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Abstract

We show that there exists an n-bit cyclic binary Gray code all of whose bit runs
have length at least n − 3 log2 n. That is, there exists a cyclic ordering of {0, 1}n

such that adjacent words differ in exactly one (coordinate) bit, and such that no bit
changes its value twice in any subsequence of n − 3 log2 n consecutive words. Such
Gray codes are ‘locally distance preserving’ in that Hamming distance equals index
separation for nearby words in the sequence.

Keywords: cyclic binary Gray code, Hamming distance preserving, Hamilton cycle, Hamilton
circuit, n-cube, gap, spread, threshold, minimum run length.

1 Introduction

We use the language of graph theory, but where a circuit is a closed walk with no repeated
internal vertices. A cycle is an orbit of a permutation acting on a set. The n-cube Qn is
the graph whose vertices are the words of length n on the alphabet {0, 1}; two vertices
are adjacent if they differ in exactly one coordinate. The transition of an edge vw in Qn

is the index δvw ∈ {1, 2, . . . , n} of the coordinate (or bit) in which v and w differ.
An n-bit (cyclic, binary) Gray code is a Hamilton circuit in Qn. Frank Gray [3]

described an elementary family of ‘reflected’ Gray codes (RGC) which has seen countless
applications. Certain applications in engineering, statistics and computer science require
specialized Gray codes with properties not possessed by the RGC. We refer to Savage [6]
for more information on such variations. This paper is concerned with Gray codes for
which any two edges which have equal transitions are well separated along the circuit.
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Formally, the minimum run length of a closed walk W = w0w1 . . . wk−1w0 in Qn is defined
as

mrl(W ) = min{||i− j|| : δwiwi+1
= δwjwj+1

, i 6= j}.
Here, ||i − j|| is the smaller of the least residues of i − j and j − i modulo k. (In case
W has no repeated transitions, we may define mrl(W ) = k.) In some papers, mrl(W ) is
called the threshold , the spread , or the gap of W .

Let mrl(n) be the maximum possible value of mrl(W ) among all Hamilton circuits W
in Qn. We write lg n for log2 n. In Section 4 we prove our main result.

Theorem 1 For n ≥ 2 we have mrl(n) ≥ bn − 2.001 lg nc.
It is easy to see that mrl(n) < n for n > 2, so this settles a conjecture appearing in [2]:

lim
n→∞mrl(n)/n = 1.

Constructions in [2] show only that mrl(n)/n ≥ 2/3 + o(1). An earlier construction of
Evdokimov [1] proves that mrl(n)/n ≥ 1/2.

Gray codes with large minimum run length are used in electronic devices such as the
Codacon [4] spectrograph. The 10-bit code used in the Codacon is presented as a sporadic
construction in Section 5. Other applications such as the visualization of neural networks
[7] take advantage of the ‘local Hamming distance preservation’ property of such Gray
codes: a closed walk W = (wi) in Qn satisfies mrl(W ) ≥ m if and only if for 0 ≤ i, j < k,

||i − j|| ≤ m implies d(wi, wj) = ||i − j||. (1)

(Here d(wi, wj) is the number of bits in which wi and wj differ.)
Two variations of our problem have been studied. The first is concerned with finding

a longest circuit in Qn having a prespecified minimum run length m, where mrl(n) <
m < n. This optimal length `(n, m) is known [8] to satisfy `(n, m) ≥ 2n−dm/2e. This
is surely far from optimal; it is conjectured in [2] that `(n, n − 1)/2n → 1. The second
variation imposes an additional separation requirement which provides the circuit with
error-correcting capability. Given d ≤ m < n, one typically seeks a longest circuit W in
Qn satisfying (1) and additionally

||i − j|| ≥ d implies d(wi, wj) ≥ d.

Such objects are often called circuit codes. For d = m = 2 this is the snake-in-a-box
problem. We refer the interested reader to [5] and the references therein.

2 Definitions

A step permutation of V (Qn) is a permutation of V (Qn) such that each vertex is mapped
to one of its neighbouring vertices. A list π1, π2, . . . , πk of step permutations acting on
(successive images of) a vertex v naturally defines a walk of length k in Qn,

W (v; π1, π2, . . . , πk) = vvπ1vπ1π2 . . . vπ1π2...πk .
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The stream induced by π1, π2, . . . , πk is the set of 2n walks

S(π1, π2, . . . , πk) = {W (v; π1, π2, . . . , πk) : v ∈ V (Qn)}.
We say that the stream S = S(π1, π2, . . . , πk) induces the permutation π(S) = π1π2 . . . πk

of V (Qn). We can obviously concatenate any two streams S, S ′ to obtain a new stream
SS ′. We may write S2 for SS. Let W (v; S) denote the walk in S with initial vertex v
and terminal vertex vπ(S). Let r(v) be the length of the orbit of v under π(S). Then
W (v; Sr(v)) is a closed walk in the (concatenated) stream Sr(v). The minimum run length
mrl(S) of the stream S is defined to be the smallest minimum run length among the closed
walks in {W (v; Sr(v)) : v ∈ V (Qn)}.

We sometimes identify V (Qn) with the vector space GF(2)n, denoting by ei the ith
standard vector. For example, δvw = i iff v + w = ei. Two examples of step permutations
are: the elementary involutions

τi : v 7→ v + ei, i = 1, . . . , n

and the following modification of τi. If uvw is a path of length two in Qn and δvw = i,
then τ

(uvw)
i is the step permutation defined by

τ
(uvw)
i = (uw)τi. (2)

The orbit of u under τ
(uvw)
i induces the 4-circuit uvwzu in Qn, where z = uτi . Thus the

cycle structure of τ
(uvw)
i is given by

(uvwz)
∏{(xxτi) : x ∈ V (Qn) − {u, v, w, z}}.

The transition sequence of a walk W = w0w1 . . . wk in Qn is defined to be the sequence

δw0w1 , δw1w2, . . . , δwk−1wk
.

Thus for closed walks, mrl(W ) equals the smallest index separation (modulo k) between
two identical entries in its transition sequence. The following might help illustrate these
notions.

Example 2 Let uvw = 000 100 110 be a path of length two in Q3. Then δuv = 1 and
δvw = 2. The following stream in Q3 consists of eight walks of length four.

S = S(τ
(uvw)
2 , τ3, τ2, τ3)

= {W1, W2, . . . , W8}
where

W1 = 000, 100, 101, 111, 110 W5 = 100, 110, 111, 101, 100
W2 = 001, 011, 010, 000, 001 W6 = 101, 111, 110, 100, 101
W3 = 010, 000, 001, 011, 010 W7 = 110, 010, 011, 001, 000
W4 = 011, 001, 000, 010, 011 W8 = 111, 101, 100, 110, 111.

In this example we have π(S) = (uw) = (000 110) (the other 6 vertices are fixed points).
Concatenating S with itself gives rise to seven closed walks, W1W7, W2, W3, W4, W5,
W6, and W8. All seven closed walks have minimum run length 2. Thus mrl(S), being the
minimum of these numbers, equals 2.
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3 The Construction

We construct a Hamilton circuit in the cartesian product Qa ×Qb
∼= Qa+b from a stream

in Qa and a Hamilton circuit in Qb. Let (X, Y ) be the bipartition of V (Qa) into words of
even and odd weight.

Lemma 3 Let S be a stream of length 2b in Qa such that X is one of the orbits of π(S).
Then mrl(a + b) ≥ 2 min{mrl(S), mrl(b)}.
Proof: Let S be as in the hypothesis, and let w0 ∈ X. Since π(S) cyclically permutes the
vertices in X, the concatenated stream S2a−1

contains the closed walk

W = W (w0; S
2a−1

) = w0w1 . . . w2a+b−1−1w0.

This walk is a concatenation of the 2a−1 walks in S which originate in X. That is,
X = {wk2b : 0 ≤ k < 2a−1}. Step permutations map X into Y bijectively, so for each
j ∈ {0, . . . , 2b − 1} we have that

{wk2b+j : 0 ≤ k < 2a−1} =

{
X if j is even
Y if j is odd.

(3)

Let Z = z0z1 . . . z2b−1z0 be a Hamilton circuit in Qb with mrl(Z) = mrl(b). We assume
that the index sets of the bits of Qa and Qb are disjoint. By merging the transition
sequences of W and the concatenated walk Z2a−1

, we obtain the following walk in Qa×Qb.

C = (w0, z0)(w1, z0)(w1, z1)(w2, z1)(w2, z2) . . . (w2b−1, z2b−1)(w2b , z2b−1)

(w2b , z0)(w2b+1, z0)(w2b+1, z1) . . . (w2·2b−1, z2b−1)(w2·2b, z2b−1)

(w2·2b , z0)(w2·2b+1, z0)(w2·2b+1, z1) . . . (w3·2b−1, z2b−1)(w3·2b, z2b−1)

(w3·2b , z0) . . .

· · ·
(w(2a−1−1)·2b , z0)(w(2a−1−1)·2b+1, z0) . . . (w2a−1·2b−1, z2b−1)(w0, z2b−1)

(w0, z0).

It is immediate that C is a closed walk of length 2a+b, and that

mrl(C) = 2 min{mrl(W ), mrl(Z)} ≥ 2 min{mrl(S), mrl(b)}.
It remains to show that C is a Hamilton circuit. Let (w, z) ∈ V (Qa) × V (Qb). As Z
is a Hamilton circuit, there is a unique j ∈ {0, 1, . . . , 2b − 1} such that z = zj . By (3)
there is a unique k such that w ∈ {wk2b+j, wk2b+j+1}. By its construction, both pairs
(wk2b+j, zj), (wk2b+j+1, zj) are vertices of C, so (w, z) ∈ V (C). Since C has length 2a+b, it
is a Hamilton circuit in Qa × Qb.

Remark 4 The (essentially unique) 5-bit Gray code C with mrl(C) = 4 is a special case
of the above construction, with a = 3 and b = 2. Here S is the stream S(π1, π2, π3, π4)
where the permutations are involutions defined by πi : w 7→ w + efi(w) (1 ≤ i ≤ 4), where

f1(w) = 1, f2(w) = f4(w) = 2 + w1, f3(w) = 3 − w1,
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and w1 ∈ {0, 1} denotes the first bit of w. The resulting walk W has transition sequence

1, 3, 2, 3, 1, 2, 3, 2, 1, 3, 2, 3, 1, 2, 3, 2.

The next two lemmas serve to construct a stream S having large minimum run length
while satisfying the two hypotheses of Lemma 3. The first lemma heeds the requirement
on the orbits of π(S). The second lemma shows how to adjust the length of the stream.

Lemma 5 There exists a stream S ′ in Qa (a ≥ 2) having length (a− 1)(2a − 2) such that
X is an orbit of π(S ′) and mrl(S ′) = a − 1.

Proof: Let x0y0x1y1 . . . x2a−1−1y2a−1−1 be a Hamilton path in Qa such that δxjyj
= 1, for

0 ≤ j < 2a−1. For example, Gray’s RGC has this property. The transition sequence of
this path is 1, t1, 1, t2, 1, . . . , t2a−1−1, 1 where tj = δyj−1xj

∈ {2, 3, . . . , a}. For 1 ≤ j < 2a−1,
we define the sequence of permutations

Pj = τ2, τ3, . . . , τtj−1, τ
(uvw)
tj , τtj+1, . . . , τa, τ2, τ3, . . . , τa (4)

where uvw is the image of xj−1yj−1xj under the permutation τ2τ3 . . . τtj−1. We observe
that any triple (uvw) appearing in (4) satisfies

δuv = δxj−1yj−1
= 1. (5)

For 1 ≤ j < 2a−1, we define the stream Sj = S(Pj). Example 2 provides an example of
Sj when a = 3 and tj = 2. Let

S ′ = S1S2 . . . S2a−1−1 = S(π1, π2, . . . , π(a−1)(2a−2)).

Each substream S(πi) has length one and consists of the set of edges {wwπi : w ∈ V (Qa)}.
By (4) and (5), the set of transitions of the edges in S(πi) is

{δwwπi : w ∈ V (Qa)} =

{ {k} if πi = τk

{1, k} if πi = τ
(uvw)
k for some uvw.

(6)

For 2 ≤ k ≤ a, any two occurrences of τk or τ
(uvw)
k in the sequence π1, π2, . . . , π(a−1)(2a−2)

are separated by at least a − 1 positions. Furthermore any two permutations having the
form τ

(uvw)
tj are separated by at least a positions, since they occur only in the first half of

each subsequence Pj. Thus by (6) we conclude that mrl(S ′) = a − 1.
Any two elementary involutions τk, τ` commute. Further, for any path uvw with

δvw = k we have
τ

(uvw)
k τ` = τ`τ

(u′v′w′)
k

where u′v′w′ is the image of uvw under τ`. Thus with uvw as in (4) we have

π(Sj) = τ2τ3 . . . τtj−1τ
(uvw)
tj τtj+1 . . . τaτ2τ3 . . . τa

= τ
(xj−1yj−1xj)
tj τtj

∏
k 6=tj

τ 2
k

= (xj−1xj).

Thus π(S ′) =
∏2a−1−1

j=1 (xj−1xj) = (x0x2a−1−1x2a−1−2 . . . x1) and X is an orbit of π(S ′).
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Remark 6 It is interesting to minimize the length of S ′ in the statement of Lemma 5
while retaining the other two properties. For example, in the above construction, one
can reduce the length of S ′ by omitting the second half of any Pj for which tj ≤ tj+1,
and adjusting slightly the definition of uvw. (The permutations τ2, . . . , τa comprising the
second half of Pj serve only as ‘padding’ to separate the modified permutation in Pj from
the the modified permutation in Pj+1. If tj ≤ tj+1, then those two permutations will be
separated by at least a − 1 positions, even after τ2, . . . , τa are deleted.) For example, if
we use the RGC to define the sequence (tj) = (2, 3, 2, 4, 2, 3, 2, 5, . . .), then the relation
tj ≤ tj+1 holds for half of the values j. Modifying each corresponding Pj as above results
in a stream having 3/4 the length of S ′.

Further reduction should be possible by writing (x0x1 . . . x2a−1−1) as a product of fewer
than 2a−1 − 1 involutions. For example, (0 1 2 3 4 5 6 7) = π1π2, where π1 = (1 7)(2 6)(3 5)
and π2 = (1 0)(2 7)(3 6)(4 5). Of course one must then express each involution as a product
of just a few step permutations, while maintaining the minimum run length requirement.

Lemma 7 For any even integer ` ≥ (a − 1)(2a + 2a − 6), there exists a stream S in Qa

(a ≥ 2) having length ` such that X is an orbit of π(S) and mrl(S) = a − 1.

Proof: Let ` = (a − 1)(2a − 2) + 2t where t ≥ (a − 1)(a− 2). It is a standard result that
there exist nonnegative integers α and β such that

t = αa + β(a − 1).

Let S ′, Pj and Sj be as in Lemma 5, and consider the stream S = S ′T 2αR2β where
T = S(τ1, τ2, . . . , τa) and R = S(τ2, τ3, . . . , τa). It is immediate that S has length `
and π(S) = π(S ′). It remains to show that appending T 2αR2β does not decrease the
minimum run length of S ′. Since mrl(T 2αR2β) = a−1, we need only check the ‘boundary
substreams’. It is possible that α or β equals zero, so we should verify that each of the
four streams TS1, RS1, S2a−1−1T , S2a−1−1R, has minimum run length at least a − 1. By

(4) and (6) this amounts to verifying that the permutations τ1 and τ
(uvw)
tj are separated by

at least a−1 positions in the permutation sequences τ1, τ2, . . . , τa, Pj and Pj, τ1, τ2, . . . , τa.
Thus we prove mrl(S) = a − 1.

Putting this together with Lemma 3 yields our basic recurrence.

Corollary 8 If (a − 1)(2a + 2a − 6) ≤ 2b, then

mrl(a + b) ≥ 2 min{a − 1, mrl(b)}. (7)

Starting with known lower bounds on mrl(n) for small n as given in Section 5, it is
easy to write a computer program that applies (7) in an optimal manner for n ≤ 2000.
The result (Figure 1) suggests that mrl(n) ≥ n − 2 lg n for all n. In the next section we
prove a bound which is almost this good.
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Figure 1: Comparing 2 lg n with the upper bound on n − mrl(n) arising from (7).

4 Proof of Theorem 1

We show that, for any c > 2, if the inequality

mrl(n) ≥ bn − c lg nc (8)

holds for all n ≥ 2 satisfying (
2 − 2c lg n

n

)c

< 4. (9)

then (8) holds for all n ≥ 2. Let N(c) denote the greatest integer n for which (9) holds.
For example, N(3) = 95. (The function x 7→ N(2 + 1/x), plotted in Figure 2, is slightly
superlinear.) Let n > N(c). There exists an integer b ≥ n/2 such that a+b ≤ n ≤ a+b+1,
where

a = b − bc lg bc + 1.

We first observe

a + b

b
≥ 2 − c lg b

b
≥ 2 − c lg(n/2)

n/2
≥ 2 − 2c lg n

n
≥ 41/c,

and verify that
(a − 1)(2a + 2a − 6) ≤ a2a ≤ 2a2b/bc ≤ 2b.
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Figure 2: N(2 + 1/x) versus x.

Using the elementary fact mrl(n) ≥ mrl(n−1), we apply Corollary 8 inductively as follows.

mrl(n) ≥ mrl(a + b)

≥ 2 min(a − 1, mrl(b))

≥ 2 min(b − bc lg bc, b − bc lg bc)
= a + b − bc lg bc − 1

= a + b + 1 −
⌊
c lg(a + b) + c lg

(
41/cb/(a + b)

)⌋
≥ n − bc lg nc.

Using (7) to electronically verify (8) for n ≤ 105, we find that (8) holds for all n when
c = 2.001.

5 Small n and a Sporadic Construction

The effective application of the construction in Section 3 depends heavily on good lower
bounds on mrl(n) for small values of n. The following table summarizes the best lower
bounds `(n) that can be achieved by the constructions in [2], and the two sporadic con-
structions described below. By use of exhaustive computer searches, one can show that
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the starred values are exact.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
`(n) 2∗ 2∗ 2∗ 4∗ 4∗ 5∗ 5 6 8 8 8 9 9 11 11 12 12 14 15 16

We now describe a hitherto unpublished construction which yields a 10-bit Gray code
with minimum run length 8. This is the Gray code used in the Codacon device [4]. The
construction in Section 3 and those given in [1, 2] can only produce 10-bit codes with
minimum run length at most 7.

Let C4 denote the circuit of length four. We view the 10-cube as a cartesian power

Q10
∼= G = C4 × C4 × C4 × C4 × C4.

We identify each vertex of G with a group element (a0, a1, a2, a3, a4) ∈ Z5
4 , where Z4 is

the integers modulo 4. Two vertices u, v are adjacent in G if u− v = ±ei, where ei is the
ith unit group element, 0 ≤ i ≤ 4. A G-transition sequence is any word T = t1t2 . . . tk
from the alphabet {0, 1, 2, 3, 4}. As usual, if v ∈ V (G), then T induces a walk W (v; T ) =
v0v1 . . . vk in G with v0 = v and vi = vi−1 + eti . Let T i7→4 be the set of words that can be
obtained from T by replacing one copy of the symbol i by the symbol 4. For example,
(0123401)17→4 = {0423401, 0123404}.

Let T0 = 0123012301230123. We iteratively (and nondeterministically) define G-
transition sequences T1, T2 and T3 by

Ti+1 = T ′
iT

′
iT

′
iT

′
i , where T ′

i ∈ T i7→4
i .

Each W (v; Ti) is a closed walk of length 4i+2. It can be checked by computer, or proved
with some effort, that any walk W (v; Ti) (0 ≤ i ≤ 3) is a circuit in G. Thus W (v; T3)
represents a 10-bit Gray code C.

The minimum run length of C is at least twice the minimum distance between two
occurrences of the same symbol in T3. For j ∈ {0, 1, 2, 3}, two occurrences of symbol j
in T3 are separated by at least four positions. By selecting the sequences T ′

i sensibly, the
same statement holds for j = 4. Thus mrl(10) ≥ mrl(C) ≥ 8.

This construction does not appear to easily generalize to higher dimensional cubes. A
similar construction using the subgraph C7

4 × C2
8 ⊆ Q20 and T0 = (01234567)8. can be

made to produce a noncyclic 20-bit Gray code with minimum run length 16. If T is a
word in the alphabet {0, 1, . . . , 19} representing its transition sequence, then T (20)T (20)
represents a 21-bit cyclic Gray code, whence mrl(21) ≥ 16. We omit details here. Other,
more complicated schema have produced minor improvements that are not worth men-
tioning here. We leave as unsolved the problem of generalizing this 10-bit construction in
a satisfactory manner.
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