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On polynomial and barycentric interpolations

László Szili a · Péter Vértesi b

Abstract

The present survey collects some recent results on barycentric interpolation showing the similarity
to the corresponding Lagrange (or polynomial) theorems. Namely we state that the order of the
Lebesgue constant for barycentric interpolation is at least log n; we state a Grünwald–Marcinkiewicz
type theorem for the barycentric case; moreover we define a Bernstein type process for the barycentric
interpolation which is convergent for any continuous function. As far as we know this is the first process
of this type. The analogue results for the polynomial Lagrange interpolation are well known.

1 Introduction
In the last 30 years the barycentric interpolation has been investigated first of all considering its practical importance. The
aim of this paper is to state some recent results showing the similarity between the barycentric and polynomial Lagrange
interpolation. Among others we see that the order of the corresponding Lebesgue constant is at least log n. We state
a Grünwald–Marcinkiewicz type theorem for the barycentric case. Moreover we define the analogue of the polynomial
Bernstein process for the barycentric interpolation. As far as we know it is the first barycentric interpolation procedure
which is convergent for every continuous function. The analogon for the polynomial case is well known.

2 Lagrange and barycentric interpolation
2.1
Let C = C(I) denote the space of continuous functions on the interval I := [−1,1], and let Pn denote the set of algebraic
polynomials of degree at most n. ‖ · ‖ stands for the usual maximum norm on C . Let X be an interpolatory matrix (array),
i.e.,

X =
�

xkn = cosϑkn; k = 1, . . . , n; n= 1,2, . . .
	

,

with
−1= xn+1,n ≤ xnn < xn−1,n < · · ·< x2n < x1n ≤ x0n = 1 (2.1)

and 0≤ ϑkn ≤ π. Consider the corresponding Lagrange interpolation polynomial

Ln( f , X , x) :=
n
∑

k=1

f (xkn)`kn(X , x), n ∈ N. (2.2)

Here, for n ∈ N,

`kn(X , x) :=
ωn(X , x)

ω′n(X , xkn)(x − xkn)
, 1≤ k ≤ n,

with

ωn(X , x) :=
n
∏

k=1

(x − xkn),

are polynomials of exact degree n − 1. They are the fundamental polynomials, obeying the relations `kn(X , x jn) = δk j ,
1≤ k, j ≤ n.

By the classical Lebesgue estimate, using the notations

λn(X , x) :=
n
∑

k=1

�

�`kn(X , x)
�

�, n ∈ N, (2.3)

Λn(X ) :=


λn(X , x)


, n ∈ N, (2.4)

(Lebesgue function and Lebesgue constant (of Lagrange interpolation), respectively,) we obtain if n ∈ N
�

�Ln( f , X , x)− f (x)
�

�≤
�

λn(X , x) + 1
	

En−1( f ) (2.5)
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and


Ln( f , X )− f


≤
�

Λn(X ) + 1
	

En−1( f ), (2.6)

where
En−1( f ) := min

P∈Pn−1
‖ f − P‖.

The above estimates clearly show the importance of λn(X , x) and Λn(X ).

2.2
Using the obvious identity

n
∑

k=1

`kn(X , x)≡ 1, (2.7)

we can write Ln( f , X , x) as

Ln( f , X , x) =
ωn(X , x)

n
∑

k=1

wkn

x − xkn
f (xkn)

ωn(X , x)
n
∑

k=1

wkn

x − xkn

, (2.8)

where

wkn =
1

ω′n(X , xkn)
=

1
∏

j 6=k
(xkn − x jn)

, 1≤ k ≤ n. (2.9)

A simple consideration shows that the right-hand expression of (2.8) at x jn takes the value f (x jn), 1 ≤ j ≤ n, using
arbitrary wkn 6= 0, 1≤ k ≤ n. Thus, choosing wkn = (−1)k+1, we get the classical barycentric interpolation formula for f ∈ C:

Bn( f , X , x) :=
n
∑

k=1

f (xkn)bkn(X , x), n ∈ N, (2.10)

where

bkn(X , x) :=
ωn(X , x)

(−1)k

x − xkn

ωn(X , x)
n
∑

j=1

(−1) j

x − x jn

=

(−1)k

x − xkn

n
∑

j=1

(−1) j

x − x jn

. (2.11)

The first equation of (2.11) shows that bkn is a rational function of the form Pkn/Qn, where

Pkn(X , x) =
�

�ω′n(X , xkn)
�

� `kn(X , x), 1≤ k ≤ n, (2.12)

Qn(X , x) =
n
∑

j=1

�

�ω′n(X , x jn)
�

� ` jn(X , x), n ∈ N. (2.13)

Above, Pkn ∈ Pn−1 \Pn−2 and Qn ∈ Pn−1.
As we remarked, the process Bn has the interpolatory property, i.e.

Bn( f , X , xkn) = f (xkn), bkn(X , x jn) = δk j , 1≤ k, j ≤ n; n ∈ N (2.14)

(cf. (2.10) and (2.11)). Moreover, it is not so difficult to prove the next fundamental relation valid for arbitrary matrix X :

Qn(X , x) 6= 0 if x ∈ R, n ∈ N, (2.15)

where R= (−∞,∞) (see J.-P. Berrut [3, Lemma 2.1]).
By the above definitions we can prove that {bkn(x), 1≤ k ≤ n} is a Haar (Tchebycheff) system (or briefly, T -system) for

any fixed n ∈ N (see [6] and [17]). Actually, T = T (xn) where xn = (x1n, x2n, . . . , xnn) ∈ Rn.
Modifying our previous notation (2.10), we define for f ∈ C , xn and n ∈ N

Ln( f ,xn, x) :=
n
∑

k=1

f (xkn)bkn(xn, x), (2.16)

λn(xn, x) :=
n
∑

k=1

�

�bkn(xn, x)
�

� , (2.17)

Λn(xn) :=


λn(xn, x)


 , (2.18)

(cf. (2.2)–(2.4)).
By definition, they are the Lagrange interpolatory T-polynomials, T -Lebesgue functions and T-Lebesgue constants, respect-

ively, concerning the above defined T -system.
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3 Divergence-type results
3.1
As we mentioned the estimation (2.6) shows the importance of λn(X , x) and Λn(X ). So it was fundamental the result of
G. Faber [7] from 1914 which says that

Λn(X )≥
1

12
log n, n≥ 1 (3.1)

for any interpolatory X .
However we can prove much more. Namely improving some results of P. Erdős and P. Vértesi (cf. [16, 2.2.]) P. Vértesi

[15] proved

Theorem 3.1. There exists a positive constant c such that if ε = {εn} is any sequence of positive numbers then for arbitrary
matrix X there exist sets Hn = Hn(ε, X ), |Hn| ≤ εn for which

λn(X , x)> cεn log n

if x ∈ [−1, 1] \Hn and n= 1,2, . . ..

Using (3.1) one can see that for any fixed matrix X there exists an f ∈ C such that

lim
n→∞
‖Ln( f , X , x)‖=∞.

3.2
Many papers deal with the barycentric interpolation (cf. J.-P. Berrut and G. Klein [4] and its references) and define
pointsystem having T -Lebesgue constant of order log n. We mention two recent papers. Firstly the work L. Bos, S. De Marchi,
K. Hormann and J. Sidon [5], where the so called well spaced nodes are defined; secondly the paper of B. A. Ibrahimoglu and
A. Cuyt [10] stating that for the nodes en =

¦

ekn = −1+ 2k−1
n

; k = 1,2, . . . , n
©

Λn(en) =
2

π
log n+O(1).

However, the next fundamental Faber-type statement, as far as we know, is new (cf. G. Halász [8]).
Theorem 3.2. For arbitrary system xn

Λn(xn)>
log n

8
, n≥ 3. (3.2)

More detailed considerations show that a statement analogous to Theorem 3.1 can be proved. Namely we have

Theorem 3.3. There exists a positive constant c such that if ε = {εn} is any sequence of positive numbers, then for arbitrary
matrix X there exist sets Hn = Hn(ε, X ), |Hn| ≤ εn, for which

λn(xn, x)> cεn log n (3.3)

if x ∈ [−1, 1] \Hn and n= 1, 2, . . ..

The proofs of these are in [17].

3.3
A fundamental negative result in Lagrange interpolation is due to G. Grünwald and J. Marcinkiewicz from 1936.

Theorem 3.4. There exists a function f ∈ C for which

lim
n→∞

�

�Ln( f , T, x)
�

�=∞

for every x ∈ [−1, 1], where T =
¦

tkn = cos 2k−1
2n
π ; k = 1, 2, . . . , n; n ∈ N

©

.

The reader can consult for the interesting history of Theorem 3.4 in [16, p. 76].

Now we quote the corresponding result for the barycentric case proved by Ágota P. Horváth and P. Vértesi, in 2015 (see
[9]).

Theorem 3.5. One can define a g ∈ C such that

lim
n→∞

�

�Ln(g,en, x)
�

�=∞

for every x ∈ [−1, 1].
Let us remark that in both cases

Λn(T ) =
2

π
log n+O(1) and Λn(en) =

2

π
log n+O(1),

so they have the best possible order!
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4 On the convergence of a Bernstein type process
4.1
Let be the polynomials Qn1( f , T, x) defined according to S. Bernstein [1] and [2]

Qn1( f , T, x) =
n/2
∑

k=1

f (t2k−1,n)
�

`2k−1,n(T, x) + `2k,n(T, x)
	

, f ∈ C (4.1)

(for simplicity let n be even). Actually, [1] and [2] took the next more general process. Let l, q be natural numbers; for
simplicity we suppose that n= 2lq. We divide the nodes into q rows as follows.

x1n x2n . . . x2l,n

x2l+1,n x2l+2,n . . . x4l,n
...

...
...

...
x2l(q−1)+1,n x2l(q−1)+2,n . . . x2lq,n.

According to the above scheme let
Qnl( f , T, x)≡Qnl( f ) = (4.2)

=
¦

f1(`1 + `2l) + f2(`2 − `2l) + f3(`3 + `2l) + · · ·+ f2l−1(`2l−1 + `2l)
©

1
+

+
¦

f2l+1(`2l+1 + `4l) + f2l+2(`2l+2 − `4l) + f2l+3(`2l+3 + `4l) + · · ·+ f4l−1(`4l−1 + `4l)
©

2
+ · · ·+

+
¦

fn−(2l−1)(`n−(2l−1) + `n) + · · ·+ fn−1(`n−1 + `n)
©

q
.

You may consult with [1] or [2] (above fk = f (xkn) and `k ≡ `kn(T, x)).
If N = n+ r, n= 2lq, 0< r < 2l, the definition of QNl is as follows

QNl( f ) :=Qnl( f ) +
N
∑

k=n+1

fk`k.

By the above definitions we have with e0(x)≡ 1

Qnl(e0, x)≡
n
∑

k=1

`kn(T, x)≡ 1, (4.3)

Qnl( f , xkn) = f (xkn) if k 6= 2l, 4l, . . . , 2lq, (4.4)

i.e. Qnl interpolates at n− q = 2lq− q nodes. This number is "very close" to n if the (fixed) l is big enough while q (and n,
too) tends to infinity, i.e. for large l our Qnl is "very close" to the Lagrange interpolation Ln. However, Qnl converges for
every f ∈ C , when n→∞ (cf. Theorem 4.1 and Theorem 4.2), which generally does not hold for Ln.

Actually, (4.3) and (4.4) hold true for arbitrary point system.

4.2
In [1] S. Bernstein proved

Theorem 4.1. Let l be a fixed positive integer and f ∈ C. Then

lim
n→∞
‖ f (x)−Qnl( f , x)‖= 0.

Actually, he proved for N = n+ r, too; the case when N = n+ r demands only small technical changes in the proof.
Remark 1. The Bernstein process and its generalizations were exhaustively investigated by O. Kis (sometimes with coauthors).
For more details we suggest the references in [12].

4.3
In [12] we generalized Theorem 4.1 using the roots of the Jacobi polynomials P(α,β)

n (x). So let P(α,β)
n (x) be defined by

(1− x)α(1+ x)β P(α,β)
n (x) =

(−1)n

2nn!

dn

d xn

�

(1− x)α+n(1+ x)β+n
	

(α,β > −1).

For the roots x (α,β)
kn = cosϑ(α,β)

kn , 0< ϑ(α,β)
kn < π of P(α,β)

n (x) we have

−1< x (α,β)
nn < x (α,β)

n−1,n < · · ·< x (α,β)
1n < 1.
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Let

`
(α,β)
kn (x) =

P(α,β)
n (x)

P(α,β) ′
n (xkn)(x − xkn)

(k = 1, 2, . . . , n).

For a fixed positive integer l, we define Q(α,β)
nl ( f , x) according to (4.1) and (4.2), where `k and fk stand for `(α,β)

kn (x) and
f (x (α,β)

kn ), respectively. As we noticed we have the properties analogous to (4.3) and (4.4) for Q(α,β)
nl ( f , x), too.

We proved in [12] (cf. [14])

Theorem 4.2. Let l be a fixed positive integer, n= 2lq (q = 1, 2, . . . ) and f ∈ C. Then

lim
n→∞
‖ f (x)−Q(α,β)

nl ( f , x)‖= 0

for any processes Q(α,β)
nl supposing

−1< α,β < 0.5.

Our statement follows from the next more informative pointwise estimations

Theorem 4.3. Let l be fixed natural number. Then for arbitrary fixed α,β > −1 and f ∈ C

�

�

�Q(α,β)
nl ( f , x)− f (x)

�

�

�= O(1)
n
∑

i=1

ω

�

f ;

p
1− x2

n
i +

i2

n2

�

1

iγ

uniformly in n and x ∈ [−1, 1], where γ=min(2;1.5−α; 1.5− β).
�

ω( f ; t) is the modulus of continuity of f (x).
�

Remark 2. As it is well known, Q(−1/2,−1/2)
nl ( f , x) =Qnl( f , T, x). For this case some improvements of Theorem 4.2, including

saturation, were proved recently by J. Szabados [11].

4.4
We define the barycentric Bernstein-type operators by

Bn( f ,en, x) =
n/2
∑

k=1

f
�

e2k−1,n

��

b2k−1,n(en, x) + b2k,n(en, x)
	

(again, let n be even). In our forthcoming paper [13] among others we prove as follows

Theorem 4.4. We have
lim
n→∞
‖Bn( f ,en, x)− f (x)‖= 0 for any f ∈ C .

Moreover the sequence {Bn} is saturated with the order {1/n}; the trivial class is the set of constant functions.

Remark 3. As far as we know the {Bn} process is the first barycentric interpolation operator sequence which is convergent for
arbitrary f ∈ C; actually Theorem 4.4 can be proved for the sequences analogue to {Qnl} even if l > 1.

5 Some open problems and remarks

1. Statements analogous to Theorems 3.2, 3.3, 3.5 and 4.4 can be proved for the so called Floater–Hormann interpolants
(see [4, §4]).

2. We intend to prove the Bernstein–Erdős conjecture in detail for the barycentric case. The interested reader may
consult with [17, §3.3] for further orientation.

3. One can try to prove the almost everywhere divergence theorem of P. Erdős and P. Vértesi for the barycentric case (cf.
[16, §2.5]).

4. Theorems for other "well-spaced" node systems (see [4, §6]) will be proved including the {x (α,β)
kn } systems.

5. Probably it is quite difficult to get the saturation and saturation class for the operator sequences defined on other
"well-spaced" nodes.

Acknowledgements. We thank the unknown referee for the remarks. Many of them were incorporated in the paper.
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