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Approximation error of generalized Shannon sampling operators
with bandlimited kernels in terms of an averaged modulus of

smoothness

Gert Tamberg∗

Abstract

The aim of this paper is to study the approximation properties of generalized sampling operators in
terms of an averaged modulus of smoothness.
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1 Introduction
For the uniformly continuous and bounded functions f ∈ C(R) the generalized sampling series are given by (t ∈ R; W > 0)

(SW f )(t) :=
∞
∑

k=−∞

f (
k

W
)s(W t − k), (1)

where the condition for the operator SW : C(R)→ C(R) to be well-defined is
∞
∑

k=−∞

|s(u− k)|<∞ (u ∈ R), (2)

the absolute convergence being uniform on compact intervals of R.
If the kernel function is

s(t) = sinc(t) :=
sinπt

πt
,

which do not satisfy (2), we get the classical (Whittaker-Kotel’nikov-)Shannon operator,

(Ssinc
W f )(t) :=

∞
∑

k=−∞

f (
k

W
) sinc(W t − k).

Because sinc(t) 6∈ L1(R) the series (Ssinc
W f ) for an arbitrary function f ∈ C(R) may be divergent. A set of fixed points of the

sampling operator Ssinc
W is equal to the Bernstein class Bp

πW (if p = ∞, then Bp
σ with σ < πW ) – the class of those bounded

functions f ∈ Lp(R) (1¶ p ¶∞) which can be extended to an entire function f (z) (z ∈ C) of exponential type σ ([1] or [2],
4.3.1), i. e.,

| f (z)|¶ eσ|y|‖ f ‖C (z = x + i y ∈ C).
The idea to replace the sinc kernel sinc(·) 6∈ L1(R) by another kernel function s ∈ L1(R) appeared first in [3], where the case

s(t) = (sinc(t))2 was considered. A systematic study of sampling operators (1) for arbitrary kernel functions s with (2) was
initiated at RWTH Aachen by P. L. Butzer and his students since 1977 (see [4], [1], [5] and references cited there).

Since in practice signals are however often discontinuous, this paper is concerned with the convergence of SW f to f in
the Lp(R)-norm for 1 < p <∞, the classical modulus of continuity being replaced by the averaged modulus of smoothness
τk( f ; 1/W )p. For the classical (Whittaker-Kotel’nikov-Shannon) operator this approach was introduced by P. L. Butzer, C. Bardaro,
R. Stens and G. Vinti (2006) in [6] for 1< p <∞. For time-limited kernels s this approach was applied for 1¶ p <∞ in [7] and
[8].

In this paper we study an even band-limited kernel s, i.e. s ∈ B1
π
, defined by an even window function λ ∈ C[−1,1], λ(0) = 1,

λ(u) = 0 (|u|¾ 1) by the equality

s(t) := s(λ; t) :=

1
∫

0

λ(u) cos(πtu) du. (3)
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In fact, this kernel is the Fourier transform of λ ∈ L1(R),

s(t) =
Ç

π

2
λ∧(πt). (4)

We first used the band-limited kernel in general form (3) in [9], see also [10]. We studied the generalized sampling operators
SW : C(R)→ C(R) with the kernels in form (3) in [11], [12], [13], [14], [15] and [16]. We computed exact values of operator
norms

‖SW‖ := sup
‖ f ‖C¶1

‖SW f ‖C

and estimated the order of approximation in terms of modulus of smoothness. In this paper we give similar results for Lp(R)
norm in terms of the averaged modulus of smoothness.

2 Preliminary results
In this section we follow the approach of Butzer et al [6] of convergence problems of Shannon sampling series in a suitable
subspace of Lp(R).

2.1 Averaged modulus of smoothness

The Bulgarian school under Sendov [17] has introduced a so-called averaged modulus of smoothness τk( f ;δ)p. However, in
Sendov and Popov [17] this modulus is only studied for bounded, measurable functions f : [a, b]→ R, whereas (at least) in
sampling analysis one needs signals f : R→ R (or C). For this purpose Butzer, Bardaro, Stens and Vinti [6] extended the concept
of this averaged modulus to functions belonging to the space

M(R) := { f : R→ C; f measurable and bounded on R}.

Let f ∈ M(R) and δ ¾ 0. The k-th averaged modulus of smoothness for
1¶ p ¶∞ is defined as ([6], Def. 1)

τk( f ;δ)p := ‖ωk( f ; ·;δ)‖p, (5)

where ωk( f ; t;δ) is a local modulus of smoothness of order k ∈ N at t ∈ R

ωk( f ; t;δ) := sup{|
◦
∆k

h f (x)|; x −
kh

2
, x +

kh

2
∈ [t −

kδ

2
, t +

kδ

2
]},

where the central difference is given by

◦
∆k

h f (x) =
k
∑

`=0

(−1)`
�

k

`

�

f (x + (
k

2
− `)h). (6)

Classical modulus of smoothness ([18], p.76) is defined for f ∈ C(R) and δ ¾ 0 by

ωk( f ;δ)C := sup
|h|¶δ
‖
◦
∆k

h f (·)‖C ,

and for f ∈ Lp(R) (1¶ p ¶∞) by

ωk( f ;δ)p := sup
|h|¶δ
‖
◦
∆k

h f (·)‖p.

The averaged modulus of smoothness has the following properties ([6], Proposition 4, [19], 4.6.6):

τk( f ;δ)C =ωk( f ;δ)C ,
τk( f ;δ)∞ =ωk( f ;δ)∞,
ωk( f ;δ)p ¶ τk( f ;δ)p (1¶ p <∞),
ωk( f , hδ)p ¶ b1+ hckωk( f ,δ)p for any h> 0 (1¶ p <∞),

(7)

where bxc is the largest integer less than or equal to x ∈ R.

2.2 The space Λp

Since the sampling series SW f of (1) of an arbitrary Lp-function f may be divergent, we have to restrict the matter to a suitable
subspace. Further, since we want to use the τ- modulus as a measure for the approximation error, we have to ensure that it is
finite for all functions under consideration. In [6] was proved that we can define a suitable subspace as follows
Definition 2.1 ([6], Def. 10, [7], Def. 2.1).

(a) A sequence Σ := (x j) j∈Z ⊂ R is called an admissible partition of R or an admissible sequence, if it satisfies

0< inf
j∈Z
∆ j ¶ sup

j∈Z
∆ j <∞, ∆ j := x j − x j−1.
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(b) Let Σ := (x j) j∈Z ⊂ R be an admissible partition of R. The discrete `p(Σ)-norm of a sequence of function values fΣ on Σ of a
function f : R→ C is defined for 1¶ p <∞ by

‖ f ‖`p(Σ) :=

(

∑

j∈Z

| f (x j)|p∆ j

)1/p

.

(c) The space Λp for 1¶ p <∞ is defined by

Λp := { f ∈ M(R);‖ f ‖`p(Σ) <∞ for each admissible sequence Σ}.

‖ · ‖`p(Σ) is a seminorm on Λp.

It can be shown (see [6], Proposition 18) that if f ∈ Λp ∩ Rloc(R) for 1¶ p <∞ we have

lim
δ→0
τk( f ;δ)p = 0, (8)

where Rloc(R) := { f : R→ C, is locally Riemann integrable on R}. We have for 1¶ p <∞ that Bp
W  W r

p  Λ
p  Lp, where

W r
p := { f ∈ Lp; f ∈ AC r

loc , f (r) ∈ Lp}

is the classical Sobolev space.
In the following we consider the uniform partitions ΣW := ( j/W ) j∈Z ⊂ R for W > 0 only. For these partitions we have

‖ f ‖`p(W ) :=

(

1

W

∑

j∈Z

�

�

�

�

f
� j

W

�

�

�

�

�

p
)1/p

¶ ‖ f ‖p +
1

W
‖ f ′‖p, f ∈W r

p . (9)

2.3 Sampling operators

For the classical (Whittaker-Kotel’nikov-)Shannon operator we have (see [6], Corollary 33) that if f ∈ Λp ∩Rloc(R) for 1< p <∞
we have

lim
W→∞

‖Ssinc
W f − f ‖p = 0. (10)

Holds the following theorem:

Theorem 2.1 ([6], Th. 32). Let f ∈ Λp for 1< p <∞, any r ∈ N. Then

‖Ssinc
W f − f ‖p ¶ cr τr( f ;

1

W
)p. (11)

The constants cr are independent of f and W.

The most general kernel for the sampling operators SW in (1) is defined in the following way.
Definition 2.2 ([5], Def. 6.3). If s : R→ C is a bounded function such that

∞
∑

k=−∞

|s(u− k)|<∞ (u ∈ R), (12)

the absolute convergence being uniform on compact subsets of R, and
∞
∑

k=−∞

s(u− k) = 1 (u ∈ R), (13)

then s is said to be a kernel for sampling operators (1).
The absolute moment of order r = 0, 1,2, . . . of a kernel s is defined by

mr(s) := sup
u∈R

∞
∑

k=−∞

|u− k|r |s(u− k)|. (14)

The definition formulated above guarantees that operators (1) give approximations for continuous functions f ∈ C(R).
Theorem 2.2 ([1], Th. 4.1). Let s ∈ C(R)∩ L1(R) be a kernel. Then

�

SW
	

W>0 defines a family of bounded linear operators from
C(R) into itself, satisfying

‖SW‖= sup
u∈R

∞
∑

k=−∞

|s(u− k)|=: m0(s) (W > 0). (15)

For f ∈ Λp we have:

Proposition 2.3 (cf [7], Proposition 3.2). Let s ∈ M(R)∩ L1(R) be a kernel. Then
�

SW
	

W>0 defines a family of bounded linear
operators from Λp into Lp, 1¶ p <∞, satisfying (1/p+ 1/q = 1)

‖SW f ‖p ¶ m1/q
0 (s)‖s‖

1/p
1 ‖ f ‖`p(W ) (W > 0). (16)

If the kernel s is time-limited, i.e. there exists T0, T1 ∈ R, T0 < T1 such that s(t) = 0 for t 6∈ [T0, T1], then if f ∈ Λp ∩ Rloc(R)
for 1¶ p <∞, we have (see [7], Th. 4.4)

lim
W→∞

‖SW f − f ‖p = 0. (17)
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3 Bandlimited kernels
In the following we assume that our kernel s in (3) belongs to L1(R), which yields s ∈ B1

π, because the Fourier transform of s,

s∧(x) =
1
p

2π
λ

� x

π

�

implies s∧(x) = 0 for |x |¾ π. (18)

For the band-limited functions s ∈ Bp
π ⊂ Lp(R) the norm (15) is related to the norm ‖s‖p as shown in following.

Theorem 3.1 (Nikolskii inequality; [20], p.124, [21], Th. 6.8). Let 1¶ p ¶∞. Then, for every s ∈ Bp
σ

,

‖s‖p ¶ sup
u∈R

(

∞
∑

k=−∞

|s(u− k)|p
)1/p

¶ (1+σ)‖s‖p.

From the Nikolskii inequality we see that our assumption s ∈ L1(R) is sufficient for (12) and thus s in (3) is indeed a kernel
in the sense of Definition 2.2.

These types of kernels arise in conjunction with window functions widely used in applications (e.g. [22], [23], [24], [25]),
in Signal Analysis in particular. Unfortunately bandlimited kernels do not have compact support. Many kernels can be defined by
(3).

1) λ(u) = 1 defines the sinc function.
2) λ(u) = 1− u defines the Fejér kernel sF (t) =

1
2
sinc 2 t

2
(cf. [3]).

3) λ j(u) := cosπ( j+ 1/2)u, j = 0,1, 2, . . . defines the Rogosinski-type kernel (see [9]) in the form

r j(t) :=
1

2

�

sinc(t + j+
1

2
) + sinc(t − j−

1

2
)
�

. (19)

4) λH(u) := cos2 πu
2
= 1

2
(1+ cosπu) defines the Hann1 kernel (see [14])

sH(t) :=
1

2

sinc t

1− t2 . (20)

5) The general cosine window

λC ,a(u) :=
m
∑

k=0

ak cos kπu (21)

defines the Blackman-Harris kernel (see [15])

sC ,a(t) :=
1

2

m
∑

k=0

ak

�

sinc(t − k) + sinc(t + k)
�

, (22)

provided (here and following bxc is the largest integer less than or equal to x ∈ R)

b m
2 c
∑

k=0

a2k =
b m+1

2 c
∑

k=1

a2k−1 =
1

2
. (23)

We get Hann kernel (20) if we take m= 1 in (22).
6) Powers of the Hann window (see [24], formula(25a))

λH,m(u) := cosm
�πu

2

�

(24)

=
1

2m

m
∑

k=0

�

m

k

�

cos
�

(k−
m

2
)πu
�

, (25)

give a general Hann kernel in the form

sH,m(t) = 2−m Γ(1+m)
Γ(1+ m

2
− t)Γ(1+ m

2
+ t)

. (26)

From ([14], Prorposition 2) we have that for m= 0,1, 2, . . ., and `¶ m

sH,m(t) =
1

2m−`

m−
∑̀

k=0

�

m− `
k

�

sH,`(t + k−
m− `

2
). (27)

Comparing the window function λH,m in (25) and the general cosine window λC ,a in (21) we see that the general Hann kernel
in case of m = 2n (n ∈ N) is a special case of the Blackman-Harris kernel. Indeed sH,2n = sC ,a∗ , where the parameter vector
a∗ ∈ Rn+1 has components a∗0 =

1
22n

�2n
n

�

and a∗k =
1

22n−1

� 2n
n−k

�

for k = 1,2, . . . , n.

1"Hann" is the correct name of this window, although the conventional usage is "Hanning". It is named after the well-known Austrian meteorologist Julius Ferdinand
von Hann (1839-1921) (see [23], pp. 95–100, [24])
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4 Sampling operators with kernels, which are linear combinations of translated sinc
functions

Many kernels, we considered for sampling operators SW f : C(R) → C(R) are in fact linear combinations of translated sinc-
functions. In this case we can use Theorem 2.1 for the estimates of speed of approximation.

4.1 Hann sampling operators

Let us first consider Hann sampling operators HW,m (m = 0, 1, 2, . . .). The Hann kernel sH,m(t) = O(|t|−m−1) as |t| →∞ (cf. [26])
and we have rapidly decreasing kernels with small truncation error. If we take in (27) `= 0 we have a linear combination of
sinc-functions because sH,0 = sinc.

Theorem 4.1. Let HW,m (m = 1,2, . . .) be the Hann sampling operator defined by (1) with the kernel (26). Then for f ∈ Λp

(1< p <∞)

‖HW,m f − f ‖p ¶ Mmτ2( f ;
1

W
)p. (28)

The constant Mm is independent of f and W. Moreover, if f ∈ Λp ∩ Rloc(R) for 1< p <∞, we have

lim
W→∞

‖HW,m f − f ‖p = 0.

PROOF: According to (27) the sampling series HW,m f has the form

(HW,m f )(t) =
1

2

�

(HW,m−1 f )(t −
1

2W
) + (HW,m−1 f )(t +

1

2W
)
�

.

We obtain

(HW,m f )(t)− f (t) =
1

2

�

(HW,m−1 f )(t −
1

2W
)− f (t −

1

2W
) + (HW,m−1 f )(t +

1

2W
)− f (t +

1

2W
)

+ f (t −
1

2W
)− 2 f (t) + f (t +

1

2W
)
�

,

which gives

‖HW,m f − f ‖p ¶ ‖HW,m−1 f − f ‖p +
1

2
ω2( f ;

1

2W
)p.

The proof by induction shows that

‖HW,m f − f ‖p ¶ ‖HW,0 f − f ‖p +
m

2
ω2( f ;

1

W
)p.

Since HW,0 = Ssinc
W the Theorem 2.1, taking into account the properties of the averaged modulus of smoothness, implies the

following

‖HW,m f − f ‖p ¶ τ2( f ;
1

W
)p
�

c2 +
m

2

�

.

The last assertion follows from (28) and (8).

4.2 Blackman-Harris sampling operators

For the general Blackman-Harris sampling operator CW,a we have the estimate of speed of approximation via averaged modulus
of smoothness of order 2.

Theorem 4.2. Let CW,a be the Blackman-Harris sampling operator defined by (1) with the kernel (22), then for f ∈ Λp (1< p <∞)

‖CW,a f − f ‖p ¶ Maτ2( f ;
1

W
)p. (29)

The constant Ma is independent of f and W. Moreover, if f ∈ Λp ∩ Rloc(R) for 1< p <∞, we have

lim
W→∞

‖CW,a f − f ‖p = 0.

PROOF: The Blackman-Harris kernel (22) is a linear combination of translated sinc-functions. This allows us to give for the
corresponding operator CW,a the representation

(CW,a f )(t) =
1

2

∑

j∈Z

f (
j

W
)

m
∑

k=0

ak

�

sinc(W t − j+ k) + sinc(W t − j− k)
�

=
1

2

m
∑

k=0

ak

 

∑

j∈Z

f (
j

W
) sinc(W t − j+ k) +

∑

j∈Z

f (
j

W
) sinc(W t − j− k)

!

=
1

2

m
∑

k=0

ak

�

(Ssinc
W f )(t +

k

W
) + (Ssinc

W f )(t −
k

W
)
�

,
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which results

(CW,a f )(t)− f (t) =
1

2

m
∑

k=0

ak

�

�

(Ssinc
W f )(t +

k

W
)− f (t +

k

W
)
�

+
�

(Ssinc
W f )(t −

k

W
)− f (t −

k

W
)
�

(30)

+
�

f (t −
k

W
)− 2 f (t) + f (t +

k

W
)
�

�

.

If we take Lp norm of (31), we get

‖CW,a f − f ‖p ¶
m
∑

k=0

|ak|
�

‖Ssinc
W f − f ‖p +

1

2
‖
◦
∆2

k/W f ‖p

�

.

Now we can use Theorem 2.1, the definition and properties of modulus of smoothness and the properties of the averaged
modulus of smoothness:

‖CW,a f − f ‖p ¶
m
∑

k=0

|ak|
�

c2τ2( f ;
1

W
)p +

1

2
ω2( f ;

k

W
)p
�

¶ τ2( f ;
1

W
)p

m
∑

k=0

|ak|
�

c2 +
k2

2

�

.

The last assertion follows from (29) and (8).
Some special choices of the parameter vector a for the general Blackman-Harris sampling operator CW,a allow us to estimate

of speed of approximation via averaged modulus of smoothness of higher order than 2.

Proposition 4.3. For m ∈ N, 1¶ `¶ m the kernel

s(t) = sinc(t)−
1

22`+1

m−
∑̀

j=0

(−1) j+`q j[
◦
∆2`

1 sinc(t − j) +
◦
∆2`

1 sinc(t + j)] (31)

with q ∈ Rm−`+1,
∑m−`

j=0 q j = 1 is a Blackman-Harris kernel sC ,a(q) with parameter vector a(q) ∈ Rm+1.

Proof. The Blackman-Harris kernels are combinations of translated sinc functions. The coefficients of positive and negative
translated sinc functions are equal and the sum of coefficients of both even- and odd-translated sinc functions are equal to 1/2.
We show that all the assertions hold for (31).

Denote

sm,`, j(t) := sinc(t)−
(−1) j+`

22`+1
[
◦
∆2`

1 sinc(t − j) +
◦
∆2`

1 sinc(t + j)], (32)

which allows us to represent the kernel (31) in the form

s(t) =
m−
∑̀

j=0

q jsm,`, j(t).

We get from (32), using the central differences in form (6), the representation

sm,`, j(t) = sinc(t)−
(−1) j+`

22`+1

◦
∆2`

1 [sinc(t − j) + sinc(t + j)] = sinc(t)−
(−1) j+`

22`+1

2
∑̀

k=0

(−1)k
�

2`

k

�

[sinc(t − j+ `− k) + sinc(t + j+ `− k)].

It is well known that sums of binomial coefficients
�2`

k

�

with both even and odd k are equal to 22`−1. Using this result we can see
that the sum of coefficients of sinc functions with odd translates is equal to

1

22`+1
22`−12=

1

2

and the sum of coefficients of sinc functions with odd translates is equal to

1−
1

22`+1
22`−12=

1

2
,

which indicates that the kernel sm,`, j in (32) is a Blackman-Harris kernel and the kernel (31) is Blackman-Harris kernel if

n−
∑̀

j=0

q j = 1.

Now we are able to prove the following theorem:
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Theorem 4.4. For CW,a (a ∈ Rm+1) let `, 1¶ `¶ m be fixed. If there exists a parameter vector q ∈ Rm−`+1, such that we have for
the kernel (22) a representation via central differences (6) in form (31), then for f ∈ Λp (1< p <∞)

‖CW,a f − f ‖p ¶ Ma,`τ2`( f ;
1

W
)p. (33)

The constant Ma,` is independent of f and W. Moreover, if f ∈ Λp ∩ Rloc(R) for 1< p <∞, we have

lim
W→∞

‖CW,a f − f ‖p = 0.

PROOF: The representation (31) allows us to give for the corresponding operator CW,a the representation

(CW,a f )(t) = (Ssinc
W f )(t)−

1

22`+1

m−
∑̀

k=0

(−1)k+`qk

� ◦
∆2`

1/W (S
sinc
W f )(t +

k

W
) +

◦
∆2`

1/W (S
sinc
W f )(t −

k

W
)
�

,

which results

(CW,a f )(t)− f (t) = (Ssinc
W f )(t)− f (t)−

1

22`+1

m−
∑̀

k=0

(−1)k+`qk

�

◦
∆2`

1/W

�

(Ssinc
W f )(t +

k

W
)− f (t +

k

W
)
�

(34)

+
◦
∆2`

1/W

�

(Ssinc
W f )(t −

k

W
)− f (t −

k

W
)
�

�

−
1

22`+1

m−
∑̀

k=0

(−1)k+`qk

� ◦
∆2`

1/W f (t −
k

W
) +

◦
∆2`

1/W f (t +
k

W
)
�

.

If we take Lp norm of (35), we get

‖CW,a f − f ‖p ¶ ‖Ssinc
W f − f ‖p

�

1+
m−
∑̀

k=0

|qk|
�

+ ‖
◦
∆2`

1/W f ‖p

1

22`

m−
∑̀

k=0

|qk|.

Now we can use Theorem 2.1, the definition and properties of modulus of smoothness and the properties of the averaged
modulus of smoothness:

‖CW,a f − f ‖p ¶ τ2`( f ;
1

W
)p

 

c2`

�

1+
m−
∑̀

k=0

|qk|
�

+
1

22`

m−
∑̀

k=0

|qk|

!

.

The last assertion follows from (33) and (8).
We give some examples, how to apply Theorem 4.4. If we take m= 3, then there exist one Blackman-Harris operator, for

which we have the estimate of order of approximation via τ-modulus of smoothness of order 6.

Corollary 4.5. Take m= 3 and `= 3 in Theorem 4.4. Then we have the estimate of order of approximation of the corresponding
sampling operator CW,a∗ in terms of τ-modulus of smoothness of order 6. The corresponding parameter vector a∗ is in form:

a∗ =
1

32
(22,15,−6, 1).

For m= 3 and `= 2 we have a family, depending on one parameter q, of sampling operators.

Corollary 4.6. Take m= 3 and `= 2 in Theorem 4.4. Then we have the estimate of order of approximation of the corresponding
sampling operator CW,aq

in terms of τ-modulus of smoothness of order 4. The corresponding parameter vector, depending on a
parameter q ∈ R, is in form

aq =
1

16
(10+ 2q, 8− q,−2− 2q, q).

Some choices of the parameter q in Corollary 4.6 give us sampling operators with special properties.
Remark. If we take q = 0 in Corollary 4.6, then we have the case, corresponding to m= 2 and `= 2 in Theorem 4.4. If we take
q =−1 in Corollary 4.6, then the sampling operator CW,a−1

, defined by (1) with the kernel s(t) = 2sC ,a−1
(2t) is interpolating (see

[16]).

4.3 Subordination by Rogosinski-type sampling operators

The Rogosinski-type sampling operators give us the opportunity to represent other sampling operators with even bandlimited
kernels s ∈ B1

π. Indeed, in [9] we proved the following subordination equalities

SW f = 2
∞
∑

j=0

s( j+ 1/2)RW, j f , (35)

SW f − f = 2
∞
∑

j=0

s( j+ 1/2)(RW, j f − f ). (36)

By (16) we have for f ∈ Λp, 1¶ p <∞, satisfying (1/p+ 1/q = 1)

‖RW, j f ‖p ¶ m1/q
0 (r j)‖r j‖

1/p
1 ‖ f ‖`p(W ) (W > 0). (37)
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For the operator norm we proved (see [12] or [9], Th. 3), that

m0(r j) = ‖RW, j‖=
4

π

2 j
∑

`=0

1

2`+ 1
=

2

π
ln( j+ 1) +O(1) ( j = 0,1, . . .).

We can show, that

‖r j‖1 = 2
2 j
∑

`=0

(−1)k
�

Sci(`+ 1)− Sci(`)
�

=
2

π
ln( j+ 1) +O(1) ( j = 0,1, . . .),

where the integral sinc is defined by

Sci(x) :=

x
∫

0

sinc(v)dv.

So we need
∞
∑

j=0

|s( j+ 1/2)| log( j+ 1)<∞

for (35). To use (36) we need
∞
∑

j=0

|s( j+ 1/2)|( j+ 1)2 <∞,

as the proof of the following theorem suggest.

Theorem 4.7. Let RW, j ( j = 0,1,2, . . .) be the Rogosinski-type sampling operator defined by (1) with the kernel (26), then for
f ∈ Λp (1< p <∞)

‖RW, j f − f ‖p ¶ M jτ2( f ;
1

W
)p. (38)

The constant M j is independent of f and W. Moreover, if f ∈ Λp ∩ Rloc(R) for 1< p <∞, we have

lim
W→∞

‖RW, j f − f ‖p = 0.

PROOF: The Rogosinski-type kernel (19) is a aritheoremetic mean of two translated sinc-functions. This allows us to give for
the corresponding operator RW, j the representation

(RW, j f )(t) =
1

2

�

(Ssinc
W f )(t +

2 j+ 1

2W
) + (Ssinc

W f )(t −
2 j+ 1

2W
)
�

.

The rest of the proof is analogous to the proof of Theorem 4.2.
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