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Abstract

In this paper, we study r-uniform hypergraphs H without cycles of length less
than five, employing the definition of a hypergraph cycle due to Berge. In particular,
for r = 3, we show that if H has n vertices and a maximum number of edges, then

|H| =
1
6
n3/2 + o(n3/2).

This also asymptotically determines the generalized Turán number T3(n, 8, 4).
Some results are based on our bounds for the maximum size of Sidon-type sets in
Zn.

1 Definitions

In this paper, a hypergraph H is a family of distinct subsets of a finite set. The members
of H are called edges, and the elements of V (H) =

⋃
E∈H E are called vertices. If all

edges in H have size r, then H is called an r-uniform hypergraph or, simply, r-graph. For
example, a 2-graph is a graph in the usual sense. A vertex v and an edge E are called
incident if v ∈ E. The degree of a vertex v of H, denoted d(v), is the number of edges

∗This work was initiated and continued at Microsoft Research during the author’s visits, and we are
thankful the hosts for the opportunity and support.
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of H incident with v. An r-graph H is r-partite if its vertex set V (H) can be colored
in r colors in such a way that no edge of H contains two vertices of the same color. In
such a coloring, the color classes of V (H) – the sets of all vertices of the same color – are
called parts of H. We refer the reader to Berge [3] or [4] for additional background on
hypergraphs.

For k ≥ 2, a cycle in a hypergraph H is an alternating sequence of vertices and edges
of the form v1, E1, v2, E2, . . . , vk, Ek, v1, such that

(i) v1, v2, . . . , vk are distinct vertices of H
(ii) E1, E2, . . . , Ek are distinct edges of H
(iii) vi, vi+1 ∈ Ei for each i ∈ {1, 2, . . . , k − 1}, and vk, v1 ∈ Ek.

We refer to a cycle with k edges as a k-cycle, and denote the family of all k-cycles by
Ck. For example, a 2-cycle consists of a pair of vertices and a pair of edges such that the
pair of vertices is a subset of each edge. The above definition of a hypergraph cycle is the
“classical” definition (see, for example, Berge [3], [4], Duchet [11]). For r = 2 and k ≥ 3,
it coincides with the definition of a cycle Ck in graphs and, in this case, Ck is a family
consisting of precisely one member. Detailed discussions of alternative definitions of cycles
in hypergraphs and the merits of each, as well as their applications in computer science,
may be found in Duke [12] and Fagin [18]. The girth of a hypergraph H, containing a
cycle, is the minimum length of a cycle in H. On a connection between 3-graphs of girth
at least five and Greechie diagrams in quantum physics, see McKay, Megill and Pavičić
[24].

2 Problems and Results

The topic of this paper falls into the context of Turán-type extremal problems in hyper-
graphs, on which an excellent survey was given by Füredi [19]. The question we consider
is to determine the maximum number of edges in an r-graph on n vertices of girth five.
For graphs (r = 2), this is an old problem of Erdős [14], which has its origins in a seminal
paper of Erdős [13]. The best known lower and upper bounds are (1/2

√
2)n3/2 +O(n) and

(1/2)(n − 1)1/2n, respectively. For bipartite graphs, on the other hand, this maximum is
(1/2

√
2)n3/2+O(n) as n → ∞. Many attempts at reducing the gap between the constants

1/2
√

2 and 1/2 in the lower and upper bounds have not succeeded thus far (see Garnick,
Kwong, Lazebnik [20] for more details). Surprisingly, we are able to obtain upper and
lower bounds for the corresponding problem in 3-graphs which have equal leading terms.
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Theorem 2.1 Let H be a 3-graph on n vertices and of girth at least five. Then

|H| ≤ 1
6
n
√

n − 3
4

+ 1
12

n.

For any odd prime power q ≥ 27, there exist 3-graphs H on n = q2 vertices, of girth five,
with

|H| =
(

q+1
3

)
= 1

6
n3/2 − 1

6
n1/2.

This result is surprising in the sense that Turán-type questions for hypergraphs are
generally harder than for graphs. One may formally apply the famous Ray-Chaudhuri
and Wilson Theorem [25] to hypergraphs of girth at least three, which states that an
r-graph, without a pair of sets intersecting in at least two points, has at most

(
n
2

)
/
(

r
2

)
edges, and the equality is attained for each r ≥ 3 and infinitely many n.

Following de Caen [10], the generalized Turán number Tr(n, k, l) is defined to be the
maximum number of edges in an r-graph on n vertices in which no set of k vertices spans
l or more edges (or, equivalently, the union of any l edges contains more than k vertices).
To illustrate this definition, the above-mentioned result of Ray-Chadhuri and Wilson is
equivalent to the statement Tr(n, 2r − 2, 2) =

(
n
2

)
/
(

r
2

)
for each r ≥ 3 and infinitely many

n.

The problem of estimating Tr(n, k, l) in general was first approached by Brown, Erdős,
and T. Sós [8], [9], who gave bounds for T3(n, k, l) for all k ≤ 6 and l ≤ 9, and
established the asymptotics of the generalized Turán numbers T3(n, k, l) for (k, l) ∈
{(5, 3), (5, 4), (6, 4)}. In the case (k, l) = (6, 3), they established T3(n, 6, 3) > cn3/2 for
some constant c. Remarkably precise bounds for T3(n, 6, 3) were given by Ruzsa and
Szemerédi, who proved that for some constant c > 0 and all ε > 0,

2−c
√

log nn2 ≤ T3(n, 6, 3) < εn2.

The asymptotic behaviour of the numbers Tr(n, k, l), in general, remains unknown, and
seems to be difficult to determine. For example, perhaps one of the most famous problems
in extremal combinatorics is to prove or disprove Turán’s conjecture, that T3(n, 4, 4) ∼
5
9

(
n
3

)
, n → ∞.

We now continue to relate the problem of estimating the size of hypergraphs of given
girth with certain generalized Turán numbers. It is easy to see that T3(n, 4, 2) and
T3(n, 6, 3) are precisely the maximum number of edges in a 3-graph of girth three and
four respectively. Similarly, T3(n, 8, 4) is precisely the maximum number of edges in a
3-graph of girth five. This is seen by directly checking that any four triples on a set of
eight vertices span a hypergraph containing a cycle of length at most four. Together with
Theorem 2.1, and results about the density of primes (see Huxley [21]), this implies:

Corollary 2.2 As n → ∞, T3(n, 8, 4) ∼ 1
6
n3/2.
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Generalizing to r-graphs, r ≥ 2, we are able to establish the following:

Theorem 2.3 Let H be an r-graph, r ≥ 2, on n vertices and of girth at least five. Then

|H| ≤ 1
r(r−1)

n3/2 + r−2
2r(r−1)

n + O(n−1/2).

Moreover, if H is r-partite, with n vertices in each part, then

|H| ≤ 1√
r−1

n3/2 + 1
2
n + O(n1/2).

Finally, for each r ≥ 2, there exist r-partite r-graphs of girth at least five, with n ≥ 8rr

vertices in each part and 1
4
r−4r/3n4/3 edges.

The proof of Theorem 2.3 for r = 2 gives the best known upper bounds for the
maximum number of edges for girth five graphs and bipartite graphs, namely 1

2
n
√

n − 1

and 1
2
n(1 +

√
4n − 3), respectively. The latter expression is an upper bound on the

Zarankiewicz number – the maximum size of a bipartite graph with each part having n
vertices and without cycles of length four (see, Kővári, T. Sós, Turán [22] and Reiman
[26]).

The lower bound in Theorem 2.3 is a probabilistic one. Attempts to establish explicit
and better lower bounds led us to a generalization of the notion of a Sidon set in Zn, and
to the question of its maximum cardinality. We remind the reader that a Sidon set in Zn

(or in Z) is a set in which no two distinct pairs of elements have the same difference (or,
equivalently, the same sum). The reader is referred to Babai and Sós [2] for more details
on Sidon sets. Our generalization, roughly, will disallow equality between small integer
multiples of such differences, and we present it next.

Let k be a positive integer and let n be relatively prime to all elements of {1, 2, . . . , k}.
Let a1, a2, a3, a4 be integers in {−k,−k+1, . . . , 0, . . . , k−1, k} such that a1+a2+a3+a4 = 0.
Let S be the collection of sets S ⊂ {1, 2, 3, 4} such that

∑
i∈S ai = 0 and ai 6= 0 for i ∈ S.

Now consider the following equation over Zn with respect to x = (x1, x2, x3, x4):

a1x1 + a2x2 + a3x3 + a4x4 = 0. (1)

A solution x of (1) is called trivial if there exists a partition of {1, 2, 3, 4} into sets S, T ∈ S
such that xi = xj for all i, j ∈ S and all i, j ∈ T . This is analagous to the definition of a
trivial solution (over the integers) to an equation of the form a1x1 + a2x2 + · · ·+ akxk = 0
by Ruzsa [27].

For example, consider the equation x1 + x2 − x3 − x4 = 0. Then S consists of the sets
{1, 3}, {2, 4}, {1, 4}, {2, 3} and {1, 2, 3, 4}. Therefore the trivial solutions are those with
x1 = x3, x2 = x4, or x1 = x4, x2 = x3, or x1 = x2 = x3 = x4. A set with only trivial
solutions to x1 +x2−x3−x4 = 0 is precisely a Sidon set. As the second example, consider
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the equation 2x1 −3x2 +x4 = 0. Then S consists of the set {1, 2, 4}. The trivial solutions
are therefore those for which x1 = x2 = x4.

A k-fold Sidon set is a set A ⊂ Zn such that the equation (1) has only trivial solutions
in A. For example, a 1-fold Sidon set is a Sidon set in the usual sense. For a 2-fold Sidon
set A, each of the equations below admits only trivial solutions with x1, x2, x3, x4 ∈ A:

x1 − x2 + x3 − x4 = 0, x1 + x2 − 2x3 = 0, x1 − x2 + 2x3 − 2x4 = 0

The definition of a k-fold Sidon set also extends to the set {1, 2, . . . , n} ⊂ Z, in which
case the condition that n is relatively prime to all integers in {1, 2, . . . , k} may be dropped.

How large can a k-fold Sidon set A in Zn be? Let us first present an elementary
upper bound. To each pair {a, a′} of distinct elements of A, we can associate the set
{i(a − a′) | i ∈ {1, 2, . . . , k}}. Note that each set has k elements and, for distinct pairs,
the corresponding sets are disjoint. It follows immediately that k

(|A|
2

) ≤ n and therefore

|A| < (2n/k)1/2 + 1. To improve this bound we will use Theorem 2.3 in a way described
below.

Let A be a subset of Zn, and let B be a set of r integers. Define H(A, B) to be the
r-partite r-graph with parts Vb = Zn, b ∈ B. For each x ∈ Zn and each a ∈ A, an edge
of H(A, B) is the set of r vertices {x + ba : b ∈ B}, where x + ba ∈ Vb. Hence H(A, B)
contains rn vertices and |A|n edges. The following proposition establishes a connection
between r-partite r-graphs of girth five and k-fold Sidon sets.

Proposition 2.4 Let n, k, r be positive integers, and n be odd. Let B ⊂ Z be a Sidon
set of integers of size r such that all differences of distinct elements of B are relatively
prime to n and do not exceed k. Let A be a k-fold Sidon set in Zn. Then H(A, B) is an
r-partite r-graph of girth at least five, with |A|n edges.

Theorem 2.3 and Proposition 2.4 sometimes lead to a better constant in the upper
bound for the size of a k-fold Sidon set of Zn. For example, let k = 3, gcd(n, 6) = 1, and
B = {−1, 0, 2} (a Sidon set). Then, applying Theorem 2.3 (with r = 3) and Proposition
2.4, we can reduce the bound (2n/3)1/2 on a 3-fold Sidon set to (n/2)1/2.

Next, for infinitely many n, we provide a lower bound within 2 factor of the upper
bound on the size of a 2-fold Sidon set:

Theorem 2.5 Let t be a positive integer, and let n = 22t+1
+ 22t

+ 1. Then, there exists
a 2-fold Sidon set A in Zn, such that

|A| ≥ 1
2
n1/2 − 3.
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It seems likely that for each integer k ≥ 3, there exists a k-fold Sidon set in Zn (or in
{1, 2, . . . , n} ⊂ Z) of size cn1/2 for some c > 0 depending only on k.

By Theorem 2.5 and Theorem 2.3, we immediately obtain the following result:

Theorem 2.6 Let H be a 3-partite 3-graph with n ≥ 3 vertices in each of its parts and
of girth at least five. Then

|H| ≤ 1√
2
n3/2 + n.

Let i be a positive integer and let n = 22i+1
+ 22i

+ 1. Then there exists a 3-partite
3-graph H, with n vertices in each part, of girth at least five, such that

|H| ≥ 1
2
n3/2 − 3n.

We remark that from the second part of Theorem 2.1, we obtain a weaker lower bound
of (1+o(1))

√
3

9
n3/2, by applying the Erdős-Kleitmann Lemma [15] in the case r = 3: every

r-graph H on rn vertices contains an r-partite r-graph with n vertices in each part and
at least r!

rr |H| edges.

3 Proofs

Here we will prove the results stated in the previous section.

Proof of Theorem 2.1

Upper Bound. The upper bound of Theorem 2.1 is obtained by setting r = 3 in
the upper bound of Theorem 2.3. Therefore it is sufficient to prove the latter. Let H be
an r-graph of girth at least five, and let m = |H|. For each vertex v ∈ V (H) and for
each unordered pair of edges A, B incident with v, associate the set v(A, B) of unordered
pairs of vertices in A ∪ B \ {v} which are not contained in A or B. We first note that
v(A, B) ∩ v(C, D) = ∅ whenever {A, B} 6= {C, D}, otherwise H contains a 2-cycle. Hence
|v(A, B)| = (r − 1)2. Now we define

Dv =
⋃

{A,B} : v∈A∩B

v(A, B).

Then Dv ∩ Dw = ∅ whenever v and w are distinct vertices of H, otherwise it is easy
to check that H contains a cycle of length at most four. Also, no pair in Dv is contained
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in an edge of H, otherwise H contains a 3-cycle. Since H contains no 2-cycle, and the
number of pairs of vertices contained in edges is precisely

(
r
2

)
m, we have

(
n

2

)
−

(
r

2

)
m ≥

∑
v∈V (H)

|Dv|

=
∑

v∈V (H)

∑
{A,B} : v∈A∩B

|v(A, B)|

=
∑

v∈V (H)

(
d(v)

2

)
|Dv|

= (r − 1)2
∑

v∈V (H)

(
d(v)

2

)

≥ (r − 1)2 ·
(

r2m2

2n
− rm

2

)
.

In the last inequality, we used the fact that
∑

v∈V (H d(v) =
(

r
2

)
m, and Jensen’s inequality

for function
(

x
2

)
on [1,∞]. Multiplying by 2n we obtain,

r2(r − 1)2m2 + r(r − 1)(2 − r)n m − n2(n − 1) ≤ 0.

This gives

m ≤ 1

r(r − 1)
n

√
n +

r2 − 4r

4
+

r − 2

2r(r − 1)
n

≤ 1

r(r − 1)
n3/2 +

r − 2

2r(r − 1)
n + O(n−1/2),

as required. For r = 3, we get

m ≤ 1

6
n

√
n − 3

4
+

1

12
n <

1

6
n3/2 +

1

12
n +

1

16
n−1/2. 2

Lower Bound. We provide an explicit construction by using the so-called polarity
graph of the projective plane PG(2, q), which we denote by Polq (see Erdős and Rényi
[16], Erdős, Rényi and T. Sós [17], Brown [6]). We start by a brief description of this
graph along with its properties.

Let Fq denote the finite field of odd characteristic. We consider a nondegenerate
orthogonal geometry on V = F

3
q corresponding to the bilinear form x·y = x1y1+x2y2+x3y3.

The nondegeneracy means that no nonzero vector of V is orthogonal to all vectors of V .
It implies that dim(U) + dim(U⊥) = 3 for each subspace U of V , where U⊥ denotes the
orthogonal complement of U . We define the vertex set of Polq to be the set of all lines

(1-dimensional subspaces) of this space. Clearly, Polq has q3−1
q−1

= q2 + q + 1 vertices. The
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Figure 1: a 5-cycle in Hq

edges of Polq are formed by all (unordered) pairs of distinct orthogonal lines. A line is
called isotropic, if it is spanned by a vector x such that x · x = 0. Since the geometry is
nondegenerate, the orthogonal complement to a line is a plane (a 2-dimensional subspace).

Each plane contains q2−1
q−1

= q + 1 lines, hence the degree of a vertex in our graph is q + 1
for a nonisotropic line and q for an isotropic one. It is a well known fact that the number
of isotropic lines in the geometry is q + 1. Therefore the number of nonisotropic lines is
q2, and Polq has 1

2
((q + 1)q2 + q(q + 1)) = (q + 1)2q/2 edges.

For each pair of distinct lines there exists a unique line orthogonal to both of them,
namely the orthogonal complement of the plane defined by the lines. Therefore Polq
contains no 4-cycles, and every edge formed by two nonisotropic lines belongs to exactly
one triangle (3-cycle). Next we observe that an isotropic line cannot be a vertex of a
triangle: if it were, the orthogonal complement to this line would be 3-dimensional, a
contradiction with nondegeneracy. As the number of edges spanned by all nonisotropic
lines is (q +1)2q/2− q(q +1) = (q +1)q(q−1)/2, the number of triangles in Polq is

(
q+1
3

)
.

Consider a 3-graph Hq with vertex set being the set of all n = q2 nonisotropic lines,
and the edge set formed by the sets of vertices of each triangle. Then

|Hq| =

(
q + 1

3

)
=

1

6
n3/2 − 1

6
n1/2.

We claim that the girth of Hq is five. As no two triangles of Polq share an edge, Hq

contains no 2-cycles and no 3-cycles. If Hq has a 4-cycle, then Polq contains a 4-cycle
with exactly same vertices, a contradiction. Therefore the girth of Hq is at least five.

Representing a line by a nonzero vector in it, one can easily check that the following
sequence of vertices and edges (see Figure 1) determines a 5-cycle aEabbEbccEcddEdeeEeaa
in Hq, for q odd and not divisible by 3.

a = 〈(1, 0, 0)〉, b = 〈(0, 0, 1)〉, c = 〈(1, 1, 0)〉, d = 〈(1,−1, 1)〉, e = 〈(0, 1, 1)〉,
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xa,b = 〈(0, 1, 0)〉, xbc = 〈(1,−1, 0)〉, xcd = 〈(−1, 1, 2)〉,
xde = 〈(2, 1,−1)〉, xea = 〈(0, 1,−1)〉.

Eab = {a, xab, b}, Ebc = {b, xbc, c}, Ecd = {c, xcd, d},
Ede = {d, xde, e}, Eea = {e, xea, a}.

In general, it is easy to show show that there exists q0 such Hq contains a 5-cycle for all
odd prime powers q ≥ q0. We did not try to determine the smallest q0 with this property,
but it is easy to show that q0 = 27 will suffice. 2

Remark We also would like to mention another explicit construction of a 3-graph Gq of
order n = q(q − 1) which may have at least as many edges as any subhypergraph of Hq

of the same order. Let Fq denote the finite field of odd characteristic, and let Cq denote
the set of points on the curve 2x2 = x2

1, where (x1, x2) ∈ Fq × Fq. Define a hypergraph
Gq as follows. The vertex set of Gq is Fq × Fq \ Cq. Three distinct vertices a = (a1, a2),
b = (b1, b2) and c = (c1, c2) form an edge {a, b, c} of Gq if and only if the following three
equations are satisfied:

a2 + b2 = a1b1

b2 + c2 = b1c1

c2 + a2 = c1a1.

It is not difficult to check that Gq has girth at least five for all odd q and girth five

for all sufficiently large q. The number of edges in Gq is precisely
(

q
3

) ≈ n
√

n
6

, since there
are

(
q
3

)
choices for distinct numbers a1, b1 and c1, which uniquely specify a2, b2 and c2

such that a, b, c are not on the curve 2y = x2 and {a, b, c} is an edge. It is interesting to
understand whether Gq is a subhypergraph of Hq, but we have not been able to resolve
this question yet.

Proof of Theorem 2.3

Upper Bounds The first upper bound has been established in the proof of Theo-
rem 2.1, and our argument for the second upper bound is a modification of the one used
there.

Let H be an r-partite r-graph of girth at least five, with n vertices in each part. Let
Ai, i ∈ [r], be the parts of H. We estimate the cardinality of the set S = {(v, {x, y})},
where v ∈ V (H) and x and y are distinct from v, belong to the same part and are in
different edges on v. Let E1, E2 be two distinct edges incident to v ∈ Ai. There are exactly
r − 1 sets {x, y} such that (v, {x, y}) ∈ S, since each such pair {x, y} is the intersection
of E1 ∪ E2 with a part Aj , j 6= i. On the other hand, the absence of cycles of length less

than five in H implies that |S| ≤ ∑
i∈[r]

(|Ai|
2

)
= r

(
n
2

)
. Therefore we obtain
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|S| = (r − 1)
∑

v∈V (H)

(
d(v)

2

)
= (r − 1)

∑
i∈[r]

∑
v∈Ai

(
d(v)

2

)
≤

∑
i∈[r]

(|Ai|
2

)
= r

(
n

2

)
.

Again, as in the proof of Theorem 2.3, applying Jensen’s inequality to
∑

v∈Ai

(
d(v)
2

)
and using the fact that

∑
v∈Ai

d(v) = m = |H| for each i, we get

(r − 1)rn

(
m/n

2

)
≤ |S| ≤ r

(
n

2

)
.

This implies (r − 1)m2 − (r − 1)nm − n2(n − 1) ≤ 0, or

|H| ≤ n

2
+ n

√
n − 1

r − 1
+

1

4
≤ 1√

r − 1
n3/2 +

1

2
n + O(n1/2),

as required for the upper bound in Theorem 2.3. 2

Lower Bound. It is sufficient to establish the lower bound for r-partite r-graphs
with n vertices in each part. Also we assume that r ≥ 3, since for r = 2 a better lower
bound Ω(n3/2) is provided by the point-line incidence graph of a projective plane.

Let H = Hr,n,p denote a random r-partite r-graph with n vertices in each part in which
edges are present uniformly and independently with probability p. Let X = X(H) be the
number of edges in H. Then X is a binomial random variable with probability p and mean
µ = pnr. Let us choose p = r−4r/3n4/3−r. We will use a version of the Chernoff bound
implied by the one from Alon and Spencer [1] (page 238, Theorem A.13): for binomial
random variables X with mean µ ≥ 0 and probability p, Pr[X < 1

2
µ] < exp(−1

8
µ). Hence

Pr[X <
1

2
pnr] < exp(−1

8
pnr).

Therefore, the number of edges in H is at least 1
2
r−4r/3n4/3 with probability greater than

1
2
, as n ≥ 8rr. The numbers of 2-cycles, 3-cycles and 4-cycles in the complete r-partite r-

graph are, respectively, at most (rn)2(r−1), (rn)3(r−1) and (rn)4(r−1). The expected number
of cycles of length at most four in H is therefore at most

p2(rn)2(r−1) + p3(rn)3(r−1) + p4(rn)4(r−1).

As r ≥ 3, and by our choice of p, this is at most 3 · r−4r−4r/3n4/3 < 1
8
r−4r/3n4/3. By

Markov’s Inequality, the probability that the number of cycles of length at most four in H
is at least 1

4
r−4r/3n4/3 is less than 1

2
. Therefore, with positive probability, H has at least

1
2
r−4r/3n4/3 edges and at most 1

4
r−4r/3n4/3 cycles of length at most four. Deleting an edge

from each copy of a cycle of length at most four in H, we obtain an r-partite r-graph of
girth at least five with at least 1

4
r−4r/3n4/3 edges, as required. 2
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Proof of Proposition 2.4

Suppose A ⊂ Zn is a k-fold Sidon set, and let H(A, B) be the r-partite r-graph defined
before Proposition 2.4. Let us verify that H(A, B) has girth at least five. For convenience,
set H(A, B) = H.

It is clear that H contains no 2-cycle. For if H contains a 2-cycle, comprising edges
E1 = {x + bx1 : b ∈ B} and E2 = {y + bx2 : b ∈ B}, then x + ix1 = y + ix2 and
x + jx1 = y + jx2 for some distinct i, j ∈ B. Therefore (i − j)(x1 − x2) = 0. Since n is
relatively prime to all differences of distinct elements of B, n is relatively prime to i − j,
and so x1 = x2 and x = y. Therefore E1 = E2, a contradiction. Thus H contains no
2-cycle.

Suppose H contains a 3-cycle, formed by the following edges:

E1 = {x + bx1 : b ∈ B},
E2 = {y + bx2 : b ∈ B},
E3 = {z + bx3 : b ∈ B}.

Suppose these edges intersect in the following way:

E1 ∩ E2 = {x + hx1} = {y + hx2},
E2 ∩ E3 = {y + ix2} = {z + ix3},
E3 ∩ E1 = {z + jx3} = {x + jx1}.

Note that h, i, j are pairwise distinct. This implies

(h − j)x1 + (i − h)x2 + (j − i)x3 = 0.

With a1 = h− j, a2 = i− h and a3 = j − i, we have a1 + a2 + a3 = 0, 1 ≤ |ai| ≤ k for
all i ∈ {1, 2, 3}, and a1x1 + a2x2 + a3x3 = 0. By the definition of a k-fold Sidon set, we
must have x1 = x2 = x3. This implies that E1 = E2 = E3, a contradiction. Therefore H
contains no 3-cycle.

Finally, suppose H contains a 4-cycle. Then, in the same way as above, we consider
its subsequent edges

E1 = {x + bx1 : b ∈ B},
E2 = {y + bx2 : b ∈ B},
E3 = {z + bx3 : b ∈ B},
E4 = {w + bx4 : b ∈ B}

and vertices
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E1 ∩ E2 = {x + gx1} = {y + gx2},
E2 ∩ E3 = {y + hx2} = {z + hx3},
E3 ∩ E4 = {z + ix3} = {w + ix4},
E4 ∩ E1 = {w + jx4} = {x + jx1}.

Then g − j, h− g, i− h, j − i are all non-zero, otherwise two of the edges Ei are identical.
Similarly to the case of 3-cycles, here we obtain an equation of the form:

(g − j)x1 + (h − g)x2 + (i − h)x3 + (j − i)x4 = 0,

so that a1 = g − j, a2 = h − g, a3 = i − h, a4 = j − i are non-zero. The above equation is

a1x1 + a3x3 + a2x2 + a4x4 = 0.

Now if xi = xi+1 for some i modulo four, then two of E1, E2, E3, E4 are equal. There-
fore, as A is a k-fold Sidon set, the only possible trivial solutions are x1 = x3 and x2 = x4

and x1 6= x2. By the definition of a trivial solution, this implies a1+a3 = 0 and a2+a4 = 0.
Both of these equations imply i + g − j − h = 0. As B is a Sidon set, we must have i = j
and g = h, or i = h and g = j. In the first case we obtain x+gx1 = y+hx2 = z+hx3 and
and in the second case we obtain w + jx4 = x + hx1 = y + gx2, so three of E1, E2, E3, E4

intersect. This contradiction completes the proof. 2

Proof of Theorem 2.5

Lower Bound. For a positive integer i, let t = 2i and n = 22t + 2t + 1. Let D be
a Singer difference set (see Singer [29]) in Zn of 2t + 1 elements with multiplier 2. Since
every nonzero element of Zn can be written uniquely as the difference of two members
of D, D is a Sidon set and D = 2D = {2d : d ∈ D}. This implies that D is formed by
members of a cycle or a union of cycles of the permutation π : x 7→ 2x of Zn (the map is
a permutation since gcd(2, n) = 1). Only one cycle of D (and of π) has length 1, namely
{0}. For each m-cycle C of D, we label its consecutive vertices by c1, c2, . . . , cm, and then
delete all vertices cj with j odd. Finally, deleting the element zero from D, we obtain a
Sidon set S ⊂ D such that a 6= 2b for every a, b ∈ S. We now verify that S is the required
2-fold Sidon set in Zn.

Since S is a Sidon set, the equations u + v = x + y, 2u + 2v = 2x + 2y and u + v = 2x
have only trivial solutions. So the only thing we need to check is that for u, v, x, y ∈ S,
u + 2v = x + 2y implies (u, v) = (x, y).

If u = x, then v = y, and we are done. Suppose u 6= x. Since u, v, x, y ∈ S and
S ⊂ D = 2D, we have u, 2v, x, 2y ∈ D. Therefore u = 2y and 2v = x. Hence S contains
both y and 2y, as well as v and 2v, and this contradicts our construction of S.
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Finally, how large is |S|? When we delete every second element from each even cycle
of D, we delete exactly half of its elements. When we do this for an odd cycle, we delete
one more than half of its elements. Let odd(D) and odd(π) represent the number of odd
cycles of length greater than 1 of D and π, respectively. Then, since 0 ∈ D \ S,

|S| = (|D| − 1)/2 − odd(D) = 2t−1 − odd(D).

Therefore we need to estimate odd(D). If {x, 2x, 22x, . . . , 2e−1x} is a cycle of π of length
e, then e is the smallest positive integer such that 2ex ≡ x mod n, or equivalently,

n

gcd(x, n)
| (2e − 1).

Let a ∈ Z
∗
n (the group of units of ring Zn), and let ord(a, n) denote the order of a in Z

∗
n.

Then e = ord(2, n/gcd(x, n)). As 23t − 1 = (2t − 1)n, it follows that n | (23t − 1), and
therefore ord(2, n) | 3t. Clearly, ord(2, n) > 2t. So ord(2, n) = 3t. Therefore e | 3t. Since
e > 1 and e is odd, and t = 2i, e = 3. So all odd cycles of π have length three. Therefore
odd(π) = 1

3
c, where c is the number of x ∈ Zn \ {0} such that n | x(23 − 1) = 7x. Since

7 | n, c = 6, and the number of cycles of length 3 in π is 2. Consequently,

|S| = 2t−1 − odd(D) ≥ 2t−1 − odd(π) ≥ 2t−1 − 2 =
1

2
n1/2 + O(1), i → ∞. 2

Remarks. If t is not a power of 2, the magnitude of S is not so clear. The number of odd
cycles in π can be rather large. For example, if t = 9, then n = 262657, odd(π) = 9728
and all odd cycles (but {0}) are of length 27. For t = 11, n = 4196353, odd(π) = 127164,
there are 2 cycles of length 3 and all other odd cycles are of length 33.
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The authors are thankful to László Lovász [23] for his suggestion to consider a 3-graph
with edges formed by the sets of vertices of triangles in the polarity graph Polq. Taking a
subgraph Hq in this graph allowed the authors to improve their original asymptotics for
the number of edges in 3-graph on n vertices and of girth five of 1

6
n3/2− 1

4
n+o(n1/2) (based

on 3-graph Gq) to 1
6
n3/2 − 1

6
n1/2 + o(n1/2) (based on 3-graph Hq). We also are thankful

to Qing Xiang for helpful discussions concerning difference sets, to Brendan McKay for
bringing reference [24] to our attention, and to an anonymous referee for many useful
suggestions.

the electronic journal of combinatorics 10 (2003), #R25 13



References

[1] Alon, N., Spencer, J. H., The Probabilistic Method, A Wiley-Interscience Publica-
tion, John Willey & Sons, Inc., 1992.

[2] Babai, L., Sós, V., Sidon sets in groups and induced subgraphs of Cayley graphs.
European J. Combin. 6 (1985), no. 2, 101–114.

[3] Berge, C., Hypergraphs, Combinatorics of Finite Sets. North–Holland, Amsterdam,
1989.

[4] Berge, C., Hypergraphs, in Selected Topics in Graph Theory 3, edited by Lowell W.
Beineke and Robin.J. Wilson, Academic Press Limited, 1998, 189-207.

[5] Beutelspacher, A., Rosenbaum, U., Projective geometry: from foundations to appli-
cations. Cambridge University Press, Cambridge, 1998.

[6] Brown, W., On graphs that do not contain a Thomsen graph, Canad. Math. Bull 9
(1966), 281–285.

[7] Bollobás, B., Extremal Graph Theory, L.M.S. Monographs, No. 11, Academic Press,
London, 1978.
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