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Abstract

We exhibit an explicit homotopy equivalence between the geometric realizations
of the order complex of a finite lattice and the simplicial complex of coreless sets of
atoms whose join is not 1̂. This result, which extends a theorem of Segev, leads to
a description of the homology of a finite lattice, extending a result of Björner for
geometric lattices.

1 Introduction

The purpose of this paper is to unify and extend three directions of work that originated
from Rota’s broken-circuit formula [4] for the Möbius function of a geometric lattice.
In this introduction, we shall present the necessary terminology, state Rota’s theorem,
outline the three developments that are relevant for our purposes, and then describe our
results and how they are related to the previous ones.

Throughout this paper, L is a finite lattice, with lattice operations written ∨ and ∧
and with ordering written ≤. Its smallest and largest elements are 0̂ and 1̂, and the least
upper bound of a subset X is written

∨
X. We always assume that L is non-degenerate,

i.e., that 0̂ 6= 1̂. The set of atoms, i.e., minimal non-0̂ elements, is called A.
The Möbius function µ(x, y) is defined for all x ≤ y in L and is uniquely characterized

by the equations

µ(x, x) = 1 and (∀x < y)
∑

x≤z≤y

µ(x, z) = 0.

We shall be interested primarily in the special case µ(0̂, 1̂). The general values µ(x, y) can
be obtained by applying this special case to the intervals {z : x ≤ z ≤ y} of L.
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In the special case that L is a geometric lattice, i.e., the lattice of flats of a matroid
(up to isomorphism), a circuit of L is defined to be a subset of A that is minimal with
respect to the property that for some a ∈ A,

∨
A =

∨
(A − {a}). This agrees with the

matroid notion of circuit. If a linear ordering � of A is specified (entirely unrelated to the
lattice ordering ≤ which is of course trivial on A), then a broken circuit is a set obtained
from a circuit by deleting its �-first element. An NBC (abbreviating “no broken circuit”)
set is a subset of A that includes no broken circuits. With this terminology, we can state
Rota’s formula for the Möbius function, a generalization of a result of Whitney [7], who
introduced broken circuits and NBC sets in the context of graph theory.

Theorem 1 (Rota [4]) Let � be a linear ordering of the set A of atoms of a finite
geometric lattice L. Then, for any x ∈ L,

µ(0̂, x) =
∑
B

(−1)|B|

where the sum is over all NBC subsets B of A such that
∨

B = x.

In a geometric lattice, all NBC sets with a specified join x have the same cardinality,
namely the rank ρ(x) of x. Thus, the sum in Rota’s theorem is simply the number of
NBC sets with join x, with a sign (−1)ρ(x). We wrote this as a sum for the sake of the
generalizations below, where the relevant B’s might not all have the same cardinality.

As indicated above, the essential content of Rota’s theorem is captured already by
the special case where x = 1̂, for the general case follows by considering the interval of
elements ≤ x. Thus, we shall sometimes refer to this special case as “Rota’s theorem.”
The sets B occurring in this special case, namely the NBC subsets of A whose joins are
1̂, are called the NBC bases of L.

We shall be interested in three sorts of extensions of Rota’s result. The first of these
extensions, carried out in [5] and [2], removes the restriction to geometric lattices. There
are two versions of the main result in [2]. One uses a notion of NBB set, defined relative
to an arbitrary partial ordering of the atoms. Theorem 1.1 of [2] says that Rota’s formula
holds for all finite lattices if one replaces NBC with NBB. When the ordering of atoms is
linear and L is geometric, NBB coincides with NBC, so this theorem from [2] subsumes
Rota’s theorem. A second, even more general version of the result is given in Section 8
of [2]. Here, NBB is replaced by a notion of “coreless,” which we shall develop in detail
below because it plays a central role in the present paper. Again, the formula for µ(0, x)
is as in Rota’s theorem, with B required to be coreless rather than NBC.

To describe the second and third extensions of Rota’s theorem, we write ∆ for the
order complex of the partially ordered set L−{0̂, 1̂}. This is the simplicial complex whose
underlying set is L− {0̂, 1̂} and whose simplices are the subsets that are linearly ordered
by the lattice ordering ≤. We sometimes abuse notation by calling ∆ the order complex
of L.

It is well known that, in any lattice (indeed in any poset), µ(x, y) is the number of
chains x < z1 < · · · < zl−1 < y in L, counted with positive or negative signs according as
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the lengths l are even or odd. It follows that µ(0̂, 1̂) is the reduced Euler characteristic of
the order complex ∆. Since Euler characteristics of simplicial complexes can be computed
from the homology groups (as the alternating sum of their ranks), Rota’s theorem implies
a connection between NBC bases of a geometric lattice L and the homology of the order
complex of L. Björner [1] gave an elegant explicit form of this connection. If a geometric
lattice L has rank r (meaning the maximal length of a chain from 0̂ to 1̂) then its reduced
homology vanishes in all dimensions except r − 2. Björner gave an explicit function,
assigning to each NBC base (with respect to an arbitrary but fixed ordering � of A) an
(r − 2)-cycle of ∆, and he proved that the images of these cycles in homology constitute
a free basis for Hr−2(∆).

For more general finite lattices, the situation is considerably more complicated than
for geometric lattices, because the reduced homology need not be concentrated in a single
dimension, nor need it be free. Indeed, it is known that for any finite simplicial complex
there is a finite lattice with isomorphic homology groups. Nevertheless, we shall obtain
a generalization of Björner’s theorem to arbitrary finite lattices, in terms of the coreless
sets of atoms.

The third extension of Rota’s theorem involves looking not only at the homology
groups of ∆ but at its homotopy type, by which we mean the homotopy type of its
geometric realization. This extension was carried out by Segev [6], in the context of
general finite lattices and NBB sets. The NBB sets of atoms that are not bases, i.e., that
have join strictly smaller than 1̂, are the simplices of a simplicial complex, and Segev
proves that this complex and ∆ are homotopy equivalent. His proof is rather abstract;
it does not explicitly exhibit the maps (in either direction) that constitute a homotopy
equivalence.

Our main result is an extension of Segev’s. A minor aspect of our extension is that we
replace NBB with the more general concept of “coreless.” The more important aspect is
that we explicitly exhibit the homotopy equivalence, in both directions. One direction is
in Section 3, the other in Section 4.

Once this result is established, it provides explicit formulas for Björner-style isomor-
phisms of reduced homology groups. The formulas given directly by the homotopy equiv-
alence can be simplified somewhat, clarifying their connection with Björner’s formula.
This is done in Section 5.

Acknowledgement

I thank Bruce Sagan for bringing Björner’s work [1] to my attention and suggesting that
it might be related to our joint work in [2].

2 Coreless Sets

We devote this preliminary section to the notion of a coreless set of atoms, which will
play a central role in all our results. This notion was introduced in [2, Section 8] but
considered only briefly, so we provide a more extensive treatment here.
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Convention 2 Throughout this paper, L is a finite lattice and M is a function assigning
to every x ∈ L − {0̂} a nonempty family M(x) of atoms ≤ x.

Definition 3 The family N of coreless sets of atoms is defined to be the smallest family
of sets of atoms such that

• ∅ ∈ N and

• if X ∈ N and y ≥ ∨
X in L and a ∈ M(y), then X ∪ {a} ∈ N .

The following rephrasing of the definition is sometimes useful.

Corollary 4 A set X of atoms is coreless if and only if there is a sequence X0, X1, . . . , Xk

of sets of atoms, starting with X0 = ∅, ending with Xk = X, and satisfying for all i < k

Xi+1 = Xi ∪ {a} for some a ∈ M(y) with y ≥
∨

Xi.

The name “coreless” comes from the equivalent characterization given by the following
definition and proposition; this characterization was used as the definition in [2].

Definition 5 A set B of atoms is a core set if, for all y ≥ ∨
B, B ∩ M(y) = ∅.

Every set X of atoms has a largest core subset, obtained by iterating the operation

X 7→ S(X) = X −
⋃

y≥W
X

M(y)

until it stabilizes. This subset is called the core of X. Notice that ∅ is a core set and
singletons are not core sets.

Proposition 6 A set X of atoms is coreless if and only if its only core subset is ∅.
(Equivalently, Sn(X) = ∅ for some n.)

Proof We show first, by induction on the cardinality |X|, that if ∅ is the only core
subset of X then X is coreless. If |X| = 0 this is correct, because ∅ is coreless by
definition. So suppose X 6= ∅ and ∅ is its only core subset. In particular, X itself is not
a core set, so we can find some y ≥ ∨

X and some a ∈ X ∩ M(y). Now X − {a} has ∅

as its only core subset (because X does), so X − {a} ∈ N by induction hypothesis. But
y ≥ ∨

(X − {a}) and a ∈ M(y), so the definition of N gives us X ∈ N , as required.
For the converse implication, it suffices, thanks to “smallest” in the definition of N ,

to show that the family

N ′ = {X ⊆ A : ∅ is the only core subset of X}
satisfies

• ∅ ∈ N ′ and
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• if X ∈ N ′ and y ≥ ∨
X in L and a ∈ M(y), then X ∪ {a} ∈ N ′.

The former is obvious. To prove the latter, suppose X, y, and a were a counterexample,
and let B be a nonempty core subset of X ∪{a}. As X has no such subset, we must have
a ∈ B. We also have y ≥ ∨

X and y ≥ a (as a ∈ M(y)), and so y ≥ ∨
(X ∪ {a}) ≥ ∨

B.
But then y and a witness that B is not a core set. �

Corollary 7 Any subset of a coreless set is coreless.

Remark 8 This corollary can also be proved directly from the definition or the char-
acterization in Corollary 4. If Y ⊂ X and we have a chain leading from ∅ to X as in
Corollary 4, then we can get a chain leading to Y by simply omitting the steps that added
elements of X − Y .

The reason for introducing the notion of coreless sets in [2] was the following theorem,
whose proof we reproduce here.

Theorem 9 For every x ∈ L,

µ(0̂, x) =
∑

X∈N ,
W

X=x

(−1)|X|.

Proof Let ν(x) be the sum on the right side of the equation in the theorem. By the
definition of the Möbius function, it suffices to prove that ν(0̂) = 1 and that

∑
x≤y ν(x) = 0

for all y 6= 0̂ in L. The former is obvious, as ∅ ∈ N and no other set of atoms has join 0̂.
For the latter, we have ∑

x≤y

ν(x) =
∑

X∈N ,
W

X≤y

(−1)|X|.

So it suffices to find a parity-reversing involution on {X ∈ N :
∨

X ≤ y} for each fixed
y 6= 0. Given y, choose some a ∈ M(y) and let the involution be X 7→ X4{a}, where 4
denotes symmetric difference. That is, remove a from X if it was in X, and adjoin it to
X otherwise. The preceding corollary ensures that the result of removing a is still in N ;
the definition of N ensures that the result of adjoining a is also still in N . �

Remark 10 If we change M by replacing each M(x) with a (nonempty) subset of its
original value, then N changes to a subfamily of what it was before. So, by taking M
as small as possible, i.e., all M(x) are singletons, we get the fewest terms in the sum
expressing µ(0̂, x). Larger M ’s will usually lead to extra terms, which must cancel.

Remark 11 If � is a partial ordering of the set A of atoms, then there is an associated
function M assigning to each x ∈ L−{0̂} the set of �-minimal elements of {a ∈ A : a ≤ x}.
For this choice of M , nonempty core sets are exactly the bounded below sets of [2] and
therefore the coreless sets are the NBB sets.
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Since the equivalence of “core” and “bounded below” was stated without proof in [2],
the referee suggested that we provide the proof here. For M defined from � as here, the
definition of “core” says that B ⊆ A is a core set if and only if, for all y ≥ ∨

B, no
element of B is �-minimal among the atoms below y (where “below” refers, of course, to
the lattice ordering ≤). That is, for each b ∈ B (that is below y), there is some d ≺ b that
is also below y. Here the parentheses around “that is below y” indicate that, although it
is part of what we get when applying the definition, it is redundant because y ≥ ∨

B.
Notice that the statement “for each b ∈ B there is some d ≺ b that is below y” will hold

for all y ≥ ∨
B if and only if it holds for y =

∨
B. Thus, we find that B is coreless if and

only if, for each b ∈ B, there is some d ≺ b that is below
∨

B. Comparing this with the
definition of “B is bounded below” in [2], we see that there are only two differences. One is
that bounded below sets are required to be nonempty. The other is that we have d ≤ ∨

B
where the definition in [2] required d <

∨
B. But the latter is no real difference; since d

and b are distinct atoms (as d ≺ b), d cannot equal the join of a set B that contains b.
Therefore, the nonempty coreless sets for the M defined from � are exactly the

bounded below sets for �.

Remark 12 Specializing further, suppose L is a geometric lattice and � is a linear or-
dering of A. Then the associated M is related to broken circuits as follows. Any broken
circuit (with respect to the ordering �) is a core set, and any nonempty core set includes a
broken circuit. (See the discussion following Theorem 1.2 in [2].) Therefore, the coreless
sets are exactly the NBC sets, and our formula for the Möbius function specializes to
Rota’s.

3 A Homotopy Equivalence

According to Corollary 7, the family N of coreless sets is an abstract simplicial complex.
So are the subfamilies

Nx = {X ∈ N :
∨

X ≤ x}
for all x ∈ L and

N− =
⋃
x 6=1̂

Nx = {X ∈ N :
∨

X < 1̂}.

We shall also use the notation

N+ = N −N− = {X ∈ N :
∨

X = 1̂},

but of course N+ is not a simplicial complex, i.e., it is not closed under subsets.
We use the standard convention that, when topological concepts (such as homotopy)

are applied to simplicial complexes, they are meant to apply to the geometric realizations.

Lemma 13 For any x ∈ L − {0̂}, the simplicial complex Nx is a cone and therefore
contractible.
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Proof Given x, fix an element a of M(x). Then if X ∈ Nx, we have
∨

X ≤ x and so
our choice of a and the definition of N ensure that X ∪ {a} ∈ N . Since a ≤ x, we have
X ∪ {a} ∈ Nx. Therefore, Nx is a cone with vertex a. �

Theorem 14 The complex N− of coreless non-bases and the order complex ∆ are homo-
topy equivalent.

Proof For topological purposes, we may replace the simplicial complex N− by its
barycentric subdivision, because their geometric realizations are homeomorphic. We re-
gard the barycentric subdivision as an abstract simplicial complex in its own right. Its
vertices are the sets in N− − {∅}, and its simplices are the chains (with respect to set-
inclusion) of such sets. In other words, the barycentric subdivision is the order complex
of the poset (N− − {∅},⊆).

There is an order-preserving map

j : (N− − {∅},⊆) → L − {0̂, 1̂} : X 7→
∨

X.

Like any order-preserving map between posets, j induces a simplicial map of the order
complexes, which in turn induces a continuous map ̃ of the geometric realizations. We
intend to show that this ̃ is a homotopy equivalence.

By Quillen’s theorem (see [3, page 82] and dualize), it suffices to show that, for each
x ∈ L−{0̂, 1̂}, the subcomplex j−1({y : y ≤ x}) is contractible. But this subcomplex is the
barycentric subdivision of Nx which we already saw is a cone and therefore contractible.
�

When M arises from a partial ordering of A, the complex N− is the complex of NBB
non-spanning sets, and so Theorem 14 specializes to the main theorem of Segev [6]. Unlike
Segev’s proof, ours exhibits an explicit homotopy equivalence. In the next section, we shall
explicitly exhibit a homotopy inverse for it, and in Section 5 we shall study its action on
homology.

4 The Inverse Equivalence

Let γ be a function assigning to each x ∈ L − {0̂, 1̂} an element γ(x) of the set M(x).
Thus, γ maps each vertex of the order complex ∆ to a vertex of the complex N−.

Lemma 15 This γ is a simplicial map from ∆ to N−.

Proof We must show that for every simplex of ∆, i.e., for every chain x0 < x1 <
· · · < xk in L − {0̂, 1̂}, the image under γ is a simplex of N−. That is, we must
show that {γ(x0), γ(x1), . . . , γ(xk)} is coreless and its join is < 1̂. For each i, we have
γ(xi) ≤ xi ≤ xk, and so

∨k
i=0 γ(xi) ≤ xk < 1̂ as desired. It remains to show that

{γ(x0), γ(x1), . . . , γ(xk)} is coreless.
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To this end, consider the sets

Xj = {γ(xi) : 0 ≤ i < j} for 0 ≤ j ≤ k + 1.

Then X0 = ∅ and, for j < k + 1, Xj+1 is obtained from Xj by adjoining γ(xj) ∈ M(xj).
Since

xj ≥
∨
i<j

xi ≥
∨
i<j

γ(xi) =
∨

Xj ,

the definition of “coreless” shows that each Xj is coreless. In particular, it shows that
Xk+1 = {γ(x0), γ(x1), . . . , γ(xk)} is coreless, as required. �

It follows immediately from the lemma that γ induces a continuous function γ̃ from
the geometric realization of ∆ to that of N−.

Proposition 16 The γ̃ defined here is a homotopy equivalence. In fact it is a homotopy
inverse of the ̃ of the preceding section.

Proof In the statement of this proposition, we have used the common convention from
topology that the geometric realizations of a simplicial complex and of its barycentric sub-
division are identified. Thus, the domain of ̃, the geometric realization of the barycentric
subdivision of N−, agrees with the codomain of γ̃, the geometric realization of N−.

Consider the composite function γ̃ ◦ ̃ and how it acts on a simplex of the geometric
realization of N−, say the k-simplex with vertices a0, . . . , ak. To apply ̃, we regard this
simplex as the union of certain simplices of the barycentric subdivision, namely the (k+1)!
simplices corresponding to the chains

{aπ(0)} ⊆ {aπ(0), aπ(1)} ⊆ · · · ⊆ {aπ(0), aπ(1) . . . , aπ(k)}

in (N−−{∅},⊆) for arbitrary permutations π of {0, 1, . . . , k}. Now we can apply ̃, which
maps each of these simplices (linearly) to the corresponding simplex of the geometric
realization of ∆, given by the chain

aπ(0) ≤ aπ(0) ∨ aπ(1) ≤ · · · ≤ aπ(0) ∨ aπ(1) ∨ · · · ∨ aπ(k)

in L. Applying γ̃ to these simplices, we get the simplices in the geometric realization of
N− spanned by the corresponding sets

{γ(aπ(0)), γ(aπ(0) ∨ aπ(1)), . . . , γ(aπ(0) ∨ aπ(1) ∨ · · · ∨ aπ(k))}.

Now each vertex of each of these image simplices has the form

γ(aπ(0) ∨ aπ(1) ∨ · · · ∨ aπ(i)) ≤ aπ(0) ∨ aπ(1) ∨ · · · ∨ aπ(i) ≤ a0 ∨ a1 ∨ · · · ∨ ak.

That is, the image under γ̃ ◦ ̃ of our original simplex with vertices a0, a1, . . . , ak lies
entirely in the geometric realization Ca0∨a1∨···∨ak

of the complex Na0∨a1∨···∨ak
. This is a

subcomplex of N− because, with {a0, a1, . . . , ak} ∈ N−, the join a0∨a1 ∨· · ·∨ak is not 1̂.
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And it is contractible by Lemma 13. Of course the original simplex is also included in this
same Ca0∨a1∨···∨ak

. Adding the trivial observation that Ca0∨a1∨···∨ak
is an order-preserving

(with respect to set inclusion) function of {a0, a1, . . . , ak}, we see that the hypotheses of
the Contractible Carrier Lemma of [3, page 74] are satisfied. That lemma then says that
γ̃ ◦ ̃ and the identity map of the geometric realization of N− are homotopic.

This shows that γ̃ is a left homotopy inverse of ̃. That it is also a right homotopy
inverse follows immediately, since we already know, from the proof of Theorem 14, that ̃
is a homotopy equivalence.

Alternatively, one can verify directly that γ̃ is a right homotopy inverse for ̃, thus
giving a new proof of Theorem 14. This verification again uses the Contractible Carrier
Lemma. The carrier associated with a simplex {x0 < x1 < · · · < xk} of ∆ is the
geometric realization of the subcomplex of ∆ that is the order complex of the poset
{y ∈ L : 0̂ < y ≤ xk}. This is contractible, because it is a cone with vertex xk. We leave
to the reader the routine verification that it carries both ̃ ◦ γ̃ and the identity map. �

5 Homology

The homotopy equivalence ̃ exhibited in the proof of Theorem 14 induces, like any ho-
motopy equivalence, an isomorphism of homology groups. In this section, we look at this
isomorphism more closely and use it to get a simple representation, extending that in [1],
for the reduced homology of ∆.

We work with oriented simplicial homology groups. For any simplicial complex X ,
the (oriented simplicial) chain complex C∗(X ) has, in any dimension k, the free abelian
group Ck(X ) generated by oriented simplices [x0, x1, . . . , xk]. Here {x0, x1, . . . , xk} is a
k-dimensional (i.e., (k+1)-element) simplex of X , and, if the entries of such a simplex are
permuted, then [xπ(0), xπ(1), . . . , xπ(k)] is identified with sign(π)[x0, x1, . . . , xk]. If two of
the xi are equal, then the notation [x0, x1, . . . , xk] denotes zero. The boundary operator
∂ : Ck → Ck−1 is given by

∂[x0, x1, . . . , xk] =

k∑
i=0

(−1)i[x0, x1, . . . , x̂i, . . . , xk],

where the hat over xi means that this vertex is to be omitted. We include the empty
simplex in our simplicial complexes, so our chain complexes include a group C−1(X )
isomorphic to Z. It is well known that the homology H∗(X ) of C∗(X ) is canonically
isomorphic to the reduced homology of the geometric realization of X .

We shall be concerned with four simplicial complexes and their homology:

• the order complex ∆ of L (strictly speaking, of L − {0̂, 1̂}),
• the complex N of all coreless sets of atoms,

• the subcomplex N− of coreless sets whose join is not 1̂, and
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• the barycentric subdivision B of N−.

Recall from the proof of Theorem 14 that the simplicial map j : B → ∆ induces a homo-
topy equivalence ̃ of geometric realizations and therefore an isomorphism of homology
groups

j∗ : H∗(B) → H∗(∆).

On the chain level, j sends a simplex [X0, X1, . . . , Xk] of B, defined by a nest X0 ( X1 (

· · · ( Xk of nonempty, coreless sets with joins < 1̂, to [
∨

X0,
∨

X1, . . . ,
∨

Xk], the simplex
of ∆ defined by the increasing sequence

∨
X0 ≤

∨
X1 ≤ · · · ≤ ∨

Xk in L. The homology
isomorphism j∗ is thus induced by this

∨
operation.

We can express this in terms of the complex N− instead of its barycentric subdi-
vision B, if we recall how the identification between their geometric realizations works
at the chain level. That identification corresponds to the chain map b that sends any
oriented simplex [a0, a1, . . . , ak] of N− to the alternating sum over all permutations π of
{0, 1, . . . , k}

∑
π

sign(π)[{aπ(0)}, {aπ(0), aπ(1)}, . . . , {aπ(0), aπ(1), . . . , aπ(k)}].

Composing this with j∗, we find that an isomorphism of homology groups, j∗ ◦ b∗ :
H∗(N−) ∼= H∗(∆), is induced by the chain map j ◦ b that sends any oriented simplex
[a0, a1, . . . , ak] of N− to the alternating sum

∑
π

sign(π)[aπ(0), aπ(0) ∨ aπ(1), . . . , aπ(0) ∨ aπ(1) ∨ · · · ∨ aπ(k)]

of oriented simplices of ∆.
This can be reformulated as follows in terms of the coreless sets with join 1̂, i.e., the

sets in N+. Although N+ is not a simplicial complex, it is the set-theoretic difference
between the simplicial complexes N and N−. So its simplices freely generate the groups
Qk of the chain complex Q∗ = C∗(N )/C∗(N−). In more detail, we have the following
description of Q∗.

Definition 17 Q∗ is the chain complex defined as follows. Its group Qk in dimension k
is freely generated by the oriented simplices [a0, a1, . . . , ak] where {a0, a1, . . . , ak} ∈ N+.
Its boundary operator ∂ : Qk → Qk−1 sends [a0, a1, . . . , ak] to

k∑
i=0

(−1)i[a0, a1, . . . , âi, . . . , ak],

subject to the convention that, if {a0, a1, . . . , âi, . . . , ak} /∈ N+ (because its join is < 1̂)
then [a0, a1, . . . , âi, . . . , ak] = 0.

Lemma 18 There is a short exact sequence of chain complexes

0 → C∗(N−) → C∗(N ) → Q∗ → 0.
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The proof is just a matter of inspecting the definitions.
Notice that, in the notation introduced at the beginning of Section 3, N = N1̂. So,

by Lemma 13, N is contractible and therefore its reduced homology H̃∗(N ) vanishes.
That is, in the long exact homology sequence produced from the short exact sequence in
Lemma 18, every third group is zero. By exactness, the remaining groups are isomorphic
in pairs. Specifically, the boundary homomorphism ∂ induces isomorphisms

∂∗ : Hk(Q∗) ∼= H̃k−1(N−).

Chasing through the relevant definitions, we find that ∂∗ of the homology class represented
by a cycle z in Qk can be obtained by sending each oriented simplex (basis element of
Qk) [a0, a1, . . . , ak] occurring in z to the sum

k∑
i=0

(−1)i[a0, a1, . . . , âi, . . . , ak],

obtaining a cycle in Ck−1(N−). Although the sum exhibited here is in general a chain
over N , not N−, the terms in ∂∗(z) involving simplices from N+ cancel, because z is a
cycle of Q∗. This fact and the fact that ∂∗(z) is a cycle, rather than merely a chain, of
C∗(N−) are part of the general construction of long exact homology sequences.

Composing ∂∗ with j∗◦b∗ we obtain an isomorphism (with a shift of dimension because
of ∂∗)

j∗ ◦ b∗ ◦ ∂∗ : H∗(Q∗) ∼= H̃∗(∆).

Inspection of the definitions shows that this isomorphism is given at the chain level by
the transformation τ sending [a0, a1, . . . , ak] to

k∑
i=0

(−1)i
∑

π

sign(π)[aπ(0), aπ(0) ∨ aπ(1), . . . , aπ(0) ∨ aπ(1) ∨ · · · ∨ aπ(k)],

where the inner sum is over all permutations π of {0, 1, . . . , ı̂, . . . , k}. Note carefully that
i is in neither the domain nor the range of π and that ai is therefore not involved in any
of the joins appearing in the ith summand in the formula above for τ [a0, a1, . . . , ak].

The precise meaning of “given at the chain level” is as follows. The formula for
τ [a0, a1, . . . , ak] can include terms [aπ(0), . . . , aπ(0) ∨aπ(1) ∨· · ·∨aπ(k)] that are not oriented

simplices of ∆ because aπ(0) ∨ aπ(1) ∨ · · · ∨ aπ(k) = 1̂ and ∆ is the order complex of

L − {0̂, 1̂}. But when τ is applied term-by-term to a cycle z of Q∗ then these improper
terms cancel, and τ(z) is a cycle of the chain complex of ∆, a cycle representing the
homology class j∗ ◦ b∗ ◦ ∂∗(z). We can arrange for τ to be defined on all chains of Q∗, not
just on cycles, by adopting the convention that when aπ(0) ∨ aπ(1) ∨ · · · ∨ aπ(k) = 1̂ then
[aπ(0), . . . , aπ(0) ∨ aπ(1) ∨ · · · ∨ aπ(k)] = 0.

A change of notation will simplify the formula above for τ . To each i and each π as
in that formula, associate the permutation σ of {0, 1, . . . , k} defined by

σ(0) = i,

σ(j) = π(j − 1) for 1 ≤ j ≤ i, and

σ(j) = π(j) for j > i.
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As i ranges from 0 to k and π ranges over all permutations of {0, 1, . . . , ı̂, . . . , k} (as
in the formula for τ), σ ranges over all permutations of {0, 1, . . . , k}. Furthermore,
(−1)isign(π) = sign(σ). Therefore, the formula for τ [a0, a1, . . . , ak] can be rewritten as
follows.

Theorem 19 The complex Q∗ of Definition 17 has homology groups isomorphic, with a
shift of dimension, to the reduced homology of ∆. An isomorphism τ : Hk(Q∗) → H̃k−1(∆)
is given at the chain level by the formula

[a0, a1, . . . , ak] 7→
∑

σ

sign(σ)[aσ(1), aσ(1) ∨ aσ(2), . . . , aσ(1) ∨ aσ(2) ∨ · · · ∨ aσ(k)]

where σ ranges over all permutations of {0, 1, . . . , k} and where we adopt the convention
that whenever [aσ(1), aσ(1) ∨ aσ(2), . . . , aσ(1) ∨ aσ(2) ∨ · · · ∨ aσ(k)] is not a (k − 1)-chain

of the order complex ∆ of L − {0̂, 1̂} (either because of repeated elements or because
aσ(1) ∨ aσ(2) ∨ · · · ∨ aσ(k) = 1̂) then this term is 0.

(The absence of aσ(0) from the formula is not a typographical error; it corresponds to the
absence of ai in the earlier formula for τ .)

Remark 20 Let us consider the special case where L is a geometric lattice and M is
obtained from a linear ordering of the atoms, so “coreless” reduces to NBC. Any set in
N is independent in the matroid associated to L, since it doesn’t even contain a broken
circuit, much less a full circuit. Therefore any set in N+ is a basis for the matroid.
By a fundamental result of matroid theory, all such bases have the same cardinality r,
the rank of the matroid and of the lattice L. Therefore, in the complex Q∗, only one
group is non-zero, namely Qr−1, freely generated by the NBC bases. The boundary
operator of Q∗ therefore vanishes, and the homology of Q∗ is isomorphic to Q∗ itself.
By Theorem 19, H̃∗(∆) is the same except for a shift in dimension: H̃r−2(∆) is a free
abelian group of rank equal to the number of NBC bases of L, and H̃k(∆) = 0 for all
k 6= r − 2. Furthermore, the explicit formula for τ in Theorem 19 becomes, thanks to the
vanishing of the boundary operator of Q∗, an explicit formula for converting any NBC base
(with orientation) [a0, a1, . . . , ak] into an explicit cycle of ∆ representing the corresponding
homology class. In this way, Theorem 19 includes Björner’s explicit representation [1] of
the reduced homology of geometric lattices in terms of NBC bases.

Remark 21 In [2], a partial order � of the atoms of a lattice L was called perfect if, for
each x ∈ L, either all NBB sets with join x have an even number of elements or they all
have an odd number of elements. In other words, there is no cancellation in the formula
for µ(0̂, x). Such orderings produce the fewest possible NBB sets with any specified join x
and thus, in some sense, make the calculation of the Möbius function as simple as possible.

It was mentioned in [2] that some finite lattices admit no perfect partial orderings
of their atoms; so for these lattices, some cancellation is unavoidable. Since the notion
of coreless sets generalizes the notion of NBB sets, it is reasonable to ask whether the
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generalization makes it possible to attain perfection for all lattices. That is, does every
finite lattice L admit a function M , as in Convention 2, such that the sum in Theorem 9
never involves cancellation — for each x ∈ L the cardinalities of all its coreless bases have
the same parity?

Unfortunately, the answer is negative. The reason is that, as mentioned in the intro-
duction, the homology of any finite simplicial complex C, which may well involve torsion,
is isomorphic to the homology of some finite lattice. Indeed, if we take the poset of faces
of C (including the empty face 0̂) and adjoin a top element 1̂, then we get a lattice whose
order complex ∆ is (as an abstract simplicial complex) the barycentric subdivision of C
and therefore has the same homology (up to isomorphism). If that homology involves
torsion, then the complex Q∗ of Definition 17 must have, in some dimensions, higher rank
than its homology; producing torsion in the quotient groups requires some cancellation.

For a specific example, consider the (real) projective plane, whose reduced homology
is Z/2 in dimension 1 and zero in all other dimensions. It has a triangulation consisting
of 6 vertices, 15 edges (joining all pairs of vertices), and 10 triangles, namely the result of
identifying antipodes in a regular icosahedron. By the preceding paragraph, the lattice
consisting of these simplices, ordered by inclusion, plus 0̂ and 1̂, has µ(0̂, 1̂) = 0 (as can
be verified by direct computation). But, no matter how cleverly one defines M , there will
be some coreless bases, as H2(Q∗) ∼= Z/2. So there will be cancellation in Theorem 9.

Remark 22 Although µ(0̂, 1̂) doesn’t make sense for infinite lattices, our results about
homotopy types and homology groups not only make sense but remain true with the same
proofs when the lattices are infinite. (Simplices remain finite.)

Furthermore, we don’t really need lattices; bounded join-semilattices suffice. This is
because an inspection of our arguments reveals that the only meet we ever used was the
meet 1̂ of the empty family. In the finite case, this observation would be pointless, since
any finite, bounded join-semilattice is automatically a lattice, but in the infinite case it
increases the generality of the results.
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