2013 Dolomites Research Week on Approximation

Lecture 5&6: Kernel methods for modeling geophysical fluids: shallow water equations on a sphere and mantle convection in a spherical shell.

> Grady B. Wright Boise State University

Shallow water wave equations on a rotating sphere

• Model for the nonlinear dynamics of a shallow, hydrostatic, homogeneous, and inviscid fluid layer.

• Idealized test-bed for the horizontal dynamics of all 3-D global climate models.

Equations	Momentum	Transport	
Spherical coordinates	$\frac{\partial \mathbf{u}_s}{\partial t} + \mathbf{u}_s \cdot \nabla_s \mathbf{u}_s + f \hat{\mathbf{k}} \times \mathbf{u}_s + g \nabla_s h = 0$	$\frac{\partial h^*}{\partial t} + \nabla_s \cdot (h^* \mathbf{u}_s) = 0$	
	Singularity at poles!		
Cartesian coordinates	$\frac{\partial \mathbf{u}_c}{\partial t} + P \begin{bmatrix} (\mathbf{u}_c \cdot P\nabla_c)u_c + f(\mathbf{x} \times \mathbf{u}_c) \cdot \hat{\mathbf{i}} + g(P\hat{\mathbf{i}} \cdot \nabla_c)h \\ (\mathbf{u}_c \cdot P\nabla_c)v_c + f(\mathbf{x} \times \mathbf{u}_c) \cdot \hat{\mathbf{j}} + g(P\hat{\mathbf{j}} \cdot \nabla_c)h \\ (\mathbf{u}_c \cdot P\nabla_c)w_c + f(\mathbf{x} \times \mathbf{u}_c) \cdot \hat{\mathbf{k}} + g(P\hat{\mathbf{k}} \cdot \nabla_c)h \end{bmatrix} = 0 \frac{\partial h^*}{\partial t} + (P\nabla_c) \cdot (h^*\mathbf{u}_c) = 0$		
	Smooth over entire sphere!		

Forcing terms added to the shallow water equations to generate a flow that mimics a short wave trough embedded in a westerly jet. (Test case 4 of Williamson *et. al.* 1992)

Initial velocity field

Errors after trough travels once around the sphere

• Results of the RBF Shallow Water Model: (Flyer & W, 2009)

Error height field, t = 5 days

N = 3136, white $< 10^{-5}$ Error (exact - numerical) DRWA 2013 Lecture 5/6

Method	N	Time step	Relative <i>l</i> ₂ error	
RBF	4,096	8 minutes	2.5 × 10 ⁻⁶	
	5,041	6 minutes	1.0 × 10 ⁻⁸	
Sph. Harmonic	8,192	3 minutes	2.0 × 10 ⁻³	
Double Fourier	32,768	90 seconds	4.0×10^{-4}	
Spect. Element	24,576	45 seconds	4.0 × 10 ⁻⁵	

Time-step for RBF method: Temporal Errors = Spatial Errors Time-step for other methods: Limited by numerical stability

 \bullet RBF method runtime in MATLAB using 2.66 GHz Xeon Processor

N	Runtime per time step	Total Runtime
	(sec)	
4,096	0.41	6 minutes
5,041	0.60	12 minutes

For much higher numerical accuracy, RBFs uses less nodes & larger time steps

Numerical Example II: RBF-FD method

(Flyer, Lehto, Blaise, Wright, and St-Cyr. 2012)

Flow over a conical mountain (Test case 5 of Williamson et. al. 1992)

Height field at *t*=0 days

Remarks:

- The mountain is only continuous, not differentiable.
- No analytical solution.
- Comparisons in numerical solutions are done against some reference numerical solutions at a high resolution.

× Standard Literature/Comparison: NCAR's Sph. Har. T426, Resolution ≈ 30 km at equator \circ New Model at NCAR Discontinuous Galerkin – Spectral Element, Resolution ≈ 30 km \Box RBF-FD model, Resolution ≈ 60 km

• Further improvements for both methods may be possible using local mesh/node refinement near the mountain.

Numerical Example III: RBF-FD method

- DRWA 2013 Lecture 5/6
- Evolution of a highly non-linear wave: (Test case from Galewsky et. al. *Tellus*, 2004) Rapid cascade of energy from large to small scales resulting in sharp vorticity gradients
- RBF-FD method with N=163,842 nodes and m=31 point stencil.

Thermal convection in a 3D spherical shell with applications to the Earth's mantle.

Simulating convection in the Earth's mantle

(Wright, Flyer, and Yuen. Geochem. Geophys. Geosyst., 2010)

- Model assumptions:
 - 1. Fluid is incompressible
 - 2. Viscosity of the fluid is constant
 - 3. Boussinesq approximation

4. Infinite Prandtl number, $\Pr = \frac{\text{kinematic viscosity}}{\text{thermal diffusivity}} \rightarrow \infty$

• Non-dimensional Equations:

$$\nabla \cdot \mathbf{u} = 0 \quad (\text{continuity}),$$
$$\nabla^2 \mathbf{u} + \operatorname{Ra} T \,\hat{\mathbf{r}} - \nabla p = 0 \quad (\text{momentum}),$$
$$\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T - \nabla^2 T = 0 \quad (\text{energy}).$$

• Boundary conditions:

Velocity: impermeable and shear-stress free Temperature (isothermal): T = 1 at core mantle bndry., T = 0 at crust mantle bndry.

• Rayleigh, Ra, number governs the dynamics. • Model for Rayleigh-Bénard convection

- Use a hybrid RBF-Pseudospectral method
- \bullet Collocation procedure using a 2+1 approach with
 - \succ N RBF nodes on each spherical surface (angular directions) and
 - \succ M Chebyshev nodes in the radial direction.

N RBF nodes (ME) on a spherical surface

3-D node layout showing MChebyshev nodes in radial direction DRWA 2013 Lecture 5/6

• Rewrite the momentum equation using poloidal potential Φ :

$$\begin{split} \Delta_{\mathcal{S}} \Omega &+ \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Omega}{\partial r} \right) = \operatorname{Ra} r \, T \\ \Delta_{\mathcal{S}} \Phi &+ \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Phi}{\partial r} \right) = r^2 \Omega, \\ \mathbf{u} &= \nabla \times \nabla \times \left((\Phi r) \hat{\mathbf{r}} \right) \\ \frac{\partial T}{\partial t} &= - \left(u_r \frac{\partial T}{\partial r} + \mathbf{u}_{\mathcal{S}} \cdot (P \nabla T) \right) + \frac{1}{r^2} \Delta_{\mathcal{S}} T + \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) \end{split}$$

- We have seen how to create a discrete representation for $P\nabla$ using RBFs.
- Need a method to create a discrete representation of $\Delta_{\mathcal{S}}$:
- A similar procedure can be used to $P\nabla$, by noting that

$$egin{aligned} \Delta_{\mathcal{S}} \phi(\|\mathbf{x}-\mathbf{x}_{j}\|) =& rac{1}{4} iggl[(4-\|\mathbf{x}-\mathbf{x}_{j}\|^{2}) \phi''(\|\mathbf{x}-\mathbf{x}_{j}\|) + \ & rac{4-3\|\mathbf{x}-\mathbf{x}_{j}\|^{2}}{\|\mathbf{x}-\mathbf{x}_{j}\|} \phi'(\|\mathbf{x}-\mathbf{x}_{j}\|) iggr] \end{aligned}$$

Steps of computational algorithm

$$\begin{split} \Delta_{\mathcal{S}} \Omega &+ \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Omega}{\partial r} \right) = \operatorname{Ra} r \, T \\ \Delta_{\mathcal{S}} \Phi &+ \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Phi}{\partial r} \right) = r^2 \Omega, \\ \mathbf{u} &= \nabla \times \nabla \times \left((\Phi r) \hat{\mathbf{r}} \right) \\ \frac{\partial T}{\partial t} &= - \left(u_r \frac{\partial T}{\partial r} + \mathbf{u}_{\mathcal{S}} \cdot (P \nabla T) \right) + \frac{1}{r^2} \Delta_{\mathcal{S}} T + \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) \end{split}$$

- 1. Discretize $\Delta_{\mathcal{S}}$ and $P\nabla$ for the unit sphere using N RBFs. $\partial \qquad \partial^2$
- 2. Discretize $\frac{\partial}{\partial r}$ and $\frac{\partial^2}{\partial r^2}$ using *M* Chebyshev polynomials.
- 3. Use T initial condition to solve for Ω .
- 4. Use Ω solution to solve for Φ .
- 5. Use Φ to compute the velocity **u**
- 6. Discretize energy equation in time using an implicit/explicit scheme
 - (a) Use trapezoidal rule for diffusion operator.
 - (b) Use 3rd order Adams-Bashforth for the advection operator.
- 7. Time-step the energy equation to get a new T, go back to step 3

Ra=7000 benchmark: validation of method

Blue=downwelling, Yellow= upwelling, Red=core

• Comparisons against main previous results from the literature:

Method	No of nodes	Nu _{outer}	Nuinnner	<v<sub>RMS ></v<sub>	< T >
Finite volume	663,552	3.5983	3.5984	31.0226	0.21594
Finite elements (CitCom)	393,216	3.6254	3.6016	31.09	0.2176
Finite differences (Japan)	12,582,912	3.6083		31.0741	0.21639
Spherical harmonics -FD	552,960	3.6086		31.0765	0.21582
Spherical harmonics -FD	Extrapolated	3.6096		31.0821	0.21577
RBF-Chebyshev	36,800	3.6096	3.6096	31.0820	0.21578

Nu = ratio of convective to conductive heat transfer across a boundary

Model setup:

- Convection dominated flow
- N = 6561 RBF nodes, M = 81 Chebyshev nodes
- Time-step $O(10^{-7})$, which is about 34,000 years
- Simulation time to t=0.08 (4.5 times the age of the earth)

<u>Results:</u>

t=8.00e-02

Blue=downwelling, Yellow= upwelling, Red=core

G. B. Wright, N. Flyer, and D. A. Yuen, 2010

Simulation:

- Improving computational efficiency using RBF-FD.
- First step is to do RBF-FD on each spherical surface instead of global RBFs.

• Ultimate goal is to go to fully 3D RBF-FD formulas (no tensor-product structure):

