Dolomites Research Notes on Approximation

Proceedings of DWCAA12, Volume 6 · 2013 · Pages 62-73

Error Estimates for Polyharmonic Cubature Formulas

Hermann Render^{*a*} \cdot Ognyan Kounchev^{*b*}

Abstract

In the present article we shall present basic features of a polyharmonic cubature formula of degree s and corresponding error estimates. Main results are Markov-type error estimates for differentiable functions and error estimates for functions f which possess an analytic extension to a sufficiently large ball in the complex space \mathbb{C}^d .

2000 AMS subject classification: 65D30, 32A35

Keywords: Numerical integration, cubature formula, Fourier-Laplace series.

1 Introduction

Let $C(\mathbb{R}^d)$ be the set of all continuous complex-valued functions on the euclidean space \mathbb{R}^d . A *cubature formula C* is a linear functional on $C(\mathbb{R}^d)$ of the form

$$C(f) := \alpha_1 f(x_1) + \dots + \alpha_N f(x_N).$$
⁽¹⁾

The points $x_1, ..., x_N$ are called *nodes* or *knots* and the coefficients $\alpha_1, ..., \alpha_N \in \mathbb{R}$ the *weights*. A basic problem in numerical analysis is to approximate integrals of the form

$$\int f(x)d\mu(x)$$

for a (signed) measure μ in the euclidean space \mathbb{R}^d by suitable cubature formulas.

An important characteristic of a cubature formula is exactness: the functional *C* is *exact on a subspace U* of $C(\mathbb{R}^d)$ with respect to a measure μ if

$$C(f) = \int f(x)d\mu(x)$$
⁽²⁾

holds for all $f \in U$. If U_s is the set of all polynomials \mathcal{P}_s of degree $\leq s$, and the cubature is exact on U_s but not on U_{s+1} , we say that *C* has *order s*. Exactness on the space \mathcal{P}_s can be expressed by the identities

$$C(x^{\alpha}) = \int x^{\alpha} d\mu(x)$$

for each multi-index $\alpha = (\alpha_1, ..., \alpha_d) \in \mathbb{N}_0^d$ with $|\alpha| := \alpha_1 + ... + \alpha_d \leq s$ where $x^{\alpha} = x_1^{\alpha_1} ... x_d^{\alpha_d}$. In the theory of cubature formula it is assumed that the *moments*

$$\int x^{\alpha} d\mu(x)$$

^aSchool of Mathematical Sciences, University College Dublin (Ireland)

^b Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 Acad. G. Bonchev Str., 1113 Sofia (Bulgaria) and Interdisciplinary Center for Complex Systems (IZKS), University of Bonn (Germany)

for $|\alpha| \leq s$ exist and that they can be explicitly calculated. The problem is to find constructive methods for determining nodes and weights from this information. In particular, a cubature formula leads to a solution of the so-called *truncated moment problem*. For a discussion of cubature formulas we refer to [26], [27], [29] and the recent survey [7].

In [15] and [18] we have introduced a new type of functional which approximates the integral

$$\int f(x)d\mu(x) \tag{3}$$

for a class of measures μ with support in the *ball*

$$B_R = \left\{ x \in \mathbb{R}^d : |x| < R \right\}$$
(4)

and continuous functions $f : B_R \to \mathbb{C}$ where R is a positive number or ∞ , and

$$r = |x| = \sqrt{x_1^2 + \dots + x_d^2}$$

is the euclidean norm of $x = (x_1, ..., x_d) \in \mathbb{R}^d$. The unit sphere will be denoted by

$$\mathbb{S}^{d-1} := \left\{ x \in \mathbb{R}^d : |x| = 1 \right\}$$

and endowed with the rotation invariant measure $d\theta$.

Our approach is based on the Fourier-Laplace series of the function f(x). In order to make concepts simpler we shall restrict our discussion in the introduction to the two-dimensional case where the Fourier-Laplace series is just the Fourier series of a function. Hence we define the basis functions

$$Y_{0,0}(x) = Y_{0,0}(r\cos t, r\sin t) = \frac{1}{\sqrt{2\pi}}$$
(5)

and

$$Y_{k,1}(x) = Y_{k,1}(r\cos t, r\sin t) = \frac{1}{\sqrt{\pi}}r^k\cos kt$$
(6)

$$Y_{k,2}(x) = Y_{k,2}(r\cos t, r\sin t) = \frac{1}{\sqrt{\pi}}r^k \sin kt$$
(7)

for $k \in \mathbb{N}$ where \mathbb{N} denotes the set of all natural numbers, and $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$. A point $x \in \mathbb{R}^2$ is written as $x = (r \cos t, r \sin t)$ where r is the radius of x and $(\cos t, \sin t)$ is in the unit sphere. The Fourier coefficients of a continuous function f are defined by

$$f_{k,\ell}(r) = \int_0^{2\pi} f(r\cos t, r\sin t) \cdot Y_{k,\ell}(\cos t, \sin t) dt.$$

The *Fourier series* of the continuous function $f : B_R \to \mathbb{C}$ is defined by the formal expansion

$$\sum_{k=0}^{\infty} \sum_{\ell=1}^{a_k} f_{k,\ell}(r) Y_{k,\ell}(\theta)$$
(8)

where $a_0 = 1$ and $a_k = 2$ for $k \in \mathbb{N}$, and $\theta = (\cos t, \sin t)$. It is easy to see that $f_{k,\ell}$ is a continuous function if f is continuous. Furthermore, if f is infinitely differentiable in B_R then the function

$$f_{k,\ell}(r)r^{-k}$$

is *even* (and infinitely differentiable), see [6]. Finally, if f is a polynomial then $f_{k,\ell}(r)r^{-k}$ is a univariate polynomial in r^2 , see Section 2 for more details.

If f is sufficiently smooth then the Fourier series (8) converges absolutely and uniformly on compact subsets of B_R to the function f(x) and one obtains that

$$\begin{split} \int_{\mathbb{R}^2} f(x) d\mu &= \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_k} \int_{\mathbb{R}^2} f_{k,\ell}(r) Y_{k,\ell}(\theta) d\mu(x) \\ &= \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_k} \int_{\mathbb{R}^2} f_{k,\ell}(r) r^{-k} Y_{k,\ell}(x) d\mu(x). \end{split}$$

We shall now call a signed measure μ with support in $B_R \subset \mathbb{R}^2$ pseudo-positive if the inequality

$$h(|x|) Y_{k,\ell}(x) d\mu(x) \ge 0$$

holds for every non-negative continuous function $h : [0, R] \to [0, \infty)$ and for all $k \in \mathbb{N}_0$, and $\ell = 1, ..., a_k$. By the Riesz representation theorem there exist unique non-negative measures $\mu_{k,\ell}$ defined on [0, R], which we call *component measures*, such that

$$\int_{\mathbb{R}^2}^{\infty} h(t) d\mu_{k,\ell}(t) = \int_{\mathbb{R}^2} h(|x|) Y_{k,\ell}(x) d\mu$$

holds for all $h \in C[0,R]$. Using this notation we obtain

$$\int_{\mathbb{R}^2} f(x) d\mu = \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_k} \int_0^{\infty} f_{k,\ell}(r) r^{-k} d\mu_{k,\ell}(r).$$

In passing, we mention that radially symmetric measures are pseudo-positive.

The main idea in our approach is to use quadrature formulas to approximate the univariate integrals

$$\int_{0}^{k} f_{k,\ell}(r) r^{-k} d\mu_{k,\ell}(r).$$
(9)

Thus we assume in our approach that the Fourier coefficients $f_{k,\ell}(r)$ are known. One may use Fast-Fourier Transform to find approximations of $f_{k,\ell}$ and to combine these with our approach in order to find cubature formulas only involving the function values of f – a topic which we want to consider in a future paper.

Next we want to discuss which kind of quadrature formulas for approximating (9) are useful. Due to the fact that $f_{k,\ell}(r)r^{-k}$ is an even function for smooth f we shall require that the quadrature formula is exact for all polynomials of the form r^{2j} for j = 0, ..., 2s - 1 where s a given natural number. By taking the transformation \sqrt{r} this means that the transformed quadrature formula should be exact for all polynomial t^j for j = 0, ..., 2s - 1 – and here the classical Gauß-Jacobi quadrature enters the game.

Our polyharmonic cubature formula is now defined in the following way: given a pseudo-positive measure μ we consider the component measures $\mu_{k,\ell}(r)$. Let $\mu_{k,\ell}^{\psi}$ be the image measure of $\mu_{k,\ell}$ for the transformation $\psi : [0, \infty) \to [0, \infty)$ defined by $\psi(r) = r^2$, so

$$\int_{0}^{\infty} f_{k,\ell}(r) r^{-k} d\mu_{k,\ell}(r) = \int_{0}^{\infty} f_{k,\ell}\left(\sqrt{t}\right) t^{-k/2} d\mu_{k,\ell}^{\psi}(t).$$

For the non-negative univariate measures $\mu_{k,\ell}^{\psi}$ we shall use the univariate Gauß-Jacobi quadratures $v_{k,\ell}^{(s)}$ of order 2s - 1 as an approximation of $\mu_{k,\ell}^{\psi}$. The polyharmonic cubature $T^{(s)}(f)$ of degree s is then defined by

$$T^{(s)}(f) := \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_k} \int_0^{\infty} f_{k,\ell}(\sqrt{t}) t^{-\frac{1}{2}k} dv_{k,\ell}^{(s)}(t).$$

The cubature formula $T^{(s)}$ will be defined at first only for polynomials: then the sum in the definition of $T^{(s)}(f)$ is actually a finite sum and no convergence questions occur. The cubature formula $T^{(s)}$ has the property that

$$T^{(s)}\left(|x|^{2j}Y_{k,\ell}(x)\right) = \int |x|^{2j}Y_{k,\ell}(x)d\mu(x)$$

for all j = 0, ..., 2s - 1 and for all $k \in \mathbb{N}_0$, $\ell = 1, ..., a_k$. This is equivalent to the functional $T^{(s)}$ being exact on the space of all polynomials of polyharmonic order $\leq 2s$.

In [15] we investigated the truncated moment problem for pseudo-positive measures. In the present article we shall present a Markov-type error estimate for the polyharmonic cubature formula and apply this estimate to functions f which possess an analytic extension on the ball in \mathbb{C}^d with center 0 and sufficiently large radius. For an error estimate of polyharmonic cubature formula based on complex methods we refer to [16]. As general background information we mention as well our unpublished manuscript [18] which contains also instructive examples.

The paper is organized in the following way: in Section 2 we shall provide background material about spherical harmonics and Fourier-Laplace series which is necessary for the case d > 2. In Section 3 we give a short review of properties of the polyharmonic cubature formulas. Section 4 contains the main result of the paper – an error estimate for $T^{(s)}$ which is based on the error estimate of Markov for quadratures.

Polyharmonic polynomials and Spherical harmonics 2

We shall write $x \in \mathbb{R}^d$ in spherical coordinates $x = r\theta$ with $\theta \in \mathbb{S}^{d-1}$. Let $\mathcal{H}_k(\mathbb{R}^d)$ be the set of all harmonic homogeneous complex-valued polynomials of degree k. Then $f \in \mathcal{H}_k(\mathbb{R}^d)$ is called a *solid harmonic* and the restriction of f to \mathbb{S}^{d-1} a spherical harmonic of degree k and we set

$$a_k := \dim \mathcal{H}_k\left(\mathbb{R}^d\right),\tag{10}$$

see [28], [25], [1], [13] for details. Throughout the paper we shall assume

$$\mathcal{X}_{k,\ell}: \mathbb{R}^d \to \mathbb{R}, \ell = 1, ..., a_k, \tag{11}$$

is an *orthonormal basis* of $\mathcal{H}_k\left(\mathbb{R}^d\right)$ with respect to the scalar product

$$\langle f,g \rangle_{\mathbb{S}^{d-1}} := \int_{\mathbb{S}^{d-1}} f(\theta) \overline{g(\theta)} d\theta$$

We shall often use the trivial identity $Y_{k,\ell}(x) = r^k Y_{k\ell}(\theta)$ for $x = r\theta$. Further we define the surface area ω_d by

$$\omega_d = \int_{\mathbb{S}^{d-1}} 1 d\theta.$$

The Fourier-Laplace series of the continuous function $f : B_R \to \mathbb{C}$, is defined by the formal expansion

$$f(r\theta) = \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_k} f_{k,\ell}(r) Y_{k,\ell}(\theta)$$
(12)

where a_k is defined in (10) and the Fourier-Laplace coefficient $f_{k,\ell}(r)$ is defined by

$$f_{k,\ell}(r) = \int_{\mathbb{S}^{d-1}} f(r\theta) Y_{k,\ell}(\theta) d\theta$$
(13)

for any non-negative real number *r* with $0 \le r < R$.

There is a strong interplay between algebraic and analytic properties of the function f and those of the Fourier-Laplace coefficients $f_{k,\ell}$. For example, if f(x) is a polynomial in the variable $x = (x_1, ..., x_d)$ then the Fourier-Laplace coefficient $f_{k,\ell}$. is of the form $f_{k,\ell}(r) = r^k p_{k,\ell}(r^2)$ where $p_{k,\ell}$ is a univariate polynomial, see e.g. in [28] or [26]. Hence, the Fourier-Laplace series (12) of a polynomial f(x) is equal to

$$f(x) = \sum_{k=0}^{\deg f} \sum_{\ell=1}^{a_k} p_{k,\ell}(|x|^2) Y_{k,\ell}(x)$$
(14)

where deg *f* is the total degree of *f* and $p_{k,\ell}$ is a univariate polynomial of degree $\leq \deg f - k$. This representation is often called the Gauss representation.

A similar formula is valid for a much larger class of functions. Let us recall that a function $f: G \to \mathbb{C}$ defined on an open set G in \mathbb{R}^d is called *polyharmonic of order* N if f is 2N times continuously differentiable and

$$\Delta^N u(x) = 0 \tag{15}$$

for all $x \in G$ where

$$\Delta = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_d^2}$$

is the Laplace operator and Δ^N the *N*-th iterate of Δ . The theorem of Almansi states that for a polyharmonic function *f* of order *N* defined on the ball $B_R = \{x \in \mathbb{R}^d : |x| < R\}$ there exist univariate polynomials $p_{k,\ell}(t)$ of degree $\leq N - 1$ such that

$$f(x) = \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_k} p_{k,\ell}(|x|^2) Y_{k,\ell}(x)$$
(16)

where convergence of the sum is uniform on compact subsets of B_R , see e.g. [26], [3], [2] and [17] for further extensions. Neglecting at the moment questions of convergence we see that

$$\int f(x) d\mu(x) = \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_k} \int p_{k,\ell}(|x|^2) Y_{k,\ell}(x) d\mu(x).$$

Note that $p_{k,\ell}$ is a univariate function depending on $|x|^2$ and note that $|x|^{2s} Y_{k,\ell}(x)$ is indeed a polynomial and therefore

$$\int |x|^{2s} Y_{k,\ell}(x) d\mu(x)$$

can be expressed as a sum of monomial moments. The above mentioned Gauss decomposition just says that each multivariate polynomial f(x) is indeed a linear combination of polynomials of the type $|x|^{2s} Y_{k,\ell}(x)$.

These considerations have led us to the following definition: a signed measure μ with support in $B_R \subset \mathbb{R}^d$ is pseudopositive with respect to the orthonormal basis $Y_{k,\ell}$, $\ell = 1, ..., a_k$, $k \in \mathbb{N}_0$ if the inequality

$$\int_{\mathbb{R}^d} h(|x|) Y_{k,\ell}(x) d\mu(x) \ge 0$$
(17)

holds for every non-negative continuous function $h : [0, R] \to [0, \infty)$ and for all $k \in \mathbb{N}_0$, $\ell = 1, 2, ..., a_k$. Then the following can be proved, see [15].

Theorem 2.1. Let μ be a pseudo-positive measure on \mathbb{R}^d with support in $B_R \subset \mathbb{R}^d$. Then there exist unique non-negative measures $\mu_{k,\ell}$ with support in [0,R], which we call component measures, such that

$$\int_{0}^{\infty} h(t) d\mu_{k,\ell}(t) = \int_{\mathbb{R}^d} h(|x|) Y_{k,\ell}(x) d\mu$$
(18)

holds for all $h \in C[0,R]$. Further

$$\int_{\mathbb{R}^d} f(x) d\mu = \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_k} \int_0^{\infty} f_{k,\ell}(r) r^{-k} d\mu_{k,\ell}(r)$$
(19)

for each $f \in C(\mathbb{R}^d)$ whose Fourier-Laplace series has only finitely many non-zero terms.

Let $\psi : [0, \infty) \to [0, \infty)$ be the transformation $\psi(t) = t^2$ and let $\mu_{k,\ell}^{\psi}$ be the image measure of $\mu_{k,\ell}$ under ψ . Then (19) becomes

$$\int_{\mathbb{R}^d} f(x) d\mu = \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_k} \int_0^\infty f_{k,\ell} \left(\sqrt{t}\right) t^{-\frac{1}{2}k} d\mu_{k,\ell}^{\psi}(t).$$
(20)

The *main idea* is simple and consists in replacing in formula (20) the non-negative univariate measures $\mu_{k,\ell}^{\psi}$ by their univariate Gauß-Jacobi quadratures $v_{k,\ell}^{(s)}$ of order 2s-1. Then we obtain a functional $T^{(s)}$ defined on the set $\mathbb{C}[x_1, x_2, ..., x_d]$ of all polynomials by setting

$$T^{(s)}(f) := \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_k} \int_0^\infty f_{k,\ell}\left(\sqrt{t}\right) t^{-\frac{1}{2}k} dv_{k,\ell}^{(s)}(t).$$
(21)

Since *f* is a polynomial the series is finite and therefore $T^{(s)}$ is well-defined.

Sometimes it is useful to rewrite the definition of $T^{(s)}(f)$ using the variable r instead of t. If we define $\psi^{-1}(t) = \sqrt{t}$ (so ψ^{-1} is the inverse function of ψ) and if $\sigma_{k,\ell}^{(s)}$ is the image measure of $v_{k,\ell}^{(s)}$ under ψ^{-1} , then we may write

$$T^{(s)}(f) = \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_k} \int_0^{\infty} f_{k,\ell}(r) r^{-k} d\sigma_{k,\ell}^{(s)}(r).$$

3 Basic properties of the polyharmonic cubature

We shall recall from [15] and [18] some basic properties for the polyharmonic cubature formula:

Theorem 3.1. Let μ be a pseudo-positive measure with support in the ball B_R . Then the functional $T^{(s)} : \mathbb{C}[x_1, x_2, ..., x_d] \to \mathbb{C}$ is continuous with respect to the supremum norm provided that the summability assumption

$$\sum_{k=0}^{\infty} \sum_{\ell=1}^{a_k} \int_0^{\infty} r^{-k} d\mu_{k,\ell}(r) < \infty$$
(22)

holds.

Proof. Since μ has support in B_R the measures $\mu_{k,\ell}$ have support in [0,R]. For the Fourier-Laplace coefficient $f_{k,\ell}$ we have

$$\left|f_{k,\ell}\left(r\right)\right| \leq C \max_{|x| \leq R} \left|f\left(x\right)\right| \text{ for } 0 \leq r \leq R$$

Hence

$$\left| \int_{0}^{\infty} f_{k,\ell}(r) r^{-k} d\sigma_{k,\ell}^{(s)}(r) \right| \leq C \max_{|x| \leq R} \left| f(x) \right| \int_{0}^{\infty} r^{-k} d\sigma_{k,\ell}^{(s)}(r) d\sigma_{$$

and

$$\left|T^{(s)}(f)\right| \le C \max_{|x|\le R} \left|f(x)\right| \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_k} \int_0^\infty r^{-k} d\sigma_{k,\ell}^{(s)}(r).$$
(23)

For the convergence in (23) it suffices to prove

$$\int_{0}^{\infty} r^{-k} d\sigma_{k,\ell}^{(s)}(r) \le \int_{0}^{\infty} r^{-k} d\mu_{k,\ell}(r).$$
(24)

This inequality follows from the extremal property of the Gauß–Jacobi quadrature, see Theorem 4.1 in Chapter 4 of [21].

By the Riesz representation theorem there exists a signed measure $\sigma^{(s)}$ with support in the closed ball B_R such that

$$T^{(s)}(f) = \int_{B_R} f(x) d\sigma^{(s)}(x)$$

for all continuous functions $f: B_R \to \mathbb{C}$. Moreover, the component measures of the pseudo–positive measure $\sigma^{(s)}$ are exactly the univariate measures $\sigma_{k,\ell}^{(s)}$.

Note that the summability condition (22) can be rephrased in terms of the measure μ by the identity

$$\int_{0}^{\infty} r^{-k} d\mu_{k,\ell}(r) = \int_{\mathbb{R}^d} Y_{k,\ell}\left(\frac{x}{|x|}\right) d\mu.$$

We summarize the results in the following

Theorem 3.2. Let μ be a pseudo-positive signed measure with support in the closed ball B_R satisfying the summability condition (22). Then for each natural number *s* there exists a unique pseudo-positive, signed measure $\sigma^{(s)}$ with support in B_R such that (i) The support of each component measure $\sigma^{(s)}$ of $\sigma^{(s)}$ has cardinality $\leq s$.

(ii) $\int P d\mu = \int P d\sigma^{(s)}$ for all polynomials P with $\Delta^{2s} P = 0$.

Proof. The exactness of the Gauß-Jacobi quadratures $v_{k,\ell}^{(s)}$ for polynomials of degree $\leq 2s - 1$ implies that $T^{(s)}$ and μ coincide on the set of all polynomials P such that $\Delta^{2s}P = 0$. This is due to the fact that in the Laplace–Fourier expansion the coefficients are given by $f_{k,\ell}(r) = r^k p_{k,\ell}(r^2)$ where $p_{k,\ell}$ are polynomials of degree 2s - 1.

Definition 3.1. The measure $\sigma^{(s)}$ constructed in the last Theorem will be called the **polyharmonic Gauß-Jacobi measure** of order *s* for the measure μ .

Theorem 3.3. Let $\sigma^{(s)}$ be the polyharmonic Gauß-Jacobi measure of order s for the measure μ , obtained in Theorem 3.2. Then

$$\int f(x) d\sigma^{(s)} \to \int f(x) d\mu \qquad \text{for } s \to \infty$$

holds for every function $f \in C(B_R)$.

Proof. For any polynomial *P* the convergence $T^{(s)}(P) \to P$ holds for $s \to \infty$. By standard results, the convergence $T^{(s)}(f) \to f$ carries over to all continuous functions $f : B_R \to \mathbb{C}$ provided there exists a constant C > 0 such that

$$T^{(s)}(f) \Big| \le C \max_{|x| \le R} \Big| f(x) \Big|.$$

for all natural numbers *s* and all $f \in C(B_R)$.

In a similar way one can prove the following result:

Theorem 3.4. Let μ be a pseudo-positive signed measure with support in B_R satisfying the summability condition (22) and let $\sigma^{(s)}$ be the polyharmonic Gauß-Jacobi measure of order s. If $f \in C^{2s}(\mathbb{R}^d)$ has the property that

$$\frac{d^{2s}}{dt^{2s}}\left[f_{k,\ell}\left(\sqrt{t}\right)t^{-\frac{1}{2}k}\right]\geq 0,$$

for all $t \in (0, \mathbb{R}^2)$ and for all $k \in \mathbb{N}_0$, $\ell = 1, 2, ..., a_k$, then the following inequality

$$\int f(x)d\sigma^{(s)} \leq \int f(x)d\mu$$

holds.

Let us note that every signed measure $d\mu$ with bounded variation may be represented (non-uniquely) as a difference of two pseudo-positive measures. We refer to [15] for instructive examples of pseudo-positive measures.

4 Error estimate of the Polyharmonic Gauss-Jacobi Cubature formula

The topic of estimation of quadrature formulas for smooth and analytic functions is a widely studied one. Beyond the classical monographs [22], [8, p. 344], [9], we provide further and more recent publications, as [5], [10], [11], [12], [20], [23].

We recall here the following error estimate of Markov:

Theorem 4.1. (Markov) Let v be a non-negative measure over the interval [a, b] and let v^s be the Gauss-Jacobi measure of order s. Define for every $g \in C[a, b]$ the error

$$E_{s}(g) := \int_{a}^{b} g(t) dv(t) - \int_{a}^{b} g(t) dv^{(s)}(t).$$

If $g \in C^{2s}[a, b]$ then

$$|E_{s}(g)| \leq \frac{1}{(2s)!} \sup_{a < \xi < b} |g^{(2s)}(\xi)| \int_{a}^{b} |Q^{s}(t)|^{2} dv(t)$$

where $Q^{s}(t)$ is the orthogonal polynomial of degree s, with leading coefficient 1, relative to v.

We shall prove now the following analogue:

Dolomites Research Notes on Approximation

Render · Kounchev

Theorem 4.2. Let $0 < R < \infty$ and let $\psi : [0, \infty) \to [0, \infty)$ be defined by $\psi(t) = t^2$. Let μ be a pseudo-positive signed measure with support in B_R satisfying the summability condition (22), and let $\sigma^{(s)}$ be the polyharmonic Gauß-Jacobi measure of order s. Define for every $f \in C(B_R)$ the error functional

$$E_{s}(f) := \int f(x) d\mu(x) - \int f(x) d\sigma^{(s)}(x).$$

If $f \in C^{2s}(B_R) \cap C(\overline{B_R})$ then the error $E_s(f)$ is less than or equal to

$$\frac{1}{(2s)!} \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_k} \sup_{0 < \xi < R^2} \left| \frac{d^{2s}}{dt^{2s}} \left[f_{k,\ell} \left(\sqrt{t} \right) t^{-\frac{1}{2}k} \right] (\xi) \left| \int_0^{R^2} \left| Q_{k,\ell}^s \left(t \right) \right|^2 d\mu_{k\ell}^{\psi} (\xi) \right|^2 d\mu_{k\ell}^{\psi} (\xi) \left| Q_{k,\ell}^s \left(t \right) \right|^2 d\mu_{k\ell}^s (\xi) \left| Q_{k\ell}^s \left| Q_{k\ell}^$$

Here $Q_{k,\ell}^s(t)$ is the orthogonal polynomial of degree s with respect to the measure $\mu_{k\ell}^{\psi}$, having a leading coefficient equal to 1; if the support of $\mu_{k,\ell}$ has less than s points, $Q_{k,\ell}^s$ is defined to be 0.

Proof. Since $f \in C^{2s}(B_R) \cap C(\overline{B_R})$ it is easy to see that the Fourier-Laplace coefficients $f_{k,\ell} \in C^{2s}(0,R) \cap C[0,R]$. Let $\mu_{k,\ell}$ and $\sigma_{k,\ell}$, $k \in \mathbb{N}_0$, $\ell = 1, ..., a_k$, and $\sigma^{(s)}$ be as in Theorem 3.2. From the definitions it follows

$$E_{s}(f) = \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_{k}} \int_{0}^{R} f_{k,\ell}(r) r^{-k} d\mu_{k,\ell} - \int_{0}^{R} f_{k,\ell}(r) r^{-k} d\sigma_{k,\ell}^{(s)}$$

Further $f_{k,\ell}(r)r^{-k}$ is integrable with respect to $\mu_{k,\ell}$ since $f_{k,\ell}$ is continuous on [0,R] and condition (22) holds. Let us fix the pair of indices (k,ℓ) . If the support of $\mu_{k,\ell}$ has less than *s* points we know that $\mu_{k,\ell} = \sigma_{k,\ell}^{(s)}$. So assume that the support of $\mu_{k,\ell}$ has at least *s* points and in our construction $v_{k,\ell}^{(s)}$ is the Gauß-Jacobi measure of $\mu_{k,\ell}^{\psi}$. Consequently

$$e\left(f_{k,\ell}\right) := \int_{0}^{R} f_{k,\ell}\left(r\right) r^{-k} d\mu_{k,\ell}\left(r\right) - \int_{0}^{R} f_{k,\ell}\left(r\right) r^{-k} d\sigma_{k,\ell}^{(s)}\left(r\right)$$
$$= \int_{0}^{R^{2}} f_{k,\ell}\left(\sqrt{t}\right) t^{-\frac{1}{2}k} d\mu_{k,\ell}^{\psi}\left(t\right) - \int_{0}^{R^{2}} f_{k,\ell}\left(\sqrt{t}\right) t^{-\frac{1}{2}k} dv_{k,\ell}^{(s)}\left(t\right).$$

By Markov's error estimate one obtains with $g_{k,\ell}(t) := f_{k,\ell}(\sqrt{t}) t^{-\frac{1}{2}k}$ the inequality

$$e\left(f_{k,\ell}\right) \leq \frac{1}{(2s)!} \sup_{0 < \xi < R^2} \left|g_{k,\ell}^{(2s)}(\xi)\right| \int_{0^2}^{R^2} \left|Q_{k,\ell}^s(t)\right|^2 d\mu_{k,\ell}^{\psi}(t).$$

The proof is complete.

Now we are going to apply the results for holomorphic functions in several variables. We define the complex ball in \mathbb{C}^d with center 0 and radius τ by

$$B_{\tau}^{\mathbb{C}} = \{ (w_1, ..., w_d) \in \mathbb{C}^d : \sum_{j=1}^d |w_j|^2 < \tau^2 \}$$

We assume that f is holomorphic on $B_{\tau}^{\mathbb{C}}$ for $\tau > R$. For fixed $\theta \in \mathbb{S}^{d-1}$ we define a map

$$\varphi_{\theta} : \{ z \in \mathbb{C} : |z| < \tau \} \to B_{\tau}^{\mathbb{C}} \text{ by } \varphi_{\theta}(z) = z\theta$$

which is clearly holomorphic. Hence f_{θ} defined by $f_{\theta}(z) = f(z\theta) = f \circ \varphi_{\theta}(z)$ is holomorphic. It follows that $f_{k,\ell}(z)$ defined by

$$f_{k,\ell}(z) = \int_{\mathbb{S}^{d-1}} f(z\theta) Y_{k,\ell}(\theta) d\theta$$
(25)

is a holomorphic extension of $f_{k,\ell}$ to $\{z \in \mathbb{C} : |z| < \tau\}$. For further material about analytic extensions of Fourier-Laplace series and Fourier-Laplace coefficients we refer to [14], [17] and [24].

Now we need the following result:

Dolomites Research Notes on Approximation

Lemma 4.3. Let f be a holomorphic function on the open ball $B_{\tau}^{\mathbb{C}}$ for $\tau > 0$. Let $f_{k,\ell}$ be the Fourier-Laplace coefficient of f and define

$$p_{k,\ell}(t) = f_{k,\ell}\left(\sqrt{t}\right) \cdot t^{-k/2}$$

for $0 < t < \tau^2$ Then the following inequality

$$\left|\frac{d^{s}}{dt^{s}}p_{k,\ell}(t)\right| \leq \sqrt{\omega_{d}} \max_{u \in [0,2\pi], \theta \in \mathbb{S}^{d-1}} \left|f\left(e^{iu}\rho\theta\right)\right| \frac{\rho^{2-k}s!}{\left(\rho^{2}-t\right)^{s+1}}$$
(26)

holds for all $0 < t < \rho^2 < \tau^2$ and for all natural numbers s.

Proof. We apply Cauchy-Schwarz inequality to the integral (25) obtaining

$$\left|f_{k,\ell}\left(z\right)\right|^{2} \leq \int_{\mathbb{S}^{d-1}} \left|f\left(z\theta\right)\right|^{2} d\theta \cdot \int_{\mathbb{S}^{d-1}} \left|Y_{k,\ell}\left(\theta\right)\right|^{2} d\theta$$

Since $Y_{k,\ell}$ is orthonormal we obtain for $z = |z| e^{iu}$ and $|z| = \rho$

$$\left|f_{k,\ell}\left(z\right)\right|^{2} \leq \omega_{d} \max_{u \in [0,2\pi], \theta \in \mathbb{S}^{d-1}} \left|f\left(e^{iu}\rho\theta\right)\right|^{2}.$$
(27)

Let us recall the Cauchy estimates for a holomorphic function g in the ball $|z| < \tau$ applied for $|z| = \rho$

$$\left|g^{(n)}(0)\right| \leq \frac{n!}{\rho^n} \max_{|z|=\rho} \left|g(z)\right|$$

We apply this estimate to the holomorphic function $f_{k,\ell}(z)$ and n = m + k and we use (27):

$$\left|\frac{d^{m+k}}{dz^{m+k}}f_{k,\ell}\left(0\right)\right| \leq \frac{(k+m)!}{\rho^{m+k}}\sqrt{\omega_d} \max_{u \in [0,2\pi], \theta \in \mathbb{S}^{d-1}} \left|f\left(e^{iu}\rho\theta\right)\right|.$$
(28)

Since $f_{k,\ell}(z)$ is holomorphic for $|z| < \tau$ we can write $f_{k,\ell}$ as a power series. Further it is known (see [6]) that

$$f_{k,\ell}^{(j)}(0) = 0$$
 for $j = 0, ..., k - 1$,

Hence we can write for $|z| < \tau$

$$f_{k,\ell}(z) = \sum_{m=k}^{\infty} \frac{1}{m!} \frac{d^m}{dr^m} f_{k,\ell}(0) \cdot z^m.$$

It is known that $r^{-k}f_{k,\ell}(r)$ is an even function (see [6]), hence we can obtain a description for the function $p_{k,\ell}(r^2)$:

$$p_{k,\ell}\left(r^{2}\right) = r^{-k}f_{k,\ell}\left(r\right) = \sum_{m=0}^{\infty} \frac{1}{(k+2m)!} \frac{d^{2m+k}}{dr^{2m+k}} f_{k,\ell}\left(0\right) \cdot r^{2m}.$$

Then for $t = r^2$ we conclude that

$$p_{k,\ell}(t) = \sum_{m=0}^{\infty} \frac{1}{(k+2m)!} \frac{d^{2m+k}}{dr^{2m+k}} f_{k,\ell}(0) \cdot t^m.$$

We infer that

$$\frac{d^s}{dt^s} p_{k,\ell}(t) = \sum_{m=s}^{\infty} \frac{1}{(k+2m)!} \frac{m!}{(m-s)!} \frac{d^{2m+k}}{dt^{2m+k}} f_{k,\ell}(0) \cdot t^{(m-s)}.$$

Now (28) implies

$$\left|\frac{d^s}{dt^s}p_{k,\ell}(t)\right| \leq \sqrt{\omega_d} \max_{u \in [0,2\pi], \theta \in \mathbb{S}^{d-1}} \left| f\left(e^{iu}\rho\theta\right) \right| \frac{1}{\rho^{k+2s}} \sum_{m=s}^{\infty} \frac{m!}{(m-s)!} \left(\frac{t}{\rho^2}\right)^{m-s}.$$

For |x| < 1 we have

$$\sum_{m=s}^{\infty} \frac{m!}{(m-s)!} x^{m-s} = \frac{d^s}{dx^s} \sum_{m=0}^{\infty} x^m = \frac{d^s}{dt^s} \frac{1}{1-x} = s! (1-x)^{-s-1}$$

and we see that

$$\left|\frac{d^{s}}{dt^{s}}p_{k,\ell}(t)\right| \leq \sqrt{\omega_{d}} \max_{u \in [0,2\pi], \theta \in \mathbb{S}^{d-1}} \left|f\left(e^{iu}\rho\theta\right)\right| \frac{s!}{\rho^{k+2s}} \left(1-\frac{t}{\rho^{2}}\right)^{-s-1}$$

which gives (26).

Combining the last two results we obtain:

Theorem 4.4. Let μ be a pseudo-positive signed measure with support in B_R satisfying the summability condition (22) and let $\sigma^{(s)}$ be the polyharmonic Gauß-Jacobi measure of order s. Then the error $E_s(f)$ is less than or equal to

$$\frac{\sqrt{\omega_d}\rho^2}{\left(\rho^2 - R^2\right)^{2s+1}} \max_{w \in \mathbb{C}^n, |w| \le \rho} \left| f\left(w\right) \right| \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_k} \frac{1}{\rho^k} \int_0^{R^2} \left| Q_{k,\ell}^s\left(t\right) \right|^2 d\mu_{k,\ell}^\psi\left(t\right)$$

for all functions $f: B_R \to \mathbb{C}$ which possess a holomorphic extension to the complex ball $B_{\tau}^{\mathbb{C}}$ for $\tau > R$ where ρ is any number with $R < \rho < \tau$.

Proof. By Theorem 4.2 the error $E_s(f)$ is less than or equal

$$\frac{1}{(2s)!} \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_k} \sup_{0<\xi< R^2} \left| \frac{d^{2s}}{dt^{2s}} \left[f_{k,\ell} \left(\sqrt{t} \right) t^{-\frac{1}{2}k} \right] (\xi) \right| \int_0^{R^2} \left| Q_{k,\ell}^s \left(t \right) \right|^2 d\mu_{k\ell}^{\psi}$$

Lemma 4.3 applied for index 2*s* and for $p_{k,\ell}(t) = f_{k,\ell}(\sqrt{t}) t^{-\frac{1}{2}k}$ shows that

$$\left|\frac{d^{2s}}{dt^{2s}}p_{k,\ell}(t)\right| \leq \sqrt{\omega_d} \max_{u \in [0,2\pi], \theta \in \mathbb{S}^{d-1}} \left|f\left(e^{iu}\rho\theta\right)\right| \frac{\rho^{2-k}(2s)!}{\left(\rho^2 - t\right)^{2s+1}}$$

Using that $\rho^2 - \xi \ge R^2$ for $0 < \xi < R^2$ we conclude that the error $E_s(f)$ is less than or equal

$$\sqrt{\omega_{d}} \max_{u \in [0,2\pi], \theta \in \mathbb{S}^{d-1}} \left| f\left(e^{iu} \rho \theta\right) \right| \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_{k}} \frac{\rho^{2-k}}{\left(\rho^{2} - R^{2}\right)^{2s+1}} \int_{0}^{R^{2}} \left| Q_{k,\ell}^{s}\left(t\right) \right|^{2} d\mu_{k\ell}^{\psi}$$

and the statement is proven.

We can simplify the estimate in the following way:

Theorem 4.5. Let μ be a pseudo-positive signed measure with support in B_R satisfying the summability condition (22) and let $\sigma^{(s)}$ be the polyharmonic Gauß-Jacobi measure of order s. Then the error $E_s(f)$ is less than or equal to

$$\frac{\sqrt{\omega_d}\rho^2 R^{2s}}{\left(\rho^2 - R^2\right)^{2s+1}} \max_{w \in \mathbb{C}^n, |w| \le \rho} \left| f\left(w\right) \right| \sum_{k=0}^{\infty} \sum_{\ell=1}^{a_k} \left(\frac{R}{\rho}\right)^k \int_0^{\kappa} r^{-k} d\mu_{k,\ell}\left(r\right)$$

for all functions $f : B_R \to \mathbb{C}$ which possess a holomorphic extension to the complex ball $B_{\tau}^{\mathbb{C}}$ for $\tau > R$ where ρ is any number with $R < \rho < \tau$.

Proof. Note that the polynomial $Q_{k,\ell}^{s}(t)$ of degree *s* is of the form

$$Q_{k,\ell}^{s}\left(t\right) = \left(t - t_{1,k,\ell}\right) \dots \left(t - t_{s,k,\ell}\right)$$

where the points $t_{j,k,\ell}$ are in the interval $(0, R^2)$. It follows that $|t - t_{j,k,\ell}| < R^2$ and we obtain the estimate

$$\int_{0}^{R^{2}} \left| Q_{k,\ell}^{s}(t) \right|^{2} d\mu_{k,\ell}^{\psi}(t) \leq R^{2s} \int_{0}^{R^{2}} 1 d\mu_{k,\ell}^{\psi}(t) = R^{2s} \int_{0}^{R} 1 d\mu_{k,\ell}(r).$$

Dolomites Research Notes on Approximation

Since

$$\int_{0}^{R} 1 d\mu_{k,\ell}(r) = \int_{0}^{R} r^{k} r^{-k} d\mu_{k,\ell}(r) \le R^{k} \int_{0}^{R} r^{-k} d\mu_{k,\ell}(r)$$

we can finally estimate

$$\frac{1}{\rho^{k}} \int_{0}^{R^{2}} \left| Q_{k,\ell}^{s}(t) \right|^{2} d\mu_{k,\ell}^{\psi}(t) \le R^{2s} \left(\frac{R}{\rho} \right)^{k} \int_{0}^{R} r^{-k} d\mu_{k,\ell}(r)$$

and in view of Theorem 4.4 the statement is proved.

Finally we see that

$$\frac{R^2}{\rho^2 - R^2} < 1$$

is equivalent to the condition $2R^2 < \rho^2$. Thus for functions *f* which have a holomorphic extension to the complex ball with radius $\tau > 2R^2$ we obtain an estimate where the error decreases rapidly when the order of the polyharmonic cubature is increased.

Acknowledgment

Both authors thank the Alexander von Humboldt Foundation.

References

- G.E. Andrews, R. Askey, R. Roy, Special functions. Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999.
- [2] N. Aronszajn, T.M. Creese, L.J. Lipkin, Polyharmonic Functions, Clarendon Press, Oxford 1983.
- [3] V. Avanissian, Cellule d'harmonicité et prolongement analytique complexe, Hermann, Paris, 1985.
- [4] S. Axler, P. Bourdon, W. Ramey, Harmonic Function Theory, second edition, Springer, New York, 2001.
- [5] N. S. Bakhvalov, On the optimal speed of integrating analytic functions, U.S.S.R. Comput. Math. Math. Phys.7 (1967), 63–75.
- [6] M.S. Baouendi, C. Goulaouic, L.J. Lipkin, On the operator $\Delta r^2 + \mu (\partial/\partial r)r + \lambda$, J. Differential Equations 15 (1974), 499–509.
- [7] R. Cools, An Encyclopaedia of Cubature Formulas, J. Complexity, 19 (2003), 445-453.
- [8] P. Davis, Interpolation and Approximation. Dover Publications Inc., New York, 1975.
- [9] P. Davis, P. Rabinowitz, Methods of Numerical Integration. Second edition. Computer Science and Applied Mathematics. Academic Press, Inc., Orlando, FL, 1984.
- [10] W. Gautschi, R.S.Varga, Error Bounds for Gaussian Quadrature of Analytic Functions, SIAM J. Numer. Anal. 20, p. 1170-1186 (1983).
- [11] M. Goetz, Optimal quadrature for analytic functions, J. Comput. Appl. Math. 137 (2001), 123-133.
- [12] M. Kzaz, Convergence acceleration of some Gaussian quadrature formulas for analytic functions, J. Appl. Numer. Math. 10 (1992), 481–496.
- [13] O. Kounchev, Multivariate Polysplines. Applications to Numerical and Wavelet Analysis, Academic Press, San Diego, 2001.
- [14] O. Kounchev, H. Render, Holomorphic Continuation via Fourier-Laplace series, Contemporary Mathematics 455 (2008), 197–205.
- [15] O. Kounchev, H. Render, A moment problem for pseudo-positive definite functionals, Arkiv for Matematik, 48 (2010), 97-120.
- [16] O. Kounchev, H. Render, Polyharmonic Hardy spaces on the Complexified Annulus and Error estimates of Cubature formulas, Results Math. 62 (2012), 377–403.
- [17] O. Kounchev, H. Render, Polyharmonic functions of infinite order on annular regions, to appear in Tohoku Math. Journal.
- [18] O. Kounchev, H. Render, Reconsideration of the multivariate moment problem and a new method for approximating multivariate integrals, electronic version at arXiv:math/0509380v1 [math.FA]
- [19] O. Kounchev, H. Render, Multivariate Moment Problem, Hardy Spaces, and Orthogonality, in preparation.
- [20] M. A. Kowalski, A. G. Werschulz, and H. Wozniakowski, Is Gauss quadrature optimal for analytic functions?, Numer. Math. 47 (1985), 89-98.
- [21] M. Krein, A. Nudelman, The Markov moment problem and extremal problems, Amer. Math. Soc., Providence, R.I., 1977.
- [22] V. Krylov, Approximate calculation of integrals. Translated by Arthur H. Stroud, The Macmillan Co., New York-London, 1962.

Dolomites Research Notes on Approximation

- [23] G. Milovanovic, M.M. Spalevic, Error bounds for Gauss-Turán quadrature formulas of analytic functions, Math. Comp. 72 (2003), 1855–1872.
- [24] M. Morimoto, Analytic Functionals on the Sphere, Translation of Mathematical Monographs, Vo. 178, Amer. Math. Soc., Providence, Rhode Island 1998.
- [25] R. Seeley, Spherical harmonics, Amer. Math. Monthly, 73 (1966), 115–121.
- [26] S.L. Sobolev, *Cubature formulas and modern analysis. An introduction.* Translated from the 1988 Russian edition. Gordon and Breach Science Publishers, Montreux, 1992.
- [27] S. Sobolev, V. Vaskevich, *The theory of cubature formulas*, Springer, Berlin, 1997.
- [28] E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean spaces, Princeton University Press, 1971.
- [29] A.H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, Englewood Cliffs, N.J., 1971.
- [30] A.H. Stroud, Numerical quadrature and solution of ordinary differential equations. Springer-Verlag, New York-Heidelberg, 1974.
- [31] A. N. Tikhonov, A. A. Samarskii, Equations of Mathematical Physics, Dover Publications, 1990.
- [32] I. Vekua, New Methods for Solving Elliptic Equations. Wiley, New York, 1967.