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Abstract

For i ≥ 0, the i-cube Qi is the graph on 2i vertices representing 0/1 tuples of
length i, where two vertices are adjacent whenever the tuples differ in exactly one
position. (In particular, Q0 = K1.) Let αi(G) be the number of induced i-cubes of
a graph G. Then the cube polynomial c(G,x) of G is introduced as

∑
i≥0 αi(G)xi.

It is shown that any function f with two related, natural properties, is up to the
factor f(Q0, x) the cube polynomial. The derivation ∂ G of a median graph G is
introduced and it is proved that the cube polynomial is the only function f with
the property f ′(G,x) = f(∂ G, x) provided that f(G, 0) = |V (G)|. As the main
application of the new concept, several relations that widely generalize previous
such results for median graphs are proved. For instance, it is shown that for any
s ≥ 0 we have c(s)(G,x + 1) =

∑
i≥s

c(i)(G,x)
(i−s)! , where certain derivatives of the cube

polynomial coincide with well-known invariants of median graphs.
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1 Introduction

Median graphs present a natural generalization of trees and hypercubes. It is therefore
not surprising that they have been independently introduced several times [1, 12, 15].
These graphs are closely related to distributive lattices and graph retracts; see Avann
[1], Bandelt [2], and Duffus and Rival [5]. Mulder [12, 13] proved that a graph G is a
median graph if and only if G can be obtained from K1 by the so-called convex expansion
procedure. A step in such procedure can, intuitively, be described as follows. Cover a
graph H with two subgraphs H1, H2 such that the intersection X of the cover is convex,
take the disjoint union of H1 and H2 and finally insert a natural matching between the
two copies of X. A similar characterization of median graphs is due to Bandelt and van
de Vel [3]. Namely, a connected graph is a median graph if and only if it can be obtained
from hypercubes by a sequence of convex amalgamations, where a convex amalgamation
consists of gluing together two graphs along isomorphic convex subgraphs. For a survey of
known characterizations of median graph see [11] and for infinite median graphs consult
[18]. Recently a surprising connection between median graphs and (bipartite or non-
bipartite) triangle-free graphs was discovered that asserts, intuitively speaking, that there
are as many median graphs as there are triangle-free graphs [8].

Let G be a median graph with n vertices, m edges, and k equivalence classes of
G with respect to the Djoković-Winkler [4, 20] relation Θ. In [10] it was proved that
2n − m − k ≤ 2, and that equality holds if and only if G is a cube-free median graph.
Earlier, Soltan and Chepoi [17, Theorem 4.2.(6)] proved that

∑
i≥0

(−1)i αi(G) = 1 (1)

where αi(G) denotes the number of induced i-cubes of G. This result was later indepen-
dently obtained in [16], where it was also proved that

k = −
∑
i≥0

(−1)i i αi(G). (2)

Equality (1) presents a generalization of the well-known equality “n − m = 1” for trees,
while (2) applied to trees says that “k = m”, which is another characterizing property of
trees. These two relations in turn imply the Euler-type formulas from [9, 10].

The main purpose of this paper is to present a general approach for obtaining such
equalities. The corresponding results that generalize all the above equalities are given in
the second part of the paper. To obtain these results, we introduce the cube polynomial of
a graph G as c(G, x) =

∑
i≥0 αi(G)xi. (For other graph polynomials see [6].) We first show

some basic properties of the cube polynomial: the amalgamation, product, and expansion
properties. In fact, any function f with the amalgamation, and expansion properties is
up to the factor f(K1, x) the cube polynomial. Weaker conditions suffice to reach similar
conclusions if we restrict to the class of median graphs. Then we introduce the derivation
graph ∂ G of a median graph G and prove that the cube polynomial is the only function f
with the property f ′(G, x) = f(∂ G, x) provided that its value at x = 0 equals the number
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of vertices. In the last section we prove several relations for median graphs involving the
cube polynomial. Among others we prove that for any s ≥ 0 we have

c(s)(G, x) =
∑
i≥s

(−1)i−s

(i − s)!
c(i)(G, x + 1) .

This equality in turn implies

θs(G) = s!
∑
i≥0

(−1)i−s

(
i

s

)
αi(G) , (3)

where θs(G) is the number of components of the s-derivation of the graph G which by
Proposition 8 equals the s-th derivative of c(G, x) evaluated at x = −1. It is always
satisfied that θ0(G) = 1 and θ1(G) = k. Thus plugging s = 0 and s = 1 into (3) we obtain
(1) and (2), respectively.

2 Preliminaries

Let G be the set of all finite graphs. Denote by Pn the path on n vertices, and by Kn the
complete graph on n vertices. For i ≥ 0 let Qi be the hypercube of dimension i, or shortly
the i-cube. Its vertex set consists of all 0/1 tuples of length i, two vertices being adjacent
whenever the tuples differ in exactly one position. Note that Q0 = K1 and Q1 = K2.

The Cartesian product G2H of graphs G and H is the graph with vertex set V (G)×
V (H) in which the vertex (a, x) is adjacent to the vertex (b, y) whenever ab ∈ E(G) and
x = y, or a = b and xy ∈ E(H). It is easy to see that the Cartesian product of i ≥ 1
copies of K2 is the i-cube Qi.

A subgraph H of a graph G is an isometric subgraph if dH(u, v) = dG(u, v) for all
u, v ∈ V (H), where dG(u, v) denotes the length of a shortest path in G from u to v. A
subgraph H of a graph G is convex if for any two vertices u, v of H all shortest paths
between u and v in G are already in H . Isometric subgraphs of hypercubes are called
partial cubes. A graph G is a median graph if there exists a unique vertex x to every triple
of vertices u, v, and w such that x lies simultaneously on a shortest u, v-path, a shortest
u, w-path, and a shortest w, v-path. Median graphs are partial cubes, cf. [7, 13]. Let M
denote the class of all median graphs.

Two edges e = xy and f = uv of G are in the Djoković-Winkler [4, 20] relation Θ if
d(x, u)+d(y, v) 6= d(x, v)+d(y, u). Winkler [20] proved that a bipartite graph is a partial
cube if and only if Θ is transitive. Consider for instance the i-cube Qi. Let e ∈ E(Qi)
and suppose that the ends of e differ in position r, where r ∈ {1, . . . , i}. Then e is in
relation Θ with precisely those edges of Qi whose ends differ in position r. Consequently,
Θ is transitive on E(Qi) and consists of i equivalence classes.

Let In = {1, . . . , n}. In the paper the inclusion-exclusion principle will be used, which
for given sets A1, . . . , An says that

|A1 ∪ A2 ∪ · · · ∪ An| =
∑
J⊆In

(−1)|J |−1|
⋂
i∈J

Ai|. (4)
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3 The cube polynomial

For a graph G, let αi(G) denote the number of induced i-cubes of G. Note that α0(G) =
|V (G)| and α1(G) = |E(G)|. Let c(G, x) be the generating function of the sequence
(αi(G))∞i=0, that is,

c(G, x) =
∑
i≥0

αi(G)xi .

For finite graphs G, c(G, x) is a polynomial and we call it the cube polynomial of G. For
instance, let T be a tree on n vertices, then c(T, x) = (n − 1)x + n. Note also that
c(Qn, x) = (x + 2)n and that

αk(G) =
c(k)(G, 0)

k!
. (5)

A cover C of a graph G is a set of induced subgraphs C = {G1, . . . , Gn} of G such that
G = G1 ∪ G2 ∪ · · · ∪ Gn. We say that a cover C is cubical, if every induced hypercube of
G is contained in at least one of the graphs of C. For any subset A ⊆ In, let GA be the
intersection (possibly empty and possibly disconnected) of the graphs Gi (i ∈ A).

Proposition 1 Let C = {G1, . . . , Gn} be a cubical cover of a graph G. Then,

c(G, x) =
∑
A⊆In

(−1)|A|−1c(GA, x). (6)

Proof. For i ≥ 0 and j ∈ {1, 2, . . . , n}, let Aj
i be the set of induced i-cubes of the graph

Gj. Then αi(G) = |A1
i ∪ A2

i ∪ · · · ∪ An
i |. Hence, by (4), we infer

αi(G) =
∑
A⊆In

(−1)|A|−1 |
⋂
j∈A

Aj
i |.

In addition, c(GA, x) =
∑
i≥0

| ∩j∈A Aj
i | xi. Therefore,

c(G, x) =
∑
i≥0

αi(G) xi

=
∑
i≥0

( ∑
A⊆In

(−1)|A|−1 |
⋂
j∈A

Aj
i |
)

xi

=
∑
A⊆In

∑
i≥0

(
(−1)|A|−1 |

⋂
j∈A

Aj
i |
)

xi

=
∑
A⊆In

(−1)|A|−1 c(GA, x) .

Because of Proposition 1 we say that a function f : G × IR → IR has the amalgamation
property if

f(G, x) =
∑
A⊆In

(−1)|A|−1f(GA, x). (7)
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whenever {G1, . . . , Gn} is a cubical cover of G.
As hypercubes are the simplest Cartesian product graphs, the cube polynomial should

behave nicely with respect to the Cartesian product. Indeed, observe that an induced
r-cube of G2H is uniquely representable as Qs2Qr−s, where Qs is an induced s-cube of
G and Qr−s an induced (r − s)-cube of H . Hence, for every k ≥ 0,

αk(G2H) =

k∑
i=0

αi(G)αk−i(H) .

From here we easily conclude:

Proposition 2 For any graphs G and H,

c(G2H, x) = c(G, x)c(H, x).

Observe that the identity |E(G2H)| = |E(G)| |V (H)| + |E(H)| |V (G)| immediately
follows from Proposition 2. We say that a function f : G × IR → IR has the product
property if for any graphs G and H ,

f(G2H, x) = f(G, x)f(H, x) .

Let G be a connected graph. The expansion G∗ of G with respect to the cubical cover
{G1, G2} of G is the graph constructed as follows. Let G∗

i be an isomorphic copy of Gi,
for i = 1, 2, and, for any vertex u of G0 = G1 ∩ G2, let ui be the corresponding vertex in
G∗

i . Then G∗ is obtained from the disjoint union of G∗
1 and G∗

2, where for each u of G0 the
vertices u1 and u2 are joined by an edge. (Note that, since the cover is cubical, a vertex of
G1 \G2 cannot be adjacent to a vertex of G2 \G1. Note also that the intersection G1∩G2

is non-empty.)
It is easy to prove the following claim. Just observe that via the expansion the sub-

graph isomorphic to G02K2 gives rise to new/larger hypercubes.

Proposition 3 Let G∗ be a graph constructed by the expansion with respect to the cubical
cover {G1, G2} (over G0). Then c(G∗, x) = c(G1, x) + c(G2, x) + x c(G0, x).

Because of this result, the following definition seems reasonable. A function f : G ×
IR → IR has the expansion property if

f(G∗, x) = f(G1, x) + f(G2, x) + x f(G0, x),

whenever G∗ is the expansion with respect to the cubical cover {G1, G2} (over G0).

Theorem 4 Let f : G × IR → IR be a function with the amalgamation and the expansion
property. Then for any graph G,

f(G, x) = f(Q0, x) c(G, x) .
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Proof. The proof is by induction on the number of vertices of a graph. The n-cube Qn,
n ≥ 1, can be obtained as the expansion of the cubical cover {Qn−1, Qn−1} (over Qn−1).
Now, by the expansion property we have f(Qn, x) = (2 + x)f(Qn−1, x). Hence,

f(Qn, x) = (2 + x)nf(Q0, x) = c(Qn, x)f(Q0, x).

Suppose now that G is not a hypercube. Let C be the set comprising of the graphs
G−v for every v ∈ V (G). Since G is not a hypercube, C is a cubical cover and every graph
of C is smaller than G. Using amalgamation property for c, and the induction hypothesis
for graphs Gi, we conclude that

f(G, x) =
∑
A⊆In

(−1)|A|−1f(GA, x)

=
∑
A⊆In

(−1)|A|−1f(Q0, x) c(GA, x)

= f(Q0, x) c(G, x).

From the above proof we can also deduce that if f has the amalgamation property
and f(Qn, x) = (x + 2)n holds for every n ∈ IN0, then f ≡ c.

In the case of median graphs we can strengthen the result of Theorem 4. Recall that
Mulder [12, 13] proved that a graph is a median graph if and only if it can be obtained from
K1 by a sequence of expansions in which G0 = G1 ∩G2 is always convex, cf. also [11, 14].

Corollary 5 Let f : M× IR → IR be a function with the expansion property. Then,

f(G, x) = f(Q0, x) c(G, x).

If, in addition, f has the product property, then either f ≡ 0 or f ≡ c.

Proof. Let f has the expansion property. The proof of the first assertion is by induction
on the number of expansion steps needed to obtain a median graph. The conclusion is
clear for G = K1. Let now G∗ be a median graph obtained by a (convex) expansion with
respect to the cubical cover {G1, G2} (over G0). Then,

f(G∗, x) = f(G1, x) + f(G2, x) + x f(G0, x).

From the induction hypothesis we obtain

f(G∗, x) = f(Q0, x)c(G1, x) + f(Q0, x)c(G2, x) + x f(Q0, x)c(G0, x)

= f(Q0, x)(c(G1, x) + c(G2, x) + x c(G0, x))

= f(Q0, x)c(G∗, x).

If f also has the product property, then, since Q02Q0 = Q0, we have f(Q0, x) =
[f(Q0, x)]2. Thus either f(Q0, x) = 0 or f(Q0, x) = 1. Combining this with the fact
that f(G, x) = f(Q0, x) c(G, x) completes the proof.
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4 Derivation graphs of median graphs

Let F be a Θ-class of a median graph and let e = uv ∈ F . Then it is well-known that F
forms a matching. Moreover, the ends of edges of F that are closer to u than to v induce
a median graph isomorphic to the subgraph induced by the ends of edges of F that are
closer to v than to u. We denote this median subgraph by Ue. Let F(G) be the set of
edges consisting of representatives of the Θ-classes of G. Then we define the derivation
of a median graph G as the graph

∂ G =
⋃

e∈F(G)

Ue,

that is, as the disjoint union of the graphs Ue, e ∈ F(G). (Note that transitivity of Θ
implies that the graph ∂ G is well-defined.) For instance, ∂ (Pn2Pm) is the disjoint union
of n − 1 copies of the path Pm and m − 1 copies of the path Pn.

The reason for calling the graph ∂ G “the derivation” of G is the following property.

Proposition 6 (Derivation property) Let G be a median graph. Then,

c′(G, x) = c(∂ G, x). (8)

Proof. Note that for any Qn in G its edges lie in n Θ-classes (n ≥ 1), and the corre-
sponding graphs Ue induce (n − 1)-cubes—altogether there are n Qn−1’s for each n-cube
of G. Hence, n αn−1(G) equals the number of (n − 1)-cubes of ∂ G. In other words:

c′(G, x) =
∑
e∈F

c(Ue, x) = c(∂ G, x).

We say that a function f : M× IR → IR has the derivation property if

f ′(G, x) = f(∂ G, x).

We next prove that the cube polynomial is the only function on median graphs with
the derivation property such that its value in x = 0 equals the number of vertices.

Theorem 7 Let f : M × IR → IR be a function with the derivation property, such that
f(G, 0) = |V (G)|. Then f ≡ c.

Proof. First, since Q0 has no Θ-classes, ∂ Q0 is empty. Thus f(Q0, x) is a constant, and
f(Q0, 0) = 1 implies f(Q0, x) = 1. Hence f(Q0, x) = c(Q0, x).

The proof proceeds by induction on the number of vertices of a median graph. Suppose
that for any median graph H with less than k vertices we have f(H, x) = c(H, x), and
let G have k vertices. Recall that for every e ∈ E(G), the graph Ue is a median graph.
Since Ue has less than k vertices, f(Ue, x) = c(Ue, x) holds by the induction assumption.
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By the derivation properties of c and f we infer that f ′(G, x) = c′(G, x). Therefore
f(G, x) = c(G, x) + C, where C is a constant. Since f(G, 0) = c(G, 0), we obtain that
C = 0, and therefore f ≡ c.

Let us denote by M∗ the class of all graphs whose connected components are median
graphs. Thus, G ∈ M∗ can be written as G = G1 ∪ G2 ∪ · · · ∪ Gs, where each Gi is a
median graph. Then we can extend the concept of the derivation graph to the graphs
from M∗ by setting ∂ G = ∂ G1 ∪ ∂ G2 ∪ · · · ∪ ∂ Gs and also define the higher derivations
in the following way. For k ≥ 0, set

∂k G =

{
∂ (∂k−1 G) k ≥ 1
G k = 0.

(9)

Then one can easily extend Proposition 6 to the graphs from M∗ as well as generalize it
to the higher derivatives in the following way:

c(k)(G, x) = c(∂k G, x). (10)

5 Relations for median graphs

Throughout this section let G be a median graph with k Θ-classes. Denote by the θs(G)
(s ≥ 0) the number of components in the graph ∂s G. Thus, θ0(G) = 1 and θ1(G) = k.
Recall that a graph is a median graph if and only if it can be obtained from hypercubes
by a sequence of convex amalgamations, a result due to Bandelt and van de Vel [3], cf.
also [11, 19].

Proposition 8 Let G be a median graph and s ≥ 0. Then,

θs(G) = c(s)(G,−1) .

Proof. The proof is by induction on s, and afterwards by induction on the number
of vertices of a median graph. Suppose first that s = 0. If G ∼= Qn (n ≥ 0) then
c(Qn,−1) = 1 = θ0(Qn). Now assume that G is the amalgam of G1 and G2 over G0.
Then, by the induction assumption,

c(G,−1) = c(G1,−1) + c(G2,−1) − c(G0,−1) = 1 + 1 − 1 = 1 = θ0(G).

Suppose now that the claim holds for all integers smaller than s (s ≥ 1) and for all
median graphs with less vertices than G. Since c(s+1)(G, x) =

∑
e∈F(G) c(s)(Ue, x) we can

use the induction hypothesis for graphs Ue and derive

c(s+1)(G,−1) =
∑

e∈F(G)

θs(Ue) = θs+1(G).
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Theorem 9 Let G be a median graph and s ≥ 0. Then,

c(s)(G, x + 1) =
∑
i≥s

c(i)(G, x)

(i − s)!
(11)

and

c(s)(G, x) =
∑
i≥s

(−1)i−s

(i − s)!
c(i)(G, x + 1). (12)

Proof. The proof of the first equality is by induction on the number of amalgamation
steps. Suppose first that G ∼= Qn. Since c(Qn, x) = (x+2)n it follows that c(s)(Qn, x+1) =

n!
(n−s)!

(x + 3)n−s. Using binomial formula we obtain:

c(s)(Qn, x + 1) =
n!

(n − s)!

n−s∑
j=0

(
n − s

j

)
(x + 2)j

=

n−s∑
j=0

n!

(n − s)!
· (n − s)!

j!(n − s − j)!
(x + 2)j

=
∑
j≥0

c(s+j)(Qn, x)

j!

=
∑
i≥s

c(i)(Qn, x)

(i − s)!
,

and so the desired formula follows. If G is not a hypercube then it can be obtained by an
amalgamation of G1 and G2 over G0. By the induction hypothesis we deduce:

c(s)(G, x + 1) = c(s)(G1, x + 1) + c(s)(G2, x + 1) − c(s)(G0, x + 1)

=
∑
i≥s

1

(i − s)!
(c(i)(G1, x) + c(i)(G2, x) − c(i)(G0, x))

=
∑
i≥s

c(i)(G, x)

(i − s)!
.

This proves the first relation.
The second equality can be proved in a similar way. Alternatively, one can write down

the first equality for every 0 ≤ s ≤ r, where r is the dimension of a largest hypercube of
G, and invert the obtained system of equations.

Corollary 10 Let G be a median graph, αi = αi(G) the number of induced i-cubes in G,
and θi = θi(G) the number of components in ∂ iG. Then for every s ∈ IN0,

(a) αs =
1

s!

∑
i≥s

θi

(i − s)!
and θs = s!

∑
i≥0

(−1)i−s

(
i

s

)
αi ;
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(b)
∑
i≥0

(−1)i 2i αi =
∑
i≥0

(−1)i θi

i!
.

Proof. The first formula of (a) is obtained by setting x = −1 in relation (11).
In order to prove the second relation of (a), we set x = −1 in relation (12) to get

(−1)s c(s)(G,−1) =
∑
i≥s

(−1)i c(i)(G, 0)

(i − s)
.

Therefore

(−1)s c(s)(G,−1)

s!
=

∑
i≥s

(−1)i c(i)(G, 0)

s!(i − s)!
.

Now, using Proposition 8 and (5), we obtain

(−1)s θs

s!
=

∑
i≥s

(−1)i

(
i

s

)
αi .

Finally note that
(

i
s

)
= 0 if i < s.

In order to obtain the relation (b) just sum up equalities from the first formula of (a)
and use basic properties of binomial coefficients.
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[15] L. Nebeský, Median graphs, Comment. Math. Univ. Carolinae 12 (1971) 317–325.
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