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Abstract

An arc-representation of a graph is a function mapping each vertex in the graph
to an arc on the unit circle in such a way that adjacent vertices are mapped to
intersecting arcs. The width of such a representation is the maximum number of
arcs passing through a single point. The arc-width of a graph is defined to be the
minimum width over all of its arc-representations. We extend the work of Barát
and Hajnal on this subject and develop a generalization we call restricted arc-
width. Our main results revolve around using this to bound arc-width from below
and to examine the effect of several graph operations on arc-width. In particular,
we completely describe the effect of disjoint unions and wedge sums while providing
tight bounds on the effect of cones.

1 Introduction

The notion of a graph’s path-width first arose in connection with the Graph Minors
project, where Robertson and Seymour [3] introduced it as their first minor-monotone
parameter. Since then, applications have arisen in the study of chromatic numbers, circuit
layout and natural language processing. More recently, Barát and Hajnal [2] proposed a
variant on path-width that leads to the analagous concept of arc-width. Although it has
not been as widely studied as path-width, arc-width has similar applications and is an
interesting and challenging problem in its own right.

Informally, we define an arc-representation of a graph to be a function mapping each
vertex in the graph to an arc on the unit circle in such a way that adjacent vertices
are mapped to intersecting arcs. The width of such a representation is the maximum
number of arcs passing through a point. The arc-width of a graph is then defined to
be the minimum width over all of its arc-representations. We illustrate an optimal arc-
representation of C4, the cycle on 4 vertices, in Figure 1.

Unfortunately, it is very difficult to consider arc-width in isolation. Without other
information, even disjoint unions can be incomprehensible in the sense that the arc-width
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Figure 1: An optimal arc-representation of a cycle on 4 vertices. (The dashed lines
represent S1 and the solid lines represent arcs.)

of the disjoint union of G and H cannot be computed given only the arc-width of G and
the arc-width of H . When one looks at more complicated operations, the computations
become even more difficult.

To deal with this, we define the restricted arc-width of a graph as we define standard
arc-width, except that we restrict our attention to arc-representations for which the min-
imal number of arcs passing through a point is bounded above by some constant. This
parameter is a direct generalization of both arc-width and path-width, and it encapsulates
information on both.

Using the notion of restricted arc-width, we are able to precisely describe the effect
of disjoint unions, wedge sums, and cones on restricted arc-width, and hence on both
path-width and arc-width. We also develop a number of results useful for obtaining lower
bounds on restricted arc-width, and then show that computing arc-width is NP-complete.
Finally, we present a number of directions in which our work could be extended.

2 Preliminaries

Throughout this paper, we will assume that all graphs are finite and simple.
In this section, we review several important definitions and formalize some of the ideas

mentioned in the introduction. We begin by defining path-width.

Definition 2.1. An interval-representation φ of a graph G is a map taking each vertex
of G to an interval on the real line R in such a way that adjacent vertices are mapped
to intersecting intervals. For x ∈ R, we define its width, wφ(x), to be the number of
intervals containing x. The maximum width of φ, W (φ), is then given by maxx∈R wφ(x).
Finally, we define the path-width of G, pw∗(G), to be the smallest value of W (φ) over all
interval-representations φ of G.

Arc-width is defined similarly.

Definition 2.2. An arc-representation φ of a graph G is a map taking each vertex of G to
an arc on the unit circle S1 in such a way that adjacent vertices are mapped to intersecting

the electronic journal of combinatorics 10 (2003), #R41 2



Figure 2: An optimal arc-representation and path-representation of the cycle on 3 vertices.
Note that the path-width is larger than the arc-width.

arcs. For x ∈ S1, we define its width, wφ(x), to be the number of arcs containing x. The
maximum width of φ, W (φ), is then given by maxx∈S1 wφ(x). Finally, we define the arc-
width of G, aw(G), to be the smallest value of W (φ) over all arc-representations φ of
G.

We will show that path-width is no smaller than arc-width, but in general, the two
quantities need not be equal (see Figure 2).

Following the lead of Barát and Hajnal [2], we will assume that all arcs are closed, and
that they are all proper subsets of S1. For an arc I, let l(I) denote the counter-clockwise
endpoint of I, and let r(I) denote its other endpoint. Also, if φ is an arc-representation,
we will use A(φ) to denote the collection of arcs, {φ(v)|v ∈ V (G)}.

Finally, we define restricted arc-width. Informally, we want this to differ from the
standard definition of arc-width only in that we restrict ourselves to representations with
a certain minimum width. We formalize this as follows.

Definition 2.3. Let φ be an arc-representation of a graph G. We define the minimum
width of φ, w(φ), to be minx∈S1 wφ(x). We then let awi(G) denote the smallest possible
value of W (φ) over all arc-representations φ of G satisfying w(φ) ≤ i.

3 Properties of the Restricted Arc-Width

In this section, we develop some of the most important properties of restricted arc-width.
In particular, we show how restricted arc-width is related to path-width and to arc-width,
and then we show how awi(G) is related to awj(G) for a fixed graph G.

We begin by showing how restricted arc-width encapsulates information on both arc-
width and path-width.

Proposition 3.1. For any graph G,

aw∞(G) = aw(G) and

aw0(G) = pw∗(G).
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Proof. It follows immediately from the definition of awi that aw∞(G) = aw(G).
To prove the other equality, take an arc-representation φ of G with w(φ) = 0 and

W (φ) = aw0(G). Let x be a point in S1 such that wφ(x) = 0. Then, we can com-
pose φ with a projection from x onto the tangent line opposite x to obtain an interval-
representation φ′ of G. It is then easy to check that W (φ′) = W (φ) = aw0(G), so that
pw∗(G) ≤ aw0(G).

Similarly, given an interval-representation of G, we can compose it with the inverse
projection of S1 onto R to obtain an arc-representation of G. As above, this implies
aw0(G) ≤ pw∗(G). The result follows.

Our next goal is to investigate how awi(G) and awj(G) are related for a fixed graph
G. Before we answer this question, however, we must first establish a technical lemma.

Lemma 3.2. For every graph G and every non-negative integer i, there exists an arc-
representation φ of G with the following properties:

1. w(φ) ≤ i.

2. W (φ) = awi(G).

3. There exists an interval I with positive length that satisfies:

i. I intersects at most i arcs in A(φ).

ii. Every arc intersecting I contains I.

Proof. Let φ be an arc-representation of G with w(φ) ≤ i and W (φ) = awi(G). Let x be
a point in S1 with w(x) ≤ i. Suppose we remove x from S1 and replace it with an interval
I of positive length, extending arcs through I if and only if they contained x. This gives
a new arc-representation, and we can easily check that it has the desired properties.

We are now ready to describe the relationship between awi and awj .

Proposition 3.3. Suppose i > 0. Then,

awi(G) ≤ awi−1(G) ≤ awi(G) + 1.

Proof. It follows immediately from the definition of awi that awi(G) ≤ awi−1(G).
Now, let φ be an arc-representation of G with w(φ) ≤ i and W (φ) = awi(G). Suppose

w(φ) < i. Then, we have awi−1(G) ≤ W (φ) < awi(G) + 1.
On the other hand, suppose w(φ) = i. Let x be a point in S1 minimizing wφ(x). By

Lemma 3.2, we can assume without loss of generality that x is contained in an interval
I, of positive length, with the property that any arc intersecting I contains I. Since
w(φ) = i > 0, there exists some arc J passing through x.

Let φ′ be the arc-representation of G obtained from φ by replacing J with an arc J ′

containing everything but the interior of I. Since every arc in A(φ) that intersects I also
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contains I, we know φ′ is indeed a valid arc-representation of G. Moreover, w(φ′) = i−1,
and

W (φ′) ≤ W (φ) + 1

= awi(φ) + 1

It follows that awi−1(G) ≤ awi(G) + 1.

As a corollary to Proposition 3.3, we know that for a fixed graph G, the sequence
{awi(G)} is non-increasing and decreases by at most 1 at each step. It is possible that
not all such sequences arise in practice, so perhaps these relations could be extended.
What we have, however, is already enough to give us an important result due to Barát
and Hajnal [2].

Corollary 3.4. For any graph G,⌈
pw∗(G) + 1

2

⌉
≤ aw(G) ≤ pw∗(G).

Proof. Let φ be an arc-representation of G with W (φ) = aw(G). Since all of the arcs in
A(φ) are closed, w(φ) < W (φ). Therefore, if aw(G) = n, we have awn−1(G) = aw(G).

Now, Proposition 3.3 implies

awn−1(G) ≤ aw0(G) ≤ awn−1(G) + n − 1,

and so,

aw(G) ≤ aw0(G) ≤ 2aw(G) − 1.

The result now follows from Proposition 3.1.

4 Lower Bounds on Arc-Width

In general, it is relatively easy to bound the arc-width of a graph from above, since one
only requires a single construction to do so. Establishing lower bounds is much more
difficult, so in this section, we provide a number of results that can help accomplish this
task.

First, recall that H is a minor of G if H can be obtained from a subgraph of G by
collapsing along zero or more edges. We say awi is minor-monotone if awi(H) ≤ awi(G)
whenever H is a minor of G. Extending a known result for path-width and arc-width, we
have the following.

Theorem 4.1. awi is minor-monotone for all i.
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Proof. If H is a subgraph of G, then awi(H) ≤ awi(G), since any arc-representation of
G induces an arc-representation of H by restriction. Therefore, it suffices to show that
collapsing along an edge of a graph does not increase its restricted arc-width.

Towards that end, let G be a graph containing adjacent vertices u and v, and let G′

be the graph obtained by collapsing along the edge between u and v. Denote the vertex
corresponding to u and v in G′ by w.

Now, let φ be an arc-representation of G. Let φ′ be the arc-representation of G′ defined
by setting φ′(x) = φ(x) for x 6= w and φ′(w) = φ(u)∪ φ(v). Clearly, this is indeed a valid
arc-representation of G′, and for all y ∈ S1, we know wφ′(y) ≤ wφ(y). It follows that
awi(G

′) ≤ awi(G), as required.

Although working with minors can be very useful, doing so requires knowing the arc-
width of a fairly large class of graphs that could arise as minors. Thus, we also give a
more direct result.

Theorem 4.2. Suppose every vertex in a graph G has degree at least n. Then,

awi(G) ≥ max
{⌈n

2

⌉
+ 1, n − i + 1

}
.

Proof. Within this proof, we will say I is contained in J to mean I ⊂ J and I 6= J .
Let φ be an arc-representation of G with w(φ) ≤ i and W (φ) = awi(G). Let x be a

point on the unit circle with wφ(x) ≤ i. Choose an arc I as follows:

(1) First eliminate from consideration all arcs passing through x. There are at least
n + 1 arcs in A(φ), so if all of them overlap x, then awi(G) > n, and we are done.
Therefore, we may assume there exists at least one arc in A(φ) that does not pass
through x, and hence, we have not eliminated every possible arc.

(2) Now, eliminate from consideration all arcs containing other arcs. Let J be any arc
not containing x. Then, either J does not contain any other arcs, or J contains
some other arc K that does not contain any other arcs. Since no arc contained in
J can overlap x, it follows that we still have not eliminated every possible arc.

(3) Finally, choose I among the remaining arcs in such a way as to minimize the clock-
wise angle from x to l(I).

For the rest of the proof, we will say that for points p and q in S1, p < q if the clockwise
angle from x to p is less than the clockwise angle from x to q.

The vertex corresponding to I in G has degree at least n, so I must intersect at least
n other arcs. Since I does not contain any other arc by condition (2) above, at least n
arcs intersect at least one of the two endpoints of I. Therefore, at least

⌈
n
2

⌉
arcs intersect

one endpoint of I, and hence, there exists y for which wφ(y) ≥ ⌈
n
2

⌉
+ 1. It follows that

awi(G) ≥ ⌈
n
2

⌉
+ 1.

Now, consider an arc J passing through l(I). Suppose J does not pass through either
x or r(I), so that J is entirely contained within the clockwise arc from x to r(I). Let J ′
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be an arc in J not containing any other arc. Then, J ′ is also entirely contained inside
the clockwise arc from x to r(I). Since r(J ′) < r(I) and J ′ cannot be contained within I
by (2) above, l(J ′) < l(I). Now, J ′ does not contain other arcs and does not intersect x,
but it does satisfy l(J ′) < l(I), which contradicts the choice of I. Thus, any arc passing
through l(I) and not r(I) also passes through x. Since wφ(x) ≤ i, at most i arcs pass
through l(I) and not r(I).

However, we know at least n arcs other than I pass through either l(I) or r(I), so it
then follows that at least n − i of these arcs pass through r(I). Thus, there exists x for
which wφ(x) ≥ n − i + 1. It follows that awi(G) ≥ n − i + 1.

It is worth mentioning that one can actually relax the conditions needed to bound
aw(G). We do not prove this since it is not directly relevant to our work, but we do give
a statement of the result.

Theorem 4.3. Suppose a graph G contains a vertex v with the property that for every
vertex u, the degree of u plus the distance between u and v is at least n. Then,

aw(G) ≥
⌈n

2

⌉
+ 1.

One other operation that we consider is the cone of a graph. Specifically, for a graph
G, we let G+ v denote the graph obtained from G by adding a vertex v and adding edges
between it and each vertex in G. The path-width of such a graph is relatively easy to
understand.

Proposition 4.4. For any graph G,

aw0(G + v) = aw0(G) + 1

Proof. We first prove a related statement:

awi(G + v) ≤ awi(G) + 1. (1)

Let φ be an arc-representation of G with w(φ) ≤ i and W (φ) = awi(G). By Lemma 3.2,
we can assume there exists an interval I of positive length such that wφ(x) ≤ i for all
x ∈ I, and such that any arc intersecting I contains I. Let φ′ be the arc-representation of
G+v obtained by setting φ′ = φ on G, and by mapping v to the arc containing everything
but the interior of I. Clearly, this is indeed a valid arc-representation of G+v. Moreover,
w(φ′) ≤ w(φ) and W (φ′) ≤ 1 + W (φ). Thus, (1) follows immediately.

It remains only to show that aw0(G) ≤ aw0(G + v) − 1. To do this, we let φ′ be an
arc-representation of G + v with w(φ′) = 0 and W (φ′) = aw0(G + v). Let I = φ′(v),
and choose x in S1 such that wφ′(x) is maximal. Suppose x /∈ I, and let J be any arc
containing x. Recall that I intersects every arc in A(φ′), so in particular, I must intersect
J . Thus, we can gradually move x along J until we reach I.

Let K be any arc (J or otherwise) containing x. Suppose moving x to I along J causes
x to be no longer contained in K. Then, since K intersects I somewhere, it must span
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the arc from x to I not spanned by J . In particular, this means that I, J , and K together
cover the entire unit circle, which contradicts the fact that w(φ′) = 0.

Thus, moving x to I along J keeps x inside all of the arcs originally containing it.
However, it also moves x inside I, which did not originally contain it. Thus, we have
found a point x′ for which wφ′(x′) > wφ′(x), contradicting our choice of x. Therefore, if
wφ′(x) is maximal, x ∈ I.

Now, φ′ is an arc-representation of G + v, so it induces an arc-representation φ of G
by restriction. Clearly, w(φ) = w(φ′) = 0, and since wφ′(x) is maximal only if x ∈ I, we
also have W (φ) ≤ W (φ′)−1. Therefore, aw0(G) ≤ aw0(G+ v)−1, and the desired result
follows.

Unfortunately, it is impossible to characterize the arc-width of the cone of a graph in a
similar fashion. For example, awi(P2) = awi(P3) for all i, but one can show aw(P2 + v) 6=
aw(P3 + v). Thus, one needs more information about a graph G than its restricted arc-
width to completely determine the arc-width of G + v. On the other hand, we can still
say a great deal.

Proposition 4.5. Let G be an arbitrary graph, and let G′ = (G+u)+v. Then, for i > 0,

awi(G) + 2 ≥ awi(G
′) ≥ awi−1(G) + 1.

Proof. It follows immediately from (1) in the proof of Proposition 4.4 that awi(G) + 2 ≥
awi(G

′), so we need only show awi(G
′) ≥ awi−1(G) + 1.

Let φ′ be an arc-representation of G′ with w(φ′) ≤ i and W (φ′) = awi(G
′). For

convenience, we let n = W (φ′). Also, let U and V denote φ′(u) and φ′(v). Finally, let φ
denote the arc-representation that φ′ induces on G by restriction.

Now, suppose U ⊂ V . Let U ′ be the arc with endpoints l(U) and r(V ) and let V ′ be
the arc with endpoints l(V ) and r(U). Note that every arc in A(φ′) must intersect U , so
every arc in A(φ′) must also intersect both U ′ and V ′. Thus, if we replace U with U ′ and
V with V ′, we still have a valid arc-representation of G′. Furthermore, this substitution
does not change the number of arcs passing through any given point on the circle, so it
also fixes both W (φ′) and w(φ′). Thus, we may assume U 6⊂ V , and similarly V 6⊂ U . By
switching U and V , we can further assume that l(U), l(V ), r(U), and r(V ) are arranged
clockwise around the circle in that order.

We now consider two cases, based on the value of W (φ).

Case 1: W (φ) < n.
Suppose the only points in S1 minimizing wφ are in U ∪ V . Then w(φ) < w(φ′) ≤ i, and
since W (φ) < n, we have awi−1(G) ≤ awi(G

′) − 1, as required.
Otherwise, there exists a 6∈ U ∪ V minimizing wφ. Let A1, A2, . . . , Aj be the arcs

containing a. If V ⊂ Ak for any k, then we replace Ak with V . This will still give
a valid arc-representation of G, since V intersects every arc in A(φ). Moreover, since
V ⊂ Ak, making this replacement will decrease w(φ) without increasing W (φ). Therefore,
awi−1(G) ≤ awi(G

′) − 1, as required.
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a

r(V )

r(U)

b

l(U)

l(V )

Figure 3: The relative positioning of points and arcs in Case 1.

We now consider the case where V 6⊂ Ak for any k. Suppose there is a point b in U−V ,
not contained in Ak for any k, with the property that wφ(b) = n−1 (see Figure 3). Then,
since a, l(U), b, l(V ), r(U), and r(V ) are arranged clockwise around the circle in that order,
any arc containing both b and r(V ), but not containing l(V ), must also contain a. Since
we know this cannot happen, and since every arc in A(φ) must intersect V somewhere,
it follows that all n − 1 arcs in A(φ) containing b also contain l(V ). However, we know
that U and V also contain l(V ), which means wφ′(l(V )) > n, contradicting the fact that
W (φ′) = n. It follows that any b in U − V satisfying wφ(b) = n− 1 is contained in Ak for
some k.

Since there are only a finite number of arcs containing a, and none of them contain V ,
it follows that one of them must contain all b ∈ U−V with the property that wφ(b) = n−1.
Call this arc Ak. Let c = φ−1(Ak), and let σ be the arc-representation of G obtained from
φ by setting σ(c) = U and σ(x) = φ(x) for x 6= c. Because U intersects every arc in A(φ),
σ is indeed a valid arc-representation of G. Furthermore, since Ak contains a, but U does
not, w(σ) ≤ wσ(a) < wφ(a) ≤ i.

Now, consider x ∈ S1. If x ∈ V , then since V /∈ A(σ) and V ∈ A(φ′), we have
wσ(x) < wφ′(x) ≤ n. Also, if x 6∈ U ∪ V , then wσ(x) ≤ wφ(x) < n. Suppose, on the other
hand, that x ∈ U − V . If wφ(x) < n − 1, then wσ(x) ≤ wφ(x) + 1 < n. If wφ(x) ≥ n − 1,
then x ∈ Ak, so wσ(x) ≤ wφ(x) < n. Therefore, we have wσ(x) < n for all x, and hence
W (σ) ≤ n − 1. It follows that awi−1(G) ≤ n − 1, as desired.

Case 2: W (φ) = n.
Choose a 6∈ U ∪ V so as to minimize wφ(a), and let d be the point not in U ∪ V closest
to r(V ) that maximizes wφ(d). By possibly reflecting the arc-representation about any
diameter of S1, we can ensure that d is closer to r(V ) than a is.

For x ∈ U ∪ V , note that wφ(x) < wφ′(x) ≤ n, so if wφ(x) = n, then x 6∈ U ∪ V . Since
W (φ) = n, it follows that wφ(d) = n. Label the arcs containing d by D1, D2, . . . , Dn.
These cannot all contain r(V ), because if they did, we would have wφ(r(V )) > n. Since
each Dk intersects V somewhere, it follows that there exists some Dk containing l(V ) but
not containing r(V ). Since d, a, l(U), l(V ), r(U), and r(V ) are arranged clockwise around
the circle in that order, it follows that Dk contains both a and U − V .
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Let e = φ−1(Dk), and let σ be the arc-representation of G obtained from φ by setting
σ(e) = U and σ(x) = φ(x) for x 6= e. Since U intersects every arc in A(φ), this is indeed
a valid arc-representation of G. Also, since V and Dk are both in A(φ′), but not in A(σ),
it follows that wσ(x) < wφ′(x) for all x ∈ U ∪V ⊂ Dk ∪V . Thus, if there exists x ∈ U ∪V
with wφ′(x) = i, then w(σ) < i. Otherwise, because w(φ′) ≤ i, we know wφ′(a) ≤ i. Since
a ∈ Dk but a /∈ U , it again follows that wσ(a) < wφ′(a) = i. Therefore, w(σ) < i in all
cases.

We now show W (σ) < n. Towards that end, consider x ∈ S1. As above, if x ∈ U ∪ V ,
then wσ(x) < wφ′(x) ≤ n. Suppose, on the other hand, that x 6∈ U ∪ V . If wφ(x) = n,
then x ∈ Dk, which implies wσ(x) < wφ(x), and if wφ(x) < n, then wσ(x) ≤ wφ(x) < n.
Thus, wσ(x) < n for all x. It follows that W (σ) ≤ n−1, and hence, awi−1(G) ≤ n−1.

Note that since awi((G+u)+v) ≤ awi(G+v)+1, Proposition 4.5 implies awi(G+v) ≥
awi−1(G). Summarizing all of these results, we obtain the following.

Theorem 4.6. For any graph G,

aw0(G + v) = aw0(G) + 1,

and for i > 0,

awi(G) + 1 ≥ awi(G + v) ≥ awi−1(G) and

awi(G) + 2 ≥ awi(G + u + v) ≥ awi−1(G) + 1.

We can also modify the proof of Proposition 4.5 to obtain a slightly different result.
The details are similar enough that we do not include a full proof, but we still give a
statement of the result. First, recall that the double cone of a graph G, denoted G + K2,
is the graph obtained from (G + u) + v by removing the edge between u and v.

Theorem 4.7. For any graph G, and any integer i,

awi(G) + 2 ≥ awi(G + K2) ≥ awi(G) + 1.

Finally, to demonstrate the power of the techniques that we have developed, we con-
clude the section by computing awi(Kn).

Corollary 4.8. Let Kn denote the complete graph on n vertices. Then,

awi(Kn) =




n − i if i ≤ ⌈
n
2

⌉ − 1,

⌊
n
2

⌋
+ 1 if i ≥ ⌈

n
2

⌉ − 1.

Proof. We prove this by induction on n. For n = 1, the claim is trivial. Now, suppose
the result holds for n = k − 1.

Then, since Kk = Kk−1 + v,

aw0(Kk) = aw0(Kk−1) + 1 (by Theorem 4.6)

= k.
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Figure 4: Optimal arc-representations of K5 (left) and of K4 (right). Note that we alter the
arc-representation of K2n slightly by shortening 2 adjacent arcs to decrease the minimum
width to n − 1.

Similarly, for 0 < i <
⌈

k
2

⌉ − 1,

awi(Kk) ≥ awi−1(Kk−1)

= k − i,

and

awi(Kk) ≤ 1 + awi(Kk−1)

= k − i,

so awi(Kk) = k − i.
By Theorem 4.2, we have for i ≥ ⌈

k
2

⌉ − 1,

awi(Kk) ≥
⌈

k − 1

2

⌉
+ 1 =

⌊
k

2

⌋
+ 1.

Finally, consider the arc-representation φ of Kk obtained by mapping each vertex to
arcs spaced equally around the circle, of length π·(k−1)

k
if k is odd, and of length π + ε for

small ε if k is even. It is easy to check that any two such arcs intersect, and hence that
this is indeed a valid arc-representation of Kk. Moreover, the maximum number of arcs
passing through any point is at most

⌊
k
2

⌋
+ 1. We can also arrange for there to exist x in

S1 for which wφ(x) ≤ ⌊
k
2

⌋ − 1 (see Figure 4). Thus, awi(Kk) ≤
⌊

k
2

⌋
+ 1 for i ≥ ⌈

k
2

⌉ − 1.
Therefore, the desired result holds for n = k, which completes the inductive proof.

5 Graph Operations

In the previous section, we provided a number of results that give lower bounds on arc-
width. These results can often be quite useful, as witnessed by the relatively easy com-
putation of awi(Kn), but they are not always sufficient. In this section, we extend our
methods by approaching arc-width in a different fashion. In particular, we focus on the
effect of various graph operations, beginning with the disjoint union, denoted q.
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Theorem 5.1. Let G1, G2, ..., Gn be arbitrary graphs, ordered in such a way that

aw0(G1) ≥ aw0(G2) ≥ · · · ≥ aw0(Gn).

For n > 1, we have
awm(G1 q G2 q · · · q Gn) = awi(G1),

where i is the largest integer satisfying:

1. i ≤ m,

2. awi(G1) ≥ aw0(G2) + i.

Before we prove this theorem, we first need to establish a technical lemma.

Lemma 5.2. Let G1, G2, . . ., Gn be arbitrary graphs, ordered in such a way that aw0(G1) ≥
aw0(G2) ≥ · · · ≥ aw0(Gn), and let a1, a2, . . ., an be non-negative integers with

∑n
j=1 aj ≤

m. Then,

max
j∈{1,2,...,n}

(
awaj

(Gj) − aj

)
+

n∑
j=1

aj ≥ awi(G1),

where i is defined as in Theorem 5.1.

Proof of Lemma 5.2. Let

bj = awaj
(Gj) − aj ,

b = max
j∈{1,2,...,n}

bj , and

y = b +

n∑
j=1

aj .

We wish to show that y ≥ awi(G1) for any choice of {aj}. To do this, choose a1, a2, . . . , an

in such a way that y is minimized, and given the minimal value of y, choose {aj} such
that

∑n
j=1 aj is minimized.

Suppose aj > 0 for 2 distinct values of j, and suppose we then decrease both aj by 1.
Note that, by Proposition 3.3, decreasing aj by 1 increases bj by at most 2 and fixes bk

for k 6= j. Thus, decreasing aj by 1 for both j will increase b by at most 2, and hence y
will not increase. Thus, we have found a choice of {aj} that decreases

∑n
j=1 aj without

increasing y, giving a contradiction. Therefore, aj > 0 for at most one value of j.
Now, choose j so that aj > 0, and suppose bj < b. Then, if we decrease aj by 1,

we will increase bj by at most 2, and hence will increase b by at most 1. On the other
hand,

∑n
j=1 aj will decrease by 1, so y will not increase. Thus, we again have found a

choice of {aj} that decreases
∑n

j=1 aj without increasing y, giving another contradiction.
Therefore, if aj > 0, then bj = b.

Thirdly, suppose aj > 0 for j 6= 1. Then, since bj = b, we know bj ≥ b1, and hence,

awaj
(Gj) − aj ≥ awa1(G1) − a1.
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Since aj > 0, we also know a1 = 0. This implies

awaj
(Gj) − aj ≥ aw0(G1),

and so,

aw0(Gj) − aj ≥ aw0(G1).

However, this is impossible since aw0(Gj) ≤ aw0(G1) and aj > 0. It follows that a2 =
a3 = · · · = an = 0.

Furthermore, if a1 6= 0, we have

awa1(G1) − a1 ≥ awaj
(Gj) − aj for all j > 1

⇒ awa1(G1) − a1 ≥ aw0(Gj) for all j > 1 (since aj = 0 for j > 1)
⇒ awa1(G1) − a1 ≥ aw0(G2).

On the other hand, if a1 = 0, we also have awa1(G1)−a1 ≥ aw0(G2). Thus, awa1(G1)−a1 ≥
aw0(G2) regardless, and since we also know a1 ≤ m, it follows that a1 ≤ i. Therefore,
we have shown that there exists a choice of {aj} minimizing y with the property that
a2 = a3 = · · · = an = 0 and a1 ≤ i.

Finally, taking this minimal solution and increasing a1 as long as a1 ≤ m and awa1(G1)−
a1 ≥ aw0(G2), gives us a1 = i, and a2 = a3 = · · · = an = 0. Doing this will clearly not
increase y. Thus, y achieves its minimum value for a1 = i and a2 = a3 = · · · = an = 0.
Moreover, for this choice of {aj}, it is clear that y = awi(G1). The result follows.

We can now prove Theorem 5.1.

Proof of Theorem 5.1. Let G = G1 qG2 q · · · qGn and let φ be an arc-representation of
G with w(φ) ≤ i. For each j, note that φ induces by restriction an arc-representation φj

of Gj .
Now, for any x ∈ S1, we have,

wφ(x) = |φ−1(x)|
= |φ−1

1 (x)| + |φ−1
2 (x)| + · · ·+ |φ−1

n (x)|
= wφ1(x) + wφ2(x) + · · ·+ wφn(x)

≥ w(φ1) + w(φ2) + · · · + w(φn)

so it follows that
∑n

j=1 w(φj) ≤ m.

Also, for each j, there exists an x in S1 such that |φ−1
j (x)| = W (φj). Thus, there

exists an x such that

|φ−1(x)| ≥ W (φj) +
∑
k 6=j

w(φk).
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It follows that

W (φ) ≥ max
j∈{1,2,...,n}

(W (φj) +
∑
k 6=j

w(φk))

= max
j∈{1,2,...,n}

(W (φj) − w(φj)) +

n∑
j=1

w(φj)

≥ max
j∈{1,2,...,n}

(aww(φj)(Gj) − w(φj)) +
n∑

j=1

w(φj).

Thus, by Lemma 5.2, W (φ) ≥ awi(G1). Since φ was chosen arbitrarily, we conclude that
awm(G) ≥ awi(G1).

It remains only to show that awm(G) ≤ awi(G1). To do this, we construct an arc-
representation φ of G, as follows:

1. Let φ1 be an arc-representation of G1 with w(φ1) ≤ i and W (φ1) = awi(G1). Let x
be a point in S1 with wφ1(x) ≤ i. By Lemma 3.2, we can ensure that x is contained
inside an interval I of positive length which intersects only i arcs. Now, define φ to
be identical to φ1 on G1.

2. For j > 1, let φj be an arc-representation of Gj with w(φj) = 0 and W (φj) =
aw0(Gj). By rescaling and rotating each φj , we can assume Im(φj) is contained in
I for all j, and that Im(φj) ∩ Im(φk) = ∅ for j 6= k. Define φ to be identical to φj

on Gj .

Clearly, φ is indeed an arc-representation of G. Also note that for j > 1 and x ∈
Im(φj), we have wφ(x) ≤ i + aw0(Gj) ≤ awi(G1), and for x /∈ ⋃n

j=2 Im(φj), we have
wφ(x) ≤ W (φ1) = awi(G1). Thus, W (φ) ≤ awi(G1). Moreover, w(φ) = i. Therefore,
awm(G) ≤ awi(G1), and the result follows.

Corollary 5.3. For any graph G and any integers j, n with n ≥ 2,

awj(G q G q · · · q G︸ ︷︷ ︸
n

) = pw∗(G).

Proof. Note that for i > 0,

awi(G) − i ≤ aw0(G) − i < aw0(G).

It follows from Theorem 5.1 that awj(G q G q · · · q G) = aw0(G) = pw∗(G).

Corollary 5.3 demonstrates that, in a very precise sense, arc-width is a more difficult
problem than path-width. Specifically, if we could compute aw(G) for all G, then we
could also compute aw(G q G), and hence pw∗(G). It was shown in [1] that computing
path-width is NP-complete. Therefore, it follows that computing arc-width is NP-hard.
It is then easy to show the following.
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Corollary 5.4. Computing arc-width is NP-complete.

It is also worth mentioning that Corollary 5.3 implies aw(GqG) = pw∗(GqG), thereby
achieving the upper bound on arc-width given by Corollary 3.4. Barát and Hajnal [2] ask
for a complete description of the set S of graphs G with the property that aw(G) =
pw∗(G). They show that any tree is in S, and our argument from Corollary 5.3 can be
used to show that a very large family of disconnected graphs is in S. Furthermore, our
next theorem can be used to show that a very large family of 1-connected graphs is also in
S. All of this suggests that S is very large, and hence, that finding a complete description
of it would be a difficult task indeed.

We now move on to consider the wedge sum of a number of graphs. Recall that a graph
G is vertex-transitive if for any vertices u and v in G, there exists a graph automorphism
taking u to v.

Theorem 5.5. Let G1, G2, . . . , Gn be connected, vertex-transitive graphs, each with at
least 2 vertices. Order them in such a way that

aw0(G1) ≥ aw0(G2) ≥ · · · ≥ aw0(Gn).

Let G = G1∨G2∨· · ·∨Gn denote the graph obtained from G1qG2q· · ·qGn by identifying
one vertex vi in each Gi to a single point, v. Let

z =
∣∣∣{i | aw0(Gi − vi) = aw0(G1)}

∣∣∣.
Then, if z ≤ 2,

awm(G) = awm(G1 q (G2 − v2) q (G3 − v3) q · · · q (Gn − vn)),

and if z ≥ 3,

awm(G) = awm(G1 q (G2 − v2) q (G3 − v3) q · · · q (Gn − vn)) + 1.

Proof. We consider 2 cases, based on the value of z.

Case 1: z ≤ 2
Let k = aw0(G1). We first show that awm(G) ≤ k.

To do this, we construct an arc-representation φ of G. Since z ≤ 2, we can choose p
and q so that aw0(Gi − vi) < k for i 6= p, q. We then define φi as follows:

1. For i = p and for i = q, take φi to be an arc-representation of Gi with w(φi) = 0
and W (φi) = aw0(Gi) ≤ k.

2. For i 6= p, q, take φi to be an arc representation of Gi − vi with w(φi) = 0 and
W (φi) = aw0(Gi − vi) < k.

3. By rotating and rescaling φi appropriately, we can assume that arcs in A(φi) and
arcs in A(φj) are disjoint for i 6= j and that the arcs in A(φp) immediately follow
the arcs in A(φq) in a clockwise orientation.
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4. Since Gp and Gq are vertex-transitive, we can also assume that φp(vp) extends the
furthest in the clockwise direction of all arcs in A(φp), and that φq(vq) extends the
furthest in the counter-clockwise direction of all arcs in A(φq).

We can now define φ as follows:

1. For x ∈ Gi − vi, define φ(x) = φi(x).

2. For x = v, define φ(x) to be the arc with counter-clockwise endpoint l(φp(vp)) and
clockwise endpoint r(φq(vq)). Call this arc I.

I contains φp(vp), φq(vq), and all the arcs in φi for i 6= p, q, so φ does indeed give a
valid arc-representation of G. Moreover, w(φ) = 0 and

W (φ) ≤ max
{

aw0(Gp), aw0(Gq), aw0(Gi − vi) + 1 for i 6= p, q
}
.

Since we chose p and q such that aw0(Gi − vi) < k for i 6= p, q, it follows that W (φ) ≤ k.
Therefore, we conclude that awm(G) ≤ k, as desired.

Letting G′ = G1q (G2−v2)q (G3−v3)q· · ·q (Gn−vn), we now show that awm(G) ≤
awm(G′). Towards that end, consider an arc-representation φ of G′ that minimizes W (φ).
Then, φ induces an arc-representation φ1 of G1 by restriction.

1. Suppose w(φ1) > 0. By the proof of Theorem 5.1, we can assume φ1 has some
interval I contained in some arc J such that

i. wφ1(x) = w(φ1) for all x ∈ I; and

ii. φ maps all the vertices in (G2−v2)q (G3−v3)q· · · (Gn−vn) to arcs contained
in I, and hence, contained in J .

Since G1 is vertex-transitive, we can assume φ−1(J) = v. Then, φ is already a valid
arc-representation of G. Thus, we have awm(G) ≤ awm(G′), as required.

2. Suppose w(φ1) = 0. Then W (φ) ≥ W (φ1) = k. The desired result then follows
from the fact that awm(G) ≤ k.

Thus, in all cases, we have awm(G) ≤ awm(G′). On the other hand, we can obtain G
from G′ by inserting extra edges. Since adding edges to a graph clearly does not decrease
arc-width, awm(G) ≥ awm(G′). It follows that

awm(G) = awm(G′),

as desired.

Case 2: z ≥ 3
Again, let k = aw0(G1). Since z ≥ 3, we can choose distinct p, q and r such that
aw0(Gp − vp) = aw0(Gq − vq) = aw0(Gr − vr) = k. By Theorem 5.1, we also have
awm(G′) = k. It follows that awm(G) ≥ k.
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Now, consider an arc-representation φ of G, and suppose W (φ) = k. This induces arc-
representations φi of Gi − vi for all i. Suppose w(φp), w(φq), and w(φr) are all non-zero.
Following the proof of Theorem 5.1, we can decrease W (φ) by simultaneously decreasing
w(φp), w(φq), and w(φr). Therefore, φ is sub-optimal, so in particular, W (φ) > awm(G) ≥
k, which contradicts the fact that W (φ) = k. Thus, we may assume that w(φp) = 0,
and hence that W (φp) = k. Since W (φ) ≥ W (φp) + w(φq) + w(φr), it follows that
w(φq) = w(φr) = 0, and hence that W (φp) = W (φq) = W (φr) = k. Therefore, there exist
xp, xq, and xr in S1 for which wφp(xp) = wφq(xq) = wφr(xr) = k.

Let I = φ(v). For each i, the graph Gi has at least one edge and is vertex-transitive,
so there is an edge between vi and Gi − vi. Thus, I must intersect at least one arc in
each of A(φp), A(φq) and A(φr). Let yp, yq, and yr be points where I intersects an arc in
A(φp), A(φq) and A(φr) respectively.

Divide S1 into 3 disjoint arcs: Ar between xp and xq, Ap between xq and xr, and
Aq between xr and xp. Since W (φ) = k, the arc I cannot contain xp, xq, or xr. Thus,
we can assume without loss of generality that I is entirely contained within Ar. Since I
contains yr, it follows that yr is also in Ar. Since Gr is connected, but xr is not in Ar,
there must then exist some arc in A(φr) containing either xp or xq. This implies, however,
that W (φ) > k, giving a contradiction. Thus, we deduce

awm(G) ≥ awm(G′) + 1.

However, G can be obtained by adding a single vertex to G′. One can easily check
that this implies

awm(G) ≤ awm(G′) + 1.

The result now follows.

6 Concluding Remarks

Using the notion of restricted arc-width, we were able to determine a number of general
bounds on arc-width, and we were also able to precisely describe the effect of disjoint
unions, wedge sums, cones, and double-cones on arc-width. Moreover, we used these
same techniques to show that computing arc-width is NP-complete.

In doing all of this, several natural questions arose. For example, one might ask:

Question 1. Are there any other graph operations whose effect on arc-width we can
describe?

While looking at cones, however, we saw that sometimes even restricted arc-width does
not encapsulate all the information that we require. Just as we generalized arc-width to
obtain extra information, we might have to further generalize restricted arc-width for the
same purpose. Thus, we ask:

Question 2. Is there any generalization of restricted arc-width that will prove better suited
to describing how graph operations affect arc-width?
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Recall that Proposition 3.3 guarantees that for a fixed graph G, the sequence {awi(G)}
is non-increasing and decreases by at most 1 each step. We ask whether this result can
be strengthened:

Question 3. What sequences of non-negative integers can arise as the restricted arc-width
sequence, {awi(G)}, for a fixed graph G?

Further results in this direction might help to simplify or expand our work on disjoint
unions and on cones.

Finally, we know from Theorem 4.1 that restricted arc-width is minor-monotone. Thus,
if Xi,j denotes the collection of graphs G for which awi(G) ≤ j, we say Xi,j is minor-closed,
meaning that if H ∈ Xi,j, then every minor of H is in Xi,j. We can thus describe Xi,j by
the collection of graphs that cannot arise as minors in Xi,j. Now, there is a theorem of
Robertson and Seymour [4] that states:

Theorem 6.1. A non-empty minor-closed family of graphs can be characterized by a finite
set of excluded minors.

It is then natural to ask:

Question 4. What excluded minors characterize Xi,j for each i, j?

This question is probably very difficult, but even partial results could prove very useful.
For more open problems, we refer the reader to [2].
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