
How many square occurrences must a binary sequence
contain?

Gregory Kucherov∗ Pascal Ochem† Michaël Rao‡
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Abstract

Every binary word with at least four letters contains a square. A. Fraenkel
and J. Simpson showed that three distinct squares are necessary and sufficient to
construct an infinite binary word. We study the following complementary question:
how many square occurrences must a binary word contain? We show that this
quantity is, in the limit, a constant fraction of the word length, and prove that this
constant is 0.55080....

1 Introduction

Infinite words avoiding repetitions is a classical area in word combinatorics [2]. A famous
result of A.Thue [9, 10] (see also [1]) is that squares (subwords of the form uu for a non-
empty u) can be avoided on a ternary alphabet and cubes (subwords uuu) on a binary
alphabet.

Different generalizations of the Thue results have been studied recently. One direction
is related to considering fractional exponents. Thue showed that on the binary alphabet,
a strongly cube-free infinite word can be constructed, i.e. a word that does not contain
a subword uua, where a is the first letter of u. Putting this result in terms of fractional
exponents, there exists an infinite binary word that does not contain a subword of expo-
nent 2+ ε for any ε > 0. 2 is trivially a tight bound as any binary word longer than three
letters contains a square.

Generalizing this to the ternary alphabet, F. Dejean [4] showed that any exponent
bigger than 7/4 can be avoided using three letters, and this bound is tight. These results
have been generalized to larger alphabets and on the other hand, to the abelian case
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France, rao@sciences.univ-metz.fr

the electronic journal of combinatorics 10 (2003), #R12 1



where squares and cubes are considered modulo letter commutations. We refer to [2] for
a survey of these results.

Another direction is to study limit properties of infinite words avoiding a given expo-
nent. The following question has been studied in [7]: on the binary alphabet, what is the
minimal limit fraction of one of the two letters, which allows to construct an infinite word
avoiding subwords of exponent e (e > 2)? As an example, it has been shown that this frac-
tion is 1/2 for 2 < e ≤ 7/3 and strictly smaller than 1/2 for e = 7/3+ε, for any ε > 0. For
the ternary alphabet, Yu. Tarannikov [8] showed that the minimal fraction of one letter in
ternary square-free words is in the interval [1780/6481, 64/233] = [0.27464..., 0.27467...].

In [5], the following question has been studied: as squares cannot be avoided on the
binary alphabet, how many distinct squares does one need in order to construct an infinite
word? Distinct here means syntactically different squares, in contrast to occurrences of
(possibly identical) squares. It has been proved in [5] that three distinct squares are
sufficient (and necessary) to construct an infinite binary word, those squares could be 00,
11 and 0101.

In [6] was raised the complementary question of the maximal number of distinct squares
in a binary word. It was shown that this number is linearly bounded on n (word length).
More precisely, this number is always less than 2n and is (n− o(n)) for infinitely many n.

In this paper, we study the following natural question left open by [5, 6]: what is the
minimal limit proportion of square occurrences in an infinite binary word? We prove that
this limit exists, and prove an estimate of it, up to several decimal digits.

2 Basic definitions

Unless otherwise stated, we consider the binary alphabet A = {0, 1}. By an infinite word
we will mean a one-way infinite word, also called ω-word, defined as a mapping N → A.
The set of infinite words over A is denoted Aω.

A square (in a word) is a subword uu, where u is a non-empty word. For a word
w ∈ {0, 1}∗, let s(w) be the number of (possibly overlapping) square occurrences in w.
For n ∈ N, define m(n) = min|w|=n s(w). For example, m(3) = 0, m(4) = 1, m(5) = 1,
m(6) = 2. Values of m(n) for low n as well as some values for big n are shown in the
Appendix.

If w is a binary word, define w as the word obtained by exchanging 0 and 1 in w.

3 Limit proportion of square occurrences in binary

words

The quantity we are interested in in this paper is the limit value of m(n)
n

. We first show
that this limit indeed exists.

Lemma 1. For every n ∈ N, for every k ∈ N, k > 1, m(n)
n

>
(
1 + n−k2

n(k−1)

)
× m(k)

k
.
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Proof. Take a word of length n with m(n) square occurrences and consider
⌊

n−1
k−1

⌋
subwords

of length k overlapping by one letter. Each subword has at least m(k) square occurrences
and every square occurrence is entirely contained in at most one subword. Thus, m(n) ≥⌊

n−1
k−1

⌋× m(k), which gives

m(n)

n
≥
⌊

n − 1

k − 1

⌋
/
(n

k

)
×m(k)

k
>

(
n − 1

k − 1
− 1

)
/
(n

k

)
×m(k)

k
=

(
1 +

n − k2

n(k − 1)

)
×m(k)

k
.

Note that a binary word can contain Θ(n2) square occurrences (consider the word 1n)
and as many as Θ(n log n) occurrences of primitive squares (see [3]), i.e. squares uu such
that u can not be written as vk for k ∈ N, k ≥ 2. The infinite word constructed in [5]
contains only distinct squares 00, 11 and 0101, and therefore at most one square can start
at each position of this word. This implies that m(n) < n.

Theorem 2. The sequence m(n)
n

converges.

Proof. Due to the remark above,
{

m(n)
n

}
is bounded. Then, by the Bolzano-Weierstrass

theorem, there exists an accumulation point. We deduce from Lemma 1 that m(n)
n

> m(k)
k

for n ≥ k2. This proves that there is a unique accumulation point M = limn→∞
m(n)

n
.

Our goal is to estimate M. The following lemma is useful.

Lemma 3. For every k ∈ N, k > 1, M ≥ m(k)
k−1

.

Proof. Using Lemma 1, we have

M = lim
n→∞

m(n)

n
≥ lim

n→∞

(
1 +

n − k2

n(k − 1)

)
× m(k)

k
=

(
1 +

1

k − 1

)
× m(k)

k
=

m(k)

k − 1
.

4 Upper bound

To approach the upper bound, we first estimate the number of square occurrences in
A. Fraenkel and J. Simpson’s construction [5]. The infinite binary word constructed
in [5] is obtained by first translating a specific square-free word W3 over the ternary
alphabet {a1, a2, a3} to a word W5 over the quinary alphabet {a1, a2, a3, a4, a5}, and then
by applying to W5 a morphism to the binary alphabet {0, 1}. The first step is such that
the occurrences of a1, a2, a3 in W3 and W5 are in bijective correspondence, and for each
occurrence of a3 in W3, an occurrence of either a4 or a5 is introduced in W5. Assume that
X is the limit fraction of a3 in the initial ternary word W3. Let Pa1a2a3 (respectively Pa4a5)
be the limit proportion of letters a1, a2, a3 (respectively a4, a5), counted together, in word
W5. According to the above description of W5, Pa1a2a3 = 1/(1+X ) and Pa4a5 = X /(1+X ).
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At the second step, the morphism maps each of {a1, a2, a3} to a binary word of length
12, and each of {a4, a5} to a binary word of length 14. Moreover, each image of {a1, a2, a3}
adds 7 square occurrences to the resulting binary word (6 squares inside the image and
one across the border with the previous image), and each image of {a4, a5} adds 8 of those
(7 and 1 respectively). We conclude that the limit proportion of square occurrences in
the final binary word of [5] is

7 · Pa1a2a3 + 8 · Pa4a5

12 · Pa1a2a3 + 14 · Pa4a5

=
7 + 8 · X

12 + 14 · X .

On the other hand, X can be bounded by 1/4 ≤ X ≤ 1/2, as there must be at
least one a3 in every subword of length 4 and at most one a3 in every subword of length
two1. Therefore, the proportion of square occurrences in the word of [5] is between
11/19 = 0.5789.. and 18/31 = 0, 5806.... We now show that the minimal proportion M
is smaller than that, by showing a smaller upper bound.

Our construction is based on the following pattern of length 187, noticed when com-
puting long words that realize the minimal number of square occurrences for their length2.

w = 0100110100011001011000110100110001011001010011010001100101110
01101001110010110011101001101011001011100110100X1100101100Y 1
1010011000101100101001101000110010110001101001100010110011101
00110

The following words are obtained by substituting in different ways variables X and Y
in w and then by concatenating the resulting words with their complements.

va = w|X→0,Y →0

vb = w|X→1,Y →0

vc = w|X→1,Y →1

wa = vava,

wb = vavb,

wc = vbvc

wa, wb and wc are of size 374 and a computer check shows that each of them has 204
square occurrences.

Consider the morphism h defined by h(a) = wa, h(b) = wb and h(c) = wc. Let
t ∈ {a, b, c}∗ be a square-free ternary word. Then h(t) is a word of size 374 × |t|.

1These bounds are not the best possible but are sufficient for our purpose here. The lower bound
can be made better using the result of [8] (see Introduction). Note further that [5] uses the subclass of
ternary square-free words which avoid a1a3a1 and a2a3a2. This puts strong additional constrains on X .

2We will describe in the end of Section 5 how long words realizing the minimal number of squares
have been computed.
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Concatenating two different words of {wa, wb, wc} creates two new squares crossing
the boundary: 0101 and 1010. We show that there are no other new squares in h(t).

Lemma 4. Each square occurrence of h(t) either is located inside the image of a letter
of t, or is one of the squares 0101 and 1010 crossing the boundary between two adjacent
letter images. Consequently, h(t) contains (206 × |t| − 2) square occurrences.

Proof. Assume that h(t) contains a square, of size k, which is neither of those specified
in the lemma.

If k < 4 × 374, this square is contained in the image by h of a subword of t of length
at most 5. However, a computer check shows that for every ternary square-free word t′ of
size at most 5, h(t′) contains only the squares specified in the lemma.

Assume k ≥ 4×374 and let uu be the square under consideration. Since |u| ≥ 2×374,
one of the words {wa, wb, wc} is a subword of u, and therefore has two occurrences in h(t)
at distance |u|. This word must be a subword of a word h(xy) = wxwy, x, y ∈ {a, b, c}.
A direct verification shows that any word of {wa, wb, wc} can occur in a word wxwy,
x, y ∈ {a, b, c}, only as a suffix or as a prefix but not as a proper subword. This implies
that |u| is a multiple of 374, and k is a multiple of 2 × 374. Furthermore, this square
cannot be centered at the boundary of two letter images, as this would imply that uu is
the image of a subword of t and this subword is a square too (note that the inverse image
of h is unique), which would contradict to the square-freeness of t.

Now, we note that the minimal subword of t such that h(t) contains a square of size
2 × 374 × l must be of the form αvβvγ, where α, β, γ are letters, and v is a word of size
l − 1 (see Figure 1).

wα︷ ︸︸ ︷ wv[1]︷ ︸︸ ︷ wv[l−1]︷ ︸︸ ︷ wβ︷ ︸︸ ︷ wv[1]︷ ︸︸ ︷ wv[l−1]︷ ︸︸ ︷ wγ︷ ︸︸ ︷︸ ︷︷ ︸
u

︸ ︷︷ ︸
u

Figure 1: Square uu occurring in h(t)

wa, wb and wc differ only in 3 positions: positions 109, 296 and 307. The letters at
those positions are respectively 0 1 1 for wa, 0 0 1 for wb and 1 0 0 for wc.

If the center of the square is before position 296, the letters at positions 296 and 307 are
the same in wβ and in wγ . This implies that wβ = wγ, thus β = γ and therefore t contains
the square vγvγ. By a similar argument, if the center of the square is after position 296,
then t contains the square αvαv. In either case, this contradicts our assumption that t is
square-free. We conclude that h(t) does not contain squares other than those specified in
the lemma, and then h(t) has (206 × |t| − 2) square occurrences.

Corollary 5. M ≤ 103
187

= 0.55080....

5 Lower bound

In [8], Yu. Tarannikov introduced a method for obtaining lower bounds, that can be
applied to our case. We summarize it in the following lemma. Recall that s(w) is the
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number of square occurrences in w.

Lemma 6. For ξ ∈ R, define

A(ξ) =

{
w ∈ {0, 1}∗| for every prefix w[1..k] of w,

s(w[1..k])

k
≤ ξ

}
.

Then

(i) A(ξ) is finite iff ξ < M,

(ii) there exists w ∈ {0, 1}ω such that for every finite prefix w[1..k], s(w[1..k])
k

≤ M.

Proof. Direct application of the corresponding proofs of [8].

According to condition (i) above, if for some ξ, A(ξ) is shown to be finite, then ξ is a
lower bound for M. The method consists then in exploring A(ξ) and showing that it is
“saturated” at a certain word length and cannot be extended for longer words.

The interest of exploring A(ξ) is that its definition may allow to reduce the search
space. In our case however, we were unable to obtain a good lower bound by a direct
application of Lemma 6, as the search space quickly became prohibitively big. To obtain
a good lower bound, we use the following extension of Lemma 6. For a word u ∈ {0, 1}∗,
let

Au(ξ) =

{
w ∈ {0, 1}∗| for every prefix w[1..k] of w,

s(uw[1..k]) − s(u)

k
≤ ξ

}
.

Lemma 7. Fix r ∈ N. If for some ξ and all u ∈ {0, 1}r, Au(ξ) is finite, then ξ < M.

Proof. Let l = maxw∈Au(ξ) |w|. There exists ε > 0 such that ∀u ∈ {0, 1}r, ∀w ∈
{0, 1}∗, ∃k ≤ l + 1 such that s(uw[1..k])−s(u)

k
≥ ξ + ε.

Let w be a binary word of size n > r such that s(w) = m(n). Let k0 = r. For i ≥ 1,
let vi−1 = w[ki−1 − r + 1..ki−1] and let ki be the smallest position, if exists, such that

s(vi−1w[ki−1 + 1..ki]) − s(vi−1)

ki − ki−1
≥ ξ + ε.

By the above remark, ki − ki−1 ≤ l + 1. Let q be the last i for which ki has been defined.
Then kq ≥ n − l. We then have

m(n) = s(w) ≥
q∑

i=1

(s(vi−1w[ki−1 + 1..ki]) − s(vi−1))

≥ (ξ + ε)

q∑
i=1

(ki − ki−1) = (ξ + ε)(kq − r) ≥ (ξ + ε)(n − l − r).

Then M = limn→∞
m(n)

n
≥ ξ + ε.
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Similar to Lemma 6, applying Lemma 7 consists in exploring, for some r and ξ, the
sets Au(ξ) for all u with |u| = r. However, Lemma 7 allows to reduce substantially the
search space, in comparison to Lemma 6. Thus, showing that ξ = 0.55 is a lower bound
took several hours for r = 1, several seconds for r = 2, and a fraction of second for
r = 3. For r = 3, we managed to show that Au(0.5508) is finite for all u, |u| = 3. The
verification has taken more than 19 hours of CPU time on an AMD Athlon� 1.4 GHz
computer. Au(0.5508) reaches its biggest size for u = 000 and u = 111, with longest word
length 5195.

Together with Corollary 5, we obtain

Theorem 8. M = 0.55080....

Finally, we were also able to compute m(n) for all n up to about 3300 using an
optimized search for words realizing the minimal number of squares. Below we briefly
describe the method used for this computation.

For a word u and for n ≥ |u|, let m(u, n) be the smallest number of square occur-
rences in a word of length n with prefix u. Then for all p ≥ 0 and n ≥ p, m(n) =
minu∈{0,1}p{m(u, n)}.

To compute m(n), together with a witness word, we first fix some p (6 in our case).
For every word u of size p and for every n ≥ p, we compute and store m(u, n). We
proceed successively for n ≥ p and for each n, we start by computing an upper bound B
on m(u, n) from the witness word for m(u, n − 1), by appending 0 or 1 to it.

We then try to construct a word w[1..n] containing at most B − 1 squares. For each
prefix w[1..k] of such a word, we must have

s(w[1..k]) < B − m(w[k − p + 1..k], n − k + p) + s(w[k − p + 1..k]),

since we know that w[k+1..n] must add to w[1..k] at least (m(w[k−p+1..k], n−k+p)−
s(w[k − p + 1..k])) squares. Thus, we explore the tree of all words w of length at most
n satisfying the above inequality for every prefix w[1..k]. If it is not verified, we “cut the
branch”. If we succeed to construct a word w[1..n] such that each its prefix verifies the
above inequality it implies that we came up with a smaller upper bound on m(u, n) and
a new witness word. We use this new upper bound in the further search. At the end of
the search, we obtain the minimum value of m(u, n) and a corresponding witness word.

This method allowed us to reduce the search space drastically and to compute m(n)
for n as big as 3300. Some selected values of m(n) are given in Appendix. These data can
be also used to obtain lower bounds on M as implied by Lemma 3 for example. In this
way, the best lower bound results from m(3298) = 1815 and is then 1815/3297 = 0.5505...,
which is still smaller than the one we were able obtain using Lemma 7.

6 Weaker lower bounds

In this section we show another way to obtain lower bounds that are in general weaker
than those obtained by the methods of the previous section. However, the construction
is interesting on its own, and comes through weakening the definition of M.
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For k ∈ N
∗, let sk(w) be the number of square occurrences of size at most 2k in the

binary word w. For n ∈ N, we define mk(n) = min|w|=n sk(w). For the same reason as

for m(n), for every k ∈ N, the sequence mk(n)
n

converges as n → ∞. Let Mk be its limit.
Note that {Mk} is an increasing sequence bounded by M.

Assume that w is a word such that |w| > k and sk(ww) = 2sk(w). Then, for all q ∈
N, sk(w

q) = qsk(w), since no square of length at most 2k can span over more than two oc-

currences of w. We then have Mk ≤ sk(w)
|w| . Using this argument, we can compute an upper

bound on Mk by finding an appropriate word w. Specifically, the words 01, 001, 001011,
1100101100011010011000101100101001101000 and
00010110011101001101011001011100110100111001011001110100110101100101110011010
0011001011000110100110001011001010011010001100101100011010011 prove respectively
that M1 = 0, M2 ≤ 1

3
, M5 ≤ 1

2
, M39 ≤ 11

20
and M137 ≤ 38

69
. These words have been

found by a computer search using a method similar to the one described at the end of
Section 5.

We now introduce a method for computing exact values of Mk. A weighted directed
graph G = (V, A) is a directed graph with a weight function on arcs ρ : A → N. A pass is
a finite sequence P = v1v2 . . . vk of vertices of G, such that for every i ∈ {1, 2, . . . , k − 1},
< vi, vi+1 >∈ A. A cycle is a pass C = v1v2 . . . vkv1. C is a simple cycle if for i, j ∈
{1, 2, . . . , k} vi 6= vj provided i 6= j. The size of a pass P = v1v2 . . . vk, denoted |P |,
is k − 1. In particular, a cycle C = v1v2 . . . vkv1 has size k. The weight of a pass
P = v1v2 . . . vk, denoted ρ(P ), is

∑k−1
i=1 ρ(< vi, vi+1 >).

Let us fix k ∈ N
∗ and consider the weighted directed graph Gk in which the vertices

are binary words of size (2k − 1), and each vertex has two outgoing arcs, one for 0 and
one for 1. For a vertex corresponding to a word v and an outgoing arc a (a ∈ {0, 1}), the
destination of the arc is the vertex corresponding to the word va[2..2k] (i.e. the word va
without the first letter). The weight of this arc is the number of squares that are suffixes
of va. Note that Gk has 22k−1 vertices.

Lemma 9. Let M′
k = min C simple cycle of Gk

ρ(C)
|C| . Then Mk = M′

k.

Proof. We first note that if C is a (not necessarily simple) cycle in Gk, then ρ(C) ≥
M′

k · |C|. This can be seen by naturally decomposing C into a parenthesis-like structure
of simple cycles. Each arc of C belongs to exactly one of those simple cycles. This implies
that ρ(C) equals the sum of weights of all those cycles, each of which is at least M′

k

related to its length.
Now let t be a word of size n ≥ 2k−1 such that sk(t) = mk(n) and let Pt be the pass in

Gk corresponding to t whose source vertex corresponds to the prefix t[1..2k−1] (“spelling
pass”). Note that |t| = |Pt| + 2k − 1. We decompose Pt through the following iterative
procedure. Find the first vertex in the pass which occurs at least twice, and consider the
cycle between its first and last occurrence. Then iterate the procedure on the remaining
part of the pass. As a result, we obtain a decomposition Pt = p0C1p1C2 . . . pq−1Cqpq,
where Ci are cycles and pj are passes without cycle. Note that every vertex appears in at
most one of these passes, therefore

∑q
i=0 |pi| ≤ 22k−1.
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We then have

mk(n) ≥
q∑

i=1

ρ(Ci) ≥ M′
k

q∑
i=1

|Ci| = M′
k

(
n − (2k − 1) −

q∑
i=0

|pi|
)

≥ M′
k(n−(2k−1)−22k−1).

Therefore,

Mk = lim
n→∞

mk(n)

n
≥ M′

k.

To show the inverse inequality, we choose a simple cycle Cmin such that M′
k = ρ(Cmin)

|Cmin| .

Consider words tq, defined for q > 0 by Ptq = (Cmin)q. We then obtain

Mk ≤ lim
q→∞

sk(tq)

|tq| ≤ lim
q→∞

q · ρ(Cmin) + k2 − k

q|Cmin| + 2k − 1
= M′

k.

Figure 2 shows the graph G2, and a simple cycle C realizing the minimal ratio M′
2 =

w(C)
|C| = 1

3
.

000 001 010 011

100 101 110 111

2

0

00

1

1 110 1 1
1

00

1

2

Figure 2: The graph G2 with an optimal simple cycle (in bold). Dashed arcs are 0-arcs
and dotted arcs are 1-arcs. The numerical label of the arc is its weight.

Lemma 9 allows us to compute Mk for small k. Using the computer, we obtained in
particular the values M2 = 1

3
, M3 = 1

2
and M6 = 11

20
.

Using the upper bounds obtained in the beginning of this section and the fact that
{Mk} is non-decreasing, we have

M1 = 0, M2 =
1

3
, M3 = M4 = M5 =

1

2
, M6 = ... = M39 =

11

20
.

This shows once again that M ≥ 11
20

= 0.55.
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7 Conclusions

Mysterious constants abound in word combinatorics (see [2]). The exact values of most of
them is not known and in most cases only estimations, more or less precise, are available.
In this paper we introduced and studied a new remarkable constant – the limit minimal
fraction of the number of square occurrences in binary words. We were able to obtain a
very good estimation of this constant (0.55080...) but its exact value remains unknown.

An interesting question is to study which squares are needed to realize an infinite
word with minimal number of squares. We conjecture that squares of length 2 or 4 are
sufficient, as is the case in our construction from Section 4.
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Appendix

n m(n) witness word
1 0 0
2 0 01
3 0 010
4 1 0100
5 1 01001
6 2 010010
7 2 0100110
8 2 01001101
9 3 010011010

10 4 0100110100
11 4 01001101001
12 5 010011010010
13 5 0100110100010
14 6 01001101000101
15 6 010011010001101
16 7 0101100101110010
17 7 01001101000110010
18 8 010011010001100101
19 8 0100110100010110010
20 9 01001101000101100101
21 10 010011010001011001010
22 10 0100110100010111001101
23 11 01001101000101110011010
24 11 010011010001011101001101
25 12 0100110100010111010011010
26 12 01001101000101100101001101
27 13 010011010001011001010011010
28 13 0100110100010110011101001101
29 14 01001101000101100111010011010
30 15 010011010001011001110100110101
31 15 0100110100010111010011010110010
32 16 01001101000101110100110101100101
33 16 010011010001011101001100010110010
34 17 0100110100010111010011000101100101
35 17 01001101000101110010110011101001101
36 18 010011010001011100101100111010011010
37 18 0100110100010110011101001100010110010
38 19 01001101000101100111010011000101100101
39 20 010011010001011001110100110001011001010
40 20 0100110100010111010001101001100010110010

Table 1: First 40 values of m(n) together with a witness word

n 50 100 500 1000 1500 2000 2500 3000 3298 3300
m(n) 25 53 273 549 824 1099 1375 1650 1815 1816

Table 2: Values of m(n) for selected big n
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