k}} \sup _{0<\xi<R^{2}}\left|\frac{d^{2 s}}{d t^{2 s}}\left[f_{k, \ell}(\sqrt{t}) t^{-\frac{1}{2} k}\right](\xi)\right| \int_{0}^{R^{2}}\left|Q_{k, \ell}^{s}(t)\right|^{2} d \mu_{k \ell}^{\psi} .
$$

Here $Q_{k, \ell}^{s}(t)$ is the orthogonal polynomial of degree s with respect to the measure $\mu_{k \ell}^{\psi}$, having a leading coefficient equal to 1 ; if the support of $\mu_{k, \ell}$ has less than s points, $Q_{k, \ell}^{s}$ is defined to be 0 .

Proof. Since $f \in C^{2 s}\left(B_{R}\right) \cap C\left(\overline{B_{R}}\right)$ it is easy to see that the Fourier-Laplace coefficients $f_{k, \ell} \in C^{2 s}(0, R) \cap C[0, R]$. Let $\mu_{k, \ell}$ and $\sigma_{k, \ell}, k \in \mathbb{N}_{0}, \ell=1, \ldots, a_{k}$, and $\sigma^{(s)}$ be as in Theorem 3.2. From the definitions it follows

$$
E_{s}(f)=\sum_{k=0}^{\infty} \sum_{\ell=1}^{a_{k}} \int_{0}^{R} f_{k, \ell}(r) r^{-k} d \mu_{k, \ell}-\int_{0}^{R} f_{k, \ell}(r) r^{-k} d \sigma_{k, \ell}^{(s)}
$$

Further $f_{k, \ell}(r) r^{-k}$ is integrable with respect to $\mu_{k, \ell}$ since $f_{k, \ell}$ is continuous on [0,R] and condition (22) holds. Let us fix the pair of indices (k, ℓ). If the support of $\mu_{k, \ell}$ has less than s points we know that $\mu_{k, \ell}=\sigma_{k, \ell}^{(s)}$. So assume that the support of $\mu_{k, \ell}$ has at least s points. Then the support of $\mu_{k, \ell}^{\psi}$ has at least s points and in our construction $v_{k, \ell}^{(s)}$ is the Gauß-Jacobi measure of $\mu_{k, \ell}^{\psi}$. Consequently

$$
\begin{aligned}
e\left(f_{k, \ell}\right) & :=\int_{0}^{R} f_{k, \ell}(r) r^{-k} d \mu_{k, \ell}(r)-\int_{0}^{R} f_{k, \ell}(r) r^{-k} d \sigma_{k, \ell}^{(s)}(r) \\
& =\int_{0}^{R^{2}} f_{k, \ell}(\sqrt{t}) t^{-\frac{1}{2} k} d \mu_{k, \ell}^{\psi}(t)-\int_{0}^{R^{2}} f_{k, \ell}(\sqrt{t}) t^{-\frac{1}{2} k} d v_{k, \ell}^{(s)}(t) .
\end{aligned}
$$

By Markov's error estimate one obtains with $g_{k, \ell}(t):=f_{k, \ell}(\sqrt{t}) t^{-\frac{1}{2} k}$ the inequality

$$
e\left(f_{k, \ell}\right) \leq \frac{1}{(2 s)!} \sup _{0<\xi<R^{2}}\left|g_{k, \ell}^{(2 s)}(\xi)\right| \int_{0^{2}}^{R^{2}}\left|Q_{k, \ell}^{s}(t)\right|^{2} d \mu_{k, \ell}^{\psi}(t)
$$

The proof is complete.
Now we are going to apply the results for holomorphic functions in several variables. We define the complex ball in \mathbb{C}^{d} with center 0 and radius τ by

$$
B_{\tau}^{\mathbb{C}}=\left\{\left(w_{1}, \ldots, w_{d}\right) \in \mathbb{C}^{d}: \sum_{j=1}^{d}\left|w_{j}\right|^{2}<\tau^{2}\right\} .
$$

We assume that f is holomorphic on $B_{\tau}^{\mathbb{C}}$ for $\tau>R$. For fixed $\theta \in \mathbb{S}^{d-1}$ we define a map

$$
\varphi_{\theta}:\{z \in \mathbb{C}:|z|<\tau\} \rightarrow B_{\tau}^{\mathbb{C}} \text { by } \varphi_{\theta}(z)=z \theta
$$

which is clearly holomorphic. Hence f_{θ} defined by $f_{\theta}(z)=f(z \theta)=f \circ \varphi_{\theta}(z)$ is holomorphic. It follows that $f_{k, \ell}(z)$ defined by

$$
\begin{equation*}
f_{k, \ell}(z)=\int_{\mathbb{S}^{d-1}} f(z \theta) Y_{k, \ell}(\theta) d \theta \tag{25}
\end{equation*}
$$

is a holomorphic extension of $f_{k, \ell}$ to $\{z \in \mathbb{C}:|z|<\tau\}$. For further material about analytic extensions of Fourier-Laplace series and Fourier-Laplace coefficients we refer to [14], [17] and [24].

Now we need the following result:

Lemma 4.3. Let f be a holomorphic function on the open ball $B_{\tau}^{\mathbb{C}}$ for $\tau>0$. Let $f_{k, \ell}$ be the Fourier-Laplace coefficient of f and define

$$
p_{k, \ell}(t)=f_{k, \ell}(\sqrt{t}) \cdot t^{-k / 2}
$$

for $0<t<\tau^{2}$ Then the following inequality

$$
\begin{equation*}
\left|\frac{d^{s}}{d t^{s}} p_{k, \ell}(t)\right| \leq \sqrt{\omega_{d}} \max _{u \in[0,2 \pi], \theta \in \mathbb{S}^{d-1}}\left|f\left(e^{i u} \rho \theta\right)\right| \frac{\rho^{2-k} s!}{\left(\rho^{2}-t\right)^{s+1}} \tag{26}
\end{equation*}
$$

holds for all $0<t<\rho^{2}<\tau^{2}$ and for all natural numbers s.
Proof. We apply Cauchy-Schwarz inequality to the integral (25) obtaining

$$
\left|f_{k, \ell}(z)\right|^{2} \leq \int_{\mathbb{S}^{d-1}}|f(z \theta)|^{2} d \theta \cdot \int_{\mathbb{S}^{d-1}}\left|Y_{k, \ell}(\theta)\right|^{2} d \theta
$$

Since $Y_{k, \ell}$ is orthonormal we obtain for $z=|z| e^{i u}$ and $|z|=\rho$

$$
\begin{equation*}
\left|f_{k, \ell}(z)\right|^{2} \leq \omega_{d} \max _{u \in[0,2 \pi], \theta \in S^{d-1}}\left|f\left(e^{i u} \rho \theta\right)\right|^{2} \tag{27}
\end{equation*}
$$

Let us recall the Cauchy estimates for a holomorphic function g in the ball $|z|<\tau$ applied for $|z|=\rho$

$$
\left|g^{(n)}(0)\right| \leq \frac{n!}{\rho^{n}} \max _{|z|=\rho}|g(z)|
$$

We apply this estimate to the holomorphic function $f_{k, \ell}(z)$ and $n=m+k$ and we use (27):

$$
\begin{equation*}
\left|\frac{d^{m+k}}{d z^{m+k}} f_{k, \ell}(0)\right| \leq \frac{(k+m)!}{\rho^{m+k}} \sqrt{\omega_{d}} \max _{u \in[0,2 \pi], \theta \in \mathbb{S}^{d-1}}\left|f\left(e^{i u} \rho \theta\right)\right| \tag{28}
\end{equation*}
$$

Since $f_{k, \ell}(z)$ is holomorphic for $|z|<\tau$ we can write $f_{k, \ell}$ as a power series. Further it is known (see [6]) that

$$
f_{k, \ell}^{(j)}(0)=0 \text { for } j=0, \ldots, k-1
$$

Hence we can write for $|z|<\tau$

$$
f_{k, \ell}(z)=\sum_{m=k}^{\infty} \frac{1}{m!} \frac{d^{m}}{d r^{m}} f_{k, \ell}(0) \cdot z^{m}
$$

It is known that $r^{-k} f_{k, \ell}(r)$ is an even function (see [6]), hence we can obtain a description for the function $p_{k, \ell}\left(r^{2}\right)$:

$$
p_{k, \ell}\left(r^{2}\right)=r^{-k} f_{k, \ell}(r)=\sum_{m=0}^{\infty} \frac{1}{(k+2 m)!} \frac{d^{2 m+k}}{d r^{2 m+k}} f_{k, \ell}(0) \cdot r^{2 m} .
$$

Then for $t=r^{2}$ we conclude that

$$
p_{k, \ell}(t)=\sum_{m=0}^{\infty} \frac{1}{(k+2 m)!} \frac{d^{2 m+k}}{d r^{2 m+k}} f_{k, \ell}(0) \cdot t^{m} .
$$

We infer that

$$
\frac{d^{s}}{d t^{s}} p_{k, \ell}(t)=\sum_{m=s}^{\infty} \frac{1}{(k+2 m)!} \frac{m!}{(m-s)!} \frac{d^{2 m+k}}{d r^{2 m+k}} f_{k, \ell}(0) \cdot t^{(m-s)} .
$$

Now (28) implies

$$
\left|\frac{d^{s}}{d t^{s}} p_{k, \ell}(t)\right| \leq \sqrt{\omega_{d}} \max _{u \in[0,2 \pi], \theta \in \mathbb{S}^{d-1}}\left|f\left(e^{i u} \rho \theta\right)\right| \frac{1}{\rho^{k+2 s}} \sum_{m=s}^{\infty} \frac{m!}{(m-s)!}\left(\frac{t}{\rho^{2}}\right)^{m-s} .
$$

For $|x|<1$ we have

$$
\sum_{m=s}^{\infty} \frac{m!}{(m-s)!} x^{m-s}=\frac{d^{s}}{d x^{s}} \sum_{m=0}^{\infty} x^{m}=\frac{d^{s}}{d t^{s}} \frac{1}{1-x}=s!(1-x)^{-s-1}
$$

and we see that

$$
\left|\frac{d^{s}}{d t^{s}} p_{k, \ell}(t)\right| \leq \sqrt{\omega_{d}} \max _{u \in[0,2 \pi], \theta \in \mathbb{S}^{d-1}}\left|f\left(e^{i u} \rho \theta\right)\right| \frac{s!}{\rho^{k+2 s}}\left(1-\frac{t}{\rho^{2}}\right)^{-s-1}
$$

which gives (26).
Combining the last two results we obtain:
Theorem 4.4. Let μ be a pseudo-positive signed measure with support in B_{R} satisfying the summability condition (22) and let $\sigma^{(s)}$ be the polyharmonic Gau β-Jacobi measure of order s. Then the error $E_{s}(f)$ is less than or equal to

$$
\frac{\sqrt{\omega_{d}} \rho^{2}}{\left(\rho^{2}-R^{2}\right)^{2 s+1}} \max _{w \in \mathbb{C}^{n},|w| \leq \rho}|f(w)| \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_{k}} \frac{1}{\rho^{k}} \int_{0}^{R^{2}}\left|Q_{k, \ell}^{s}(t)\right|^{2} d \mu_{k, \ell}^{\psi}(t)
$$

for all functions $f: B_{R} \rightarrow \mathbb{C}$ which possess a holomorphic extension to the complex ball $B_{\tau}^{\mathbb{C}}$ for $\tau>R$ where ρ is any number with $R<\rho<\tau$.
Proof. By Theorem 4.2 the error $E_{s}(f)$ is less than or equal

$$
\frac{1}{(2 s)!} \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_{k}} \sup _{0<\xi<R^{2}}\left|\frac{d^{2 s}}{d t^{2 s}}\left[f_{k, \ell}(\sqrt{t}) t^{-\frac{1}{2} k}\right](\xi)\right| \int_{0}^{R^{2}}\left|Q_{k, \ell}^{s}(t)\right|^{2} d \mu_{k \ell}^{\psi} .
$$

Lemma 4.3 applied for index $2 s$ and for $p_{k, \ell}(t)=f_{k, \ell}(\sqrt{t}) t^{-\frac{1}{2} k}$ shows that

$$
\left|\frac{d^{2 s}}{d t^{2 s}} p_{k, \ell}(t)\right| \leq \sqrt{\omega_{d}} \max _{u \in[0,2 \pi], \theta \in S^{d-1}}\left|f\left(e^{i u} \rho \theta\right)\right| \frac{\rho^{2-k}(2 s)!}{\left(\rho^{2}-t\right)^{2 s+1}} .
$$

Using that $\rho^{2}-\xi \geq R^{2}$ for $0<\xi<R^{2}$ we conclude that the error $E_{s}(f)$ is less than or equal

$$
\sqrt{\omega_{d}} \max _{u \in[0,2 \pi], \theta \in \mathbb{S}^{d-1}}\left|f\left(e^{i u} \rho \theta\right)\right| \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_{k}} \frac{\rho^{2-k}}{\left(\rho^{2}-R^{2}\right)^{2 s+1}} \int_{0}^{R^{2}}\left|Q_{k, \ell}^{s}(t)\right|^{2} d \mu_{k \ell}^{\psi}
$$

and the statement is proven.
We can simplify the estimate in the following way:
Theorem 4.5. Let μ be a pseudo-positive signed measure with support in B_{R} satisfying the summability condition (22) and let $\sigma^{(s)}$ be the polyharmonic Gauß-Jacobi measure of order s. Then the error $E_{s}(f)$ is less than or equal to

$$
\frac{\sqrt{\omega_{d}} \rho^{2} R^{2 s}}{\left(\rho^{2}-R^{2}\right)^{2 s+1}} \max _{w \in \mathbb{C}^{n},|w| \leq \rho}|f(w)| \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_{k}}\left(\frac{R}{\rho}\right)^{k} \int_{0}^{R} r^{-k} d \mu_{k, \ell}(r)
$$

for all functions $f: B_{R} \rightarrow \mathbb{C}$ which possess a holomorphic extension to the complex ball $B_{\tau}^{\mathbb{C}}$ for $\tau>R$ where ρ is any number with $R<\rho<\tau$.
Proof. Note that the polynomial $Q_{k, \ell}^{s}(t)$ of degree s is of the form

$$
Q_{k, \ell}^{s}(t)=\left(t-t_{1, k, \ell}\right) \ldots .\left(t-t_{s, k, \ell}\right)
$$

where the points $t_{j, k, \ell}$ are in the interval $\left(0, R^{2}\right)$. It follows that $\left|t-t_{j, k, \ell}\right|<R^{2}$ and we obtain the estimate

$$
\int_{0}^{R^{2}}\left|Q_{k, \ell}^{s}(t)\right|^{2} d \mu_{k, \ell}^{\psi}(t) \leq R^{2 s} \int_{0}^{R^{2}} 1 d \mu_{k, \ell}^{\psi}(t)=R^{2 s} \int_{0}^{R} 1 d \mu_{k, \ell}(r) .
$$

Since

$$
\int_{0}^{R} 1 d \mu_{k, \ell}(r)=\int_{0}^{R} r^{k} r^{-k} d \mu_{k, \ell}(r) \leq R^{k} \int_{0}^{R} r^{-k} d \mu_{k, \ell}(r)
$$

we can finally estimate

$$
\frac{1}{\rho^{k}} \int_{0}^{R^{2}}\left|Q_{k, \ell}^{s}(t)\right|^{2} d \mu_{k, \ell}^{\psi}(t) \leq R^{2 s}\left(\frac{R}{\rho}\right)^{k} \int_{0}^{R} r^{-k} d \mu_{k, \ell}(r)
$$

and in view of Theorem 4.4 the statement is proved.
Finally we see that

$$
\frac{R^{2}}{\rho^{2}-R^{2}}<1
$$

is equivalent to the condition $2 R^{2}<\rho^{2}$. Thus for functions f which have a holomorphic extension to the complex ball with radius $\tau>2 R^{2}$ we obtain an estimate where the error decreases rapidly when the order of the polyharmonic cubature is increased.

Acknowledgment

Both authors thank the Alexander von Humboldt Foundation.

References

[1] G.E. Andrews, R. Askey, R. Roy, Special functions. Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999.
[2] N. Aronszajn, T.M. Creese, L.J. Lipkin, Polyharmonic Functions, Clarendon Press, Oxford 1983.
[3] V. Avanissian, Cellule d'harmonicité et prolongement analytique complexe, Hermann, Paris, 1985.
[4] S. Axler, P. Bourdon, W. Ramey, Harmonic Function Theory, second edition, Springer, New York, 2001.
[5] N. S. Bakhvalov, On the optimal speed of integrating analytic functions, U.S.S.R. Comput. Math. Math. Phys. 7 (1967), 63-75.
[6] M.S. Baouendi, C. Goulaouic, L.J. Lipkin, On the operator $\Delta r^{2}+\mu(\partial / \partial r) r+\lambda$, J. Differential Equations 15 (1974), 499-509.
[7] R. Cools, An Encyclopaedia of Cubature Formulas, J. Complexity, 19 (2003), 445-453.
[8] P. Davis, Interpolation and Approximation. Dover Publications Inc., New York, 1975.
[9] P. Davis, P. Rabinowitz, Methods of Numerical Integration. Second edition. Computer Science and Applied Mathematics. Academic Press, Inc., Orlando, FL, 1984.
[10] W. Gautschi, R.S.Varga, Error Bounds for Gaussian Quadrature of Analytic Functions, SIAM J. Numer. Anal. 20, p. 1170-1186 (1983).
[11] M. Goetz, Optimal quadrature for analytic functions, J. Comput. Appl. Math. 137 (2001), 123-133.
[12] M. Kzaz, Convergence acceleration of some Gaussian quadrature formulas for analytic functions, J. Appl. Numer. Math. 10 (1992), 481-496.
[13] O. Kounchev, Multivariate Polysplines. Applications to Numerical and Wavelet Analysis, Academic Press, San Diego, 2001.
[14] O. Kounchev, H. Render, Holomorphic Continuation via Fourier-Laplace series, Contemporary Mathematics 455 (2008), 197-205.
[15] O. Kounchev, H. Render, A moment problem for pseudo-positive definite functionals, Arkiv fœr Matematik, 48 (2010), 97-120.
[16] O. Kounchev, H. Render, Polyharmonic Hardy spaces on the Complexified Annulus and Error estimates of Cubature formulas, Results Math. 62 (2012), 377-403.
[17] O. Kounchev, H. Render, Polyharmonic functions of infinite order on annular regions, to appear in Tohoku Math. Journal.
[18] O. Kounchev, H. Render, Reconsideration of the multivariate moment problem and a new method for approximating multivariate integrals, electronic version at arXiv:math/0509380v1 [math.FA]
[19] O. Kounchev, H. Render, Multivariate Moment Problem, Hardy Spaces, and Orthogonality, in preparation.
[20] M. A. Kowalski, A. G. Werschulz, and H. Wozniakowski, Is Gauss quadrature optimal for analytic functions?, Numer. Math. 47 (1985), 89-98.
[21] M. Krein, A. Nudelman, The Markov moment problem and extremal problems, Amer. Math. Soc., Providence, R.I., 1977.
[22] V. Krylov, Approximate calculation of integrals. Translated by Arthur H. Stroud, The Macmillan Co., New York-London, 1962.
[23] G. Milovanovic, M.M. Spalevic, Error bounds for Gauss-Turán quadrature formulas of analytic functions, Math. Comp. 72 (2003), 1855-1872.
[24] M. Morimoto, Analytic Functionals on the Sphere, Translation of Mathematical Monographs, Vo. 178, Amer. Math. Soc., Providence, Rhode Island 1998.
[25] R. Seeley, Spherical harmonics, Amer. Math. Monthly, 73 (1966), 115-121.
[26] S.L. Sobolev, Cubature formulas and modern analysis. An introduction. Translated from the 1988 Russian edition. Gordon and Breach Science Publishers, Montreux, 1992.
[27] S. Sobolev, V. Vaskevich, The theory of cubature formulas, Springer, Berlin, 1997.
[28] E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean spaces, Princeton University Press, 1971.
[29] A.H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, Englewood Cliffs, N.J., 1971.
[30] A.H. Stroud, Numerical quadrature and solution of ordinary differential equations. Springer-Verlag, New York-Heidelberg, 1974.
[31] A. N. Tikhonov, A. A. Samarskii, Equations of Mathematical Physics, Dover Publications, 1990.
[32] I. Vekua, New Methods for Solving Elliptic Equations. Wiley, New York, 1967.

[^0]: ${ }^{a}$ School of Mathematical Sciences, University College Dublin (Ireland)
 ${ }^{b}$ Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 Acad. G. Bonchev Str., 1113 Sofia (Bulgaria) and Interdisciplinary Center for Complex Systems (IZKS), University of Bonn (Germany)

