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Abstract

The central concept in Szemerédi’s powerful regularity lemma is the so-called
ε-regular pair. A useful statement of Alon et al. essentially equates the notion of an
ε-regular pair with degree uniformity of vertices and pairs of vertices. The known
proof of this characterization uses a clever matrix argument.

This paper gives a simple proof of the characterization without appealing to the
matrix argument of Alon et al. We show the ε-regular characterization follows from
an application of Szemerédi’s regularity lemma itself.

1 Introduction

The well-known Szemerédi Regularity Lemma [7] (cf. [4] or [5]) may be the single most
powerful tool in extremal graph theory. Roughly speaking, this lemma asserts that every
large enough graph may be decomposed into constantly many “random-like” induced
bipartite subgraphs (i.e. “ ε-regular pairs”). A property of the ε-regular pairs obtained
from Szemerédi’s lemma is studied in this note.

Suppose G = (U ∪ V, E) is a bipartite graph. For nonempty subsets U ′ ⊆ U and
V ′ ⊆ V , let G[U ′, V ′] = {{u, v} ∈ E : u ∈ U ′, v ∈ V ′} be the subgraph of G induced on U ′

and V ′. Set d(U ′, V ′) = |G[U ′, V ′]||U ′|−1|V ′|−1 to be the density of U ′ and V ′. For ε > 0,
we say G = (U ∪V, E) is ε-regular if for all U ′ ⊆ U , |U ′| > ε|U |, and V ′ ⊆ V , |V ′| > ε|V |,
we have1 d(U ′, V ′) = d(U, V ) ± ε.

1For simplicity of calculations in this paper, s = (a ± b)t is short for (a − b)t ≤ s ≤ (a + b)t.
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1.1 Equivalent conditions for ε-regularity

We consider the following two conditions for a bipartite graph G = (U ∪ V, E) with
fixed density d (where, whenever needed, we assume |U | and |V | are sufficiently large).
For 0 < ε, δ ≤ 1, consider

G1 = G1(ε) G is ε-regular.

G2 = G2(δ) (i) degG(u) = (d ± δ)|V | for all but δ|U | vertices u ∈ U,

(ii) degG(u, u′) = (d ± δ)2|V | for all but δ|U |2 distinct pairs u, u′ ∈ U.

1.1.1 G1 ⇐⇒ G2

The following fact, called the intersection property, is part of the folklore and is easily
proved from the definition of ε-regularity (cf. [5]).

Fact 1.1 (Intersection Property, G1 =⇒ G2) For all 0 < ε < d/2, G1(ε) =⇒ G2(4ε).
In this sense, G1 =⇒ G2.

The following non-trivial theorem was proved by Alon, Duke, Lefmann, Rödl and
Yuster in [1] and by Duke, Lefmann and Rödl in [2].

Theorem 1.2 (G2 =⇒ G1) For all δ > 0, G2(δ) =⇒ G1(16δ1/5). In this sense, G2 =⇒
G1.

We mention that the proof of Theorem 1.2 in [1] (cf. [2]) is elegant and far from obvious.
We return to this point momentarily.

Fact 1.1 and Theorem 1.2 give an equivalence between the conditions G1 and G2.

Corollary 1.3 (G1 ⇐⇒ G2) For every δ > 0 there exists ε > 0 (viz. ε = δ/4) so
that G1(ε) =⇒ G2(δ) and for every ε > 0 there exists δ > 0 (viz. δ = ε5/16) so that
G2(δ) =⇒ G1(ε). In this sense, G1 ⇐⇒ G2.

We make the following remark.

Remark 1.4 (Corollary 1.3 =⇒ Algorithmic SRL) The original proof of Szemerédi’s
Regularity Lemma was non-constructive. Alon, Duke, Lefmann, Rödl and Yuster [1] (cf.
[2]) subsequently established an algorithmic version of the regularity lemma which effi-
ciently constructs the “regular environment” Szemerédi’s lemma provides. The central
tool in the proof of the algorithmic version of Szemerédi’s lemma is Corollary 1.3.
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1.1.2 The matrix proof of Theorem 1.2

We briefly describe the matrix construction which verifies Theorem 1.2. Let G =
(U ∪ V, E) satisfy G2 = G2(δ) where we set ε = 16δ1/5. To show G is ε-regular, set
ρ = d−1(1− d) and construct {−1, ρ}-matrix M = (muv)u∈U,v∈V by setting muv = ρ ⇐⇒
{u, v} ∈ G. Let ru denote the row vector associated with u ∈ U .

Now, let U ′ ⊆ U , |U ′| > ε|U |, V ′ ⊆ V , |V ′| > ε|V |, be given. One may establish (cf.
[2]) (

d(U ′, V ′)
d

− 1

)2

≤ |U ′|−2|V ′|−1


∑

u∈U ′
ru · ru + 2

∑
{u,u′}∈[U ′]2

ru · ru′


 .

where “ · ” denotes scalar product for vectors. The inequality |d(U ′, V ′) − d| < ε then
follows from manipulating the expression above using the hypothesis G2(δ).

1.2 Content of this Note

We work with the following simplified condition2

G′
2 = G′

2(δ) deg(u, u′) = (d ± δ)2|V | for all but δ|U |2 pairs u, u′ ∈ U.

Our goal is to prove the following theorem.

Theorem 1.5 (G′
2 =⇒ G1) For all ε > 0, there exists δ so that G′

2(δ) =⇒ G1(ε).

We note that our result, Theorem 1.5, is a bit weaker than Theorem 1.2 in the sense that
our constant δ = δ(ε) is considerably smaller than ε5/16.

In our proof of Theorem 1.5, we do not appeal to the matrix argument of Section 1.1.2.
We show G′

2 =⇒ G1 follows directly from an application of the Szemerédi Regularity
Lemma itself.

2 Proof of Theorem 1.5

In this section, we prove Theorem 1.5. In our proof, G = (U ∪ V, E) always represents a
bipartite graph of density d with m = |U | ≤ |V | = n. We state, up front, that we always
assume m is a sufficiently large integer.

Our proof of Theorem 1.5 uses a well-known invariant formulation of Szemerédi’s
Regularity Lemma. We now present that formulation.

2As noted by Kohayakawa, Rödl and Skokan [3], statement (i) of condition G2 is not actually needed.
Indeed, as shown in Claim 5.3 of [3], statement (i) of condition G2(δ′) follows from statement (ii) of
condition G2(δ), for a suitable δ, using a Cauchy-Schwarz argument.
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2.1 An Invariant of Szemerédi’s Regularity Lemma

Let G = (U ∪ V, E) be a bipartite graph. For an integer t, we define a t-equitable
partition V (G) as a pair of partitions U = U1 ∪ . . . ∪ Ut, V = V1 ∪ . . . ∪ Vt, where

⌊
m

t

⌋
=

⌊ |U |
t

⌋
≤ |U1| ≤ . . . ≤ |Ut| ≤

⌈ |U |
t

⌉
=
⌈
m

t

⌉

and ⌊
n

t

⌋
=

⌊ |V |
t

⌋
≤ |V1| ≤ . . . ≤ |Vt| ≤

⌈ |V |
t

⌉
=
⌈
n

t

⌉
.

In all that follows, o(1) → 0 as m → ∞. Thus, in the remainder of this paper, we
may say that for each 1 ≤ i ≤ t,

|Ui| =
m

t
(1 ± o(1)), |Vi| =

n

t
(1 ± o(1)). (1)

For convience of notation, we write Gij = G[Ui, Vj] and dij = dG(Ui, Vj), 1 ≤ i, j ≤ t.
For ε0 > 0, we say a t-equitable partition U = U1 ∪ . . . ∪ Ut, V = V1 ∪ . . . ∪ Vt, is

ε0-regular if all but ε0t
2 biparite graphs Gij , 1 ≤ i, j ≤ t, are ε0-regular.

Theorem 2.1 (Regularity Lemma) For every ε0 > 0 and positive integer t0, there
exists N0 and T0 so that every bipartite graph G = (U∪V, E) with n = |V | ≥ m = |U | ≥ N0

admits a t-equitable, ε0-regular partition U = U1∪. . .∪Ut, V = V1∪. . .∪Vt, for t0 ≤ t ≤ T0.

Note that the proof of Theorem 2.1 takes an existing parition and refines it. As a result,
clusters Ui are subsets of U and clusters Vj are subsets of V .

2.2 ε0-regular partitions and G′
2(δ)

The following statement, expressed in Proposition 2.2, will imply Theorem 1.5 almost
immediately.

Proposition 2.2 Let d, ε0 > 0 be given along with an integer t. Let 0 < δ < ε0/t
2 be

given. Let G = (U ∪ V, E) be a bipartite graph of density d satisfying G′
2(δ) and let

U = U1 ∪ . . . ∪ Ut, V = V1 ∪ . . . ∪ Vt, be an ε0-regular, t-equitable partition of V (G).

Then, at most 5ε
1/3
0 t2 pairs Ui, Vj, 1 ≤ i, j ≤ t, fail to both be ε0-regular and satisfy

dij = d ± 5ε
1/3
0 .

Note that Proposition 2.2 essentially says that with appropriate constants3, property
G′

2(δ) forces the density d to be preserved throughout almost all bipartite graphs Gij ,
1 ≤ i, j ≤ t, of the partition. As almost all bipartite graphs Gij , 1 ≤ i, j ≤ t, are also
ε0-regular, ε0 � ε, the preserved densities quickly imply the ε-regularity of G.

3Here, one may think of the hierarchy “ d � ε0 � 1/t � δ”.
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2.3 Proof of Theorem 1.5

Before proceeding to the proof of Theorem 1.5, we begin by describing the constants
involved, the setup we use and a few preparations we make. We begin with the constants.

2.3.1 The Constants

Let d, ε > 0 be given. To define the promised constant δ > 0, set auxiliary constants

ε0 = (d3ε15)/203 (2)

and t0 = 1. Let T0 = T0(ε0, 1) be the constant guaranteed by Theorem 2.1. Define
δ = ε0/2T 2

0 .

2.3.2 The Setup

Let G = (U ∪ V, E) be a bipartite graph of density d satisfying G′
2(δ) where the

integers |V | = n ≥ m = |U | are sufficiently large.
We show G is ε-regular. To that end, let U ′ ⊆ U , V ′ ⊆ V , |U ′| > εm, |V ′| > εn, be

given. We show dG(U ′, V ′) = d ± ε.

2.3.3 Preparations

We begin by applying Theorem 2.1 to G. With auxiliary constants ε0 = (d3ε15/203)
and t0 = 1, Theorem 2.1 guarantees constants T0 = T0(ε0, 1) and N0 = N0(ε0, 1). With
n = |V | ≥ |U | = m ≥ N0, we may apply Theorem 2.1 to G to obtain an ε0-regular,
t-equitable partition U = U1 ∪ . . . ∪ Ut, V = V1 ∪ . . . ∪ Vt, where 1 = t0 ≤ t ≤ T0. Note,
importantly, that T0 = T0(ε0, 1) is precisely the same constant we saw above when we set
δ = ε0/(2T 2

0 ). In this way, we are ensured δ < ε0/t
2.

We now wish to apply Proposition 2.2 to G and its ε0-regular, t-equitable partition
U = U1 ∪ . . .∪Ut, V = V1 ∪ . . .∪Vt, obtained above. Note that we may apply Proposition
2.2 (since δ < ε0/t

2). Applying Proposition 2.2, we are guaranteed that all but 5ε
1/3
0 t2

pairs Ui, Vj, 1 ≤ i, j ≤ t, are ε0-regular and satisfy dij = d ± 5ε
1/3
0 .

Now, define graph G0 to have vertex set [t] × [t] where

G0 =
{
(i, j) ∈ [t] × [t] : Gij is ε0-regular with density dij = d ± 5ε

1/3
0

}
.

Set GC
0 = ([t] × [t]) \ G0.

In the notation GC
0 above, Proposition 2.2 precisely says

∣∣∣GC
0

∣∣∣ ≤ 5ε
1/3
0 t2. (3)
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For 1 ≤ i ≤ t, set U ′
i = U ′ ∩ Ui and V ′

i = V ′ ∩ Vi. For 1 ≤ i, j ≤ t, define the graph B
to have vertex set [t] × [t] where

B = {(i, j) ∈ [t] × [t] : |U ′
i | > ε0|Ui| and |V ′

i | > ε0|Vi|} . (4)

Set BC = [t] × [t] \ B.

2.3.4 Proof of Theorem 1.5

Recall we are given U ′ ⊆ U , V ′ ⊆ V , |U ′| > εm, |V ′| > εn, and we want to show
dG(U ′, V ′) = d ± ε, or equivalently,

|G[U ′, V ′]| ≥ (d − ε)|U ′||V ′|, and (5)

|G[U ′, V ′]| ≤ (d + ε)|U ′||V ′|. As both statements have virtually the same proof with
identical calculations, we only show (5).

Observe

|G[U ′, V ′]| =
∑

1≤i,j≤t

∣∣∣G[U ′
i , V

′
j ]
∣∣∣ = ∑

(i,j)∈G0∩B

∣∣∣G[U ′
i , V

′
j ]
∣∣∣+ ∑

(i,j)6∈G0∩B

∣∣∣G[U ′
i , V

′
j ]
∣∣∣

≥ ∑
(i,j)∈G0∩B

∣∣∣G[U ′
i , V

′
j ]
∣∣∣ ≥ ∑

(i,j)∈G0∩B

(
d − 5ε

1/3
0

)
|U ′

i ||V ′
j |.

On account of ε0 = (d3ε15/203) (cf. (2)), we see

(
d − 5ε

1/3
0

)
= d


1 − 5ε

1/3
0

d


 ≥ d

(
1 − ε2

)
.

Thus, we conclude
|G[U ′, V ′]| ≥ d

(
1 − ε2

) ∑
(i,j)∈G0∩B

|U ′
i ||V ′

j |. (6)

Observe

∑
(i,j)∈G0∩B

|U ′
i ||V ′

j | ≥
∑

1≤i,j≤t

|U ′
i ||V ′

j | −
∑

(i,j)∈GC
0

|U ′
i ||V ′

j | −
∑

(i,j)∈BC

|U ′
i ||V ′

j |

= |U ′||V ′| − ∑
(i,j)∈GC

0

|U ′
i ||V ′

j | −
∑

(i,j)∈BC

|U ′
i ||V ′

j |.

Now, |GC
0 | < 5ε

1/3
0 t2 (cf. (3)). By (4), each term in the last sum above is at most

ε0|Ui||Vi| = ε0(1 + o(1))mn
t2

≤ 2ε0
mn
t2

(cf. (1)). We therefore see

∑
(i,j)∈G0∩B

|U ′
i ||V ′

j | ≥ |U ′||V ′| − 10ε
1/3
0 mn − 2ε0mn = |U ′||V ′|


1 − 10ε

1/3
0 mn + 2ε0mn

|U ′||V ′|


 .
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As |U ′| > εm and |V ′| > εn and ε0 = (d3ε15/203) from (2), we conclude∑
(i,j)∈G0∩B

|U ′
i ||V ′

j | ≥ |U ′||V ′|
(
1 − ε3 − ε13

)
≥ |U ′||V ′|

(
1 − ε2

)
. (7)

Combining (6) and (7), we see

|G[U ′, V ′]| ≥ d
(
1 − ε2

)2 |U ′||V ′| ≥ d
(
1 − 2ε2

)
|U ′||V ′| ≥ (d − ε)|U ′||V ′|.

This proves (5) and hence Theorem 1.5.

2.4 Proof of Proposition 2.2

Let 0 < d ≤ 1, ε0 > 0 and integer t be given. Let 0 < δ < ε0/t
2 be given. Let

G = (U∪V, E) be a bipartite graph of density d satisfying G′
2(δ) and let U = U1∪ . . .∪Ut,

V = V1 ∪ . . .∪Vt, be an ε0-regular, t-equitable partition of V (G). We show all but 5ε
1/3
0 t2

pairs Ui, Vj, 1 ≤ i, j ≤ t, span ε0-regular bipartite graphs Gij of density dij = d ± 5ε
1/3
0 .

By definition of ε0-regular, t-equitable partition, we have all but ε0t
2 pairs Ui, Vj,

1 ≤ i, j ≤ t, spanning ε0-regular bipartite graphs Gij . Thus, it suffices to show all but
4ε

1/3
0 t2 pairs Ui, Vj, 1 ≤ i, j ≤ t, span bipartite graphs Gij of density dij = d ± 5ε

1/3
0 .

The following two claims prove Proposition 2.2 almost immediately.

Claim 2.3 ∑
1≤i,j≤t

dij ≥ dt2(1 − o(1)).

Claim 2.4 ∑
1≤i,j≤t

d2
ij < d2t2 (1 + 18ε0) .

Indeed, we now prove Proposition 2.2 from Claims 2.3 and 2.4 using the following
well-known fact (cf. [3]).

Fact 2.5 (Approximate Cauchy-Schwarz) For every ζ > 0, 0 < γ ≤ ζ3/3 and non-
negative reals a1, . . . , ar satisfying

1.
∑r

j=1 aj ≥ (1 − γ)ra, and

2.
∑r

j=1 a2
j < (1 + γ)ra2,

we have
|{j : |a − aj | < ζa}| > (1 − ζ)r.

With γ = 18ε0, ζ = (54ε0)
1/3, r = t2 and {a1, . . . , ar} = {dij : 1 ≤ i, j ≤ t} we see

Claim 2.3 satisfies (1) of Fact 2.5 and Claim 2.4 satisfies (2) of Fact 2.5. By Fact 2.5, we

see at most ζt2 = (54ε0)
1/3t2 ≤ 4ε

1/3
0 t2 pairs 1 ≤ i, j ≤ t, satisfy dij = d(1 ± ζ) and so

dij = d± ζ and finally dij = d± 4ε
1/3
0 . The proof of Proposition 2.2 will then be complete

upon the proofs of Claims 2.3 and 2.4.
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2.4.1 Proof of Claim 2.3

Recall G has density d. Consequently,

dmn = |G| =
∑

1≤i,j≤t

∣∣∣Gij
∣∣∣ = ∑

1≤i,j≤t

dij |Ui||Vi| =
mn

t2
(1 + o(1))

∑
1≤i,j≤t

dij.

Claim 2.3 now follows.

2.4.2 Proof of Claim 2.4

We begin by giving some notation.
Notation and Preparation.

Set
Γ =

{
{u, u′} ∈ [U ]2 : degG(u, u′) = (d ± δ)2n

}
, ΓC = [U ]2 \ Γ. (8)

For 1 ≤ i ≤ t, set
Γi = Γ ∩ [Ui]

2, ΓC
i = [Ui]

2 \ Γ = ΓC ∩ [Ui]
2. (9)

Note that since G satisfies G′
2(δ), we may conclude

|ΓC | < δm2, |ΓC
i | ≤ |ΓC | < δm2 (10)

where the last inequality is purely greedy.
Set Iε0 to be the bipartite graph with bipartition [t] × [t] where

(i, j) ∈ Iε0 ⇐⇒ Gij is ε0-irregular.

Set S to be the bipartite graph with bipartition [t] × [t] where

(i, j) ∈ S ⇐⇒ (i, j) 6∈ Iε0 and dij <
√

ε0.

Let
D = [t] × [t] \ (Iε0 ∪ S) . (11)

As |Iε0| < ε0t
2 and since Ui and Vj, (i, j) ∈ S, span few edges, we have the following fact.

Fact 2.6 ∑
(i,j)∈D

d2
ij ≥

∑
1≤i,j≤t

d2
ij − 2ε0t

2.

For (i, j) ∈ D, set

Γij =
{
{u, u′} ∈ [Ui]

2 : degGij (u, u′) = (dij ± ε0)
2 |Vi|

}
. (12)
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For (i, j) ∈ D, Gij is ε0-regular with density dij >
√

ε0 > 2ε0. Thus, from Fact 1.1, we
see ∣∣∣[Ui]

2 \ Γij

∣∣∣ < 4ε0 |Ui|2 . (13)

This concludes our notation and preparations. We now proceed to the proof of Claim
2.4.
Proof of Claim 2.4.

We double-count the quantity
∑

1≤i,j≤t

∑
{u,u′}∈[Ui]2 degGij (u, u′). In particular, we show

the following two facts.

Fact 2.7 ∑
1≤i,j≤t

∑
{u,u′}∈[Ui]2

degGij (u, u′) ≤ nm2

2t

(
d2 + 5δt2

)

Fact 2.8

∑
1≤i,j≤t

∑
{u,u′}∈[Ui]2

degGij (u, u′) ≥ (1 − 9ε0)
nm2

2t3




 ∑

1≤i,j≤t

d2
ij


− 4ε0t

2


 .

We see Claim 2.4 follows quickly from Facts 2.7 and 2.8. Indeed, comparing the two
facts, we get

nm2

2t

(
d2 + 5δt2

)
≥ (1 − 9ε0)

nm2

2t3




 ∑

1≤i,j≤t

d2
ij


− 4ε0t

2




which implies
(∑

1≤i,j≤t d
2
ij

)
≤ d2t2 + 5δt4 + 13ε0t

2. On account of δ ≤ ε0/t
2, we further

conclude
(∑

1≤i,j≤t d
2
ij

)
≤ d2t2 + 18ε0t

2 which proves Claim 2.4. It therefore suffices to
prove the two facts above.
Proof of Fact 2.7.

Observe

∑
1≤i,j≤t

∑
{u,u′}∈[Ui]2

degGij(u, u′) =
∑

1≤i≤t

∑
{u,u′}∈[Ui]2

∑
1≤j≤t

degGij (u, u′) =
∑

1≤i≤t

∑
{u,u′}∈[Ui]2

degG(u, u′).

Recalling [Ui]
2 = Γi ∪ ΓC

i is a partition (cf. (9)), 1 ≤ i ≤ t, we see

∑
1≤i,j≤t

∑
{u,u′}∈[Ui]2

degGij (u, u′) =
∑

1≤i≤t

∑
{u,u′}∈Γi

degG(u, u′) +
∑

1≤i≤t

∑
{u,u′}∈ΓC

i

degG(u, u′).

Then, according to (8) and (9)

∑
1≤i,j≤t

∑
{u,u′}∈[Ui]2

degGij (u, u′) ≤ ∑
1≤i≤t

∑
{u,u′}∈Γi

(d + δ)2|V | + ∑
1≤i≤t

∑
{u,u′}∈ΓC

i

|V |

≤ n


(d + δ)2

∑
1≤i≤t

|Γi| +
∑

1≤i≤t

∣∣∣ΓC
i

∣∣∣

 ≤ n


(d + δ)2

∑
1≤i≤t

(|Ui|
2

)
+

∑
1≤i≤t

∣∣∣ΓC
i

∣∣∣

 .
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From (10), we conclude

∑
1≤i,j≤t

∑
{u,u′}∈[Ui]2

degGij (u, u′) ≤ n

[
(d + δ)2t

(
1

2
+ o(1)

)(
m

t

)2

+ δtm2

]
.

Fact 2.7 now follows.
Proof of Fact 2.8.

Since D ⊆ [t] × [t] (cf. (11)) and Γij ⊆ [Ui]
2 (cf. (12)), we see∑

1≤i,j≤t

∑
{u,u′}∈[Ui]2

degGij (u, u′) ≥ ∑
(i,j)∈D

∑
{u,u′}∈Γij

degGij (u, u′)

≥ ∑
(i,j)∈D

∑
{u,u′}∈Γij

(dij − ε0)
2 |Vj| = (1 − o(1))

n

t

∑
(i,j)∈D

∑
{u,u′}∈Γij

(dij − ε0)
2

≥ n

t

∑
(i,j)∈D

(
d2

ij − 2ε0

)
|Γij| .

From (13), we thus see

∑
1≤i,j≤t

∑
{u,u′}∈[Ui]2

degGij (u, u′) ≥ n

t

∑
(i,j)∈D

(
d2

ij − 2ε0

) [(|Ui|
2

)
− 4ε0|Ui|2

]

= (1 − 9ε0)
nm2

2t3
∑

(i,j)∈D

(
d2

ij − 2ε0

)
= (1 − 9ε0)

nm2

2t3


 ∑

(i,j)∈D

d2
ij −

∑
(i,j)∈D

2ε0


 .

However, from Fact 2.6 and the fact that |D| ≤ t2, we see Fact 2.7 follows.

References

[1] N. Alon, R. Duke, H. Lefmann, V. Rödl and R. Yuster, The algorithmic aspects of
the Regularity Lemma (II), J. Algorithms 16 (1994), no. 1, pp 80-109.
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[3] Y. Kohayakawa, V. Rödl and J. Skokan, Quasi-randomness, hypergraphs and condi-
tions for regularity, J. Combin. Theory, Ser. A 97 (2002), no 2, pp 307-352.

[4] J. Komlós, A. Shoukoufandeh, M. Simonovits, E. Szemerédi, The regularity lemma
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