Combinatorial proof of a curious q-binomial coefficient identity

Victor J. W. Guo^a and Jiang Zeng^b

^aDepartment of Mathematics, East China Normal University, Shanghai 200062, People's Republic of China jwguo@math.ecnu.edu.cn, http://math.ecnu.edu.cn/~jwguo

^bUniversité de Lyon; Université Lyon 1; Institut Camille Jordan, UMR 5208 du CNRS;
43, boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
zeng@math.univ-lyon1.fr, http://math.univ-lyon1.fr/~zeng

Submitted: Sep 18, 2009; Accepted: Feb 2, 2010; Published: Feb 8, 2010 Mathematics Subject Classifications: 05A17, 05A30

Abstract

Using the Algorithm Z developed by Zeilberger, we give a combinatorial proof of the following q-binomial coefficient identity

$$\sum_{k=0}^{m} (-1)^{m-k} {m \brack k} {n+k \brack a} (-xq^{a};q)_{n+k-a} q^{\binom{k+1}{2}-mk+\binom{a}{2}}$$
$$= \sum_{k=0}^{n} {n \brack k} {m+k \brack a} x^{m+k-a} q^{mn+\binom{k}{2}},$$

which was obtained by Hou and Zeng [European J. Combin. 28 (2007), 214-227].

1 Introduction

Binomial coefficient identities continue to attract the interests of combinatorists and computer scientists. As shown in [7, p. 218], differentiating the simple identity

$$\sum_{k \leqslant m} \binom{m+r}{k} x^k y^{m-k} = \sum_{k \leqslant m} \binom{-r}{k} (-x)^k (x+y)^{m-k}$$

n times with respect to y, and then replacing k by m - n - k, we immediately get the *curious* binomial coefficient identity:

$$\sum_{k \ge 0} \binom{m+r}{m-n-k} \binom{n+k}{n} x^{m-n-k} y^k = \sum_{k \ge 0} \binom{-r}{m-n-k} \binom{n+k}{n} (-x)^{m-n-k} (x+y)^k.$$
(1)

The electronic journal of combinatorics 17 (2010), #N13

Identity (1) has been rediscovered by several authors in the last years. Indeed, Simons [13] reproved the following special case of (1):

$$\sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} \binom{n+k}{k} (1+x)^{k} = \sum_{k=0}^{n} \binom{n}{k} \binom{n+k}{k} x^{k}.$$
 (2)

Several different proofs of (2) were soon given by Hirschhorn [8], Chapman [4], Prodinger [11], and Wang and Sun [15]. As a key lemma in [14, Lemma 3.1], Sun proved the following identity:

$$\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \binom{n+k}{a} (1+x)^{n+k-a} = \sum_{k=0}^{n} \binom{n}{k} \binom{m+k}{a} x^{m+k-a}.$$
 (3)

Finally, by using the method of Prodinger [11], Munarini [10] generalized (2) to

$$\sum_{k=0}^{n} (-1)^{n-k} \binom{\beta-\alpha+n}{n-k} \binom{\beta+k}{k} (1+x)^k = \sum_{k=0}^{n} \binom{\alpha}{n-k} \binom{\beta+k}{k} x^k.$$
(4)

The identities (1), (3) and (4) are obviously equivalent. Recently, an elegant combinatorial proof of (4) was given by Shattuck [12], and a little complicated combinatorial proof of (2) was provided by Chen and Pang [5].

On the other hand, as a q-analogue of Sun's identity (3), Hou and Zeng [9, (20)] proved the following q-identity:

$$\sum_{k=0}^{m} (-1)^{m-k} {m \brack k} {n+k \brack r} (-xq^r;q)_{n+k-r} q^{\binom{k+1}{2}-mk+\binom{r}{2}} = \sum_{k=0}^{n} {n \brack k} {m+k \brack r} x^{m+k-r} q^{mn+\binom{k}{2}},$$
(5)

where the *q*-shifted factorial is defined by $(a;q)_n = (1-a)(1-aq)\cdots(1-aq^{n-1})$ and the *q*-binomial coefficient $\begin{bmatrix} \alpha \\ k \end{bmatrix}$ is defined as

$$\begin{bmatrix} \alpha \\ k \end{bmatrix} = \begin{cases} \frac{(q^{\alpha-k+1};q)_k}{(q;q)_k}, & \text{if } k \ge 0, \\ 0, & \text{if } k < 0. \end{cases}$$

Note that, rewriting (5) as

$$\sum_{k=0}^{n} (-1)^{n-k} {\beta - \alpha + n \choose n-k} {\beta + k \choose k} q^{\binom{n-k}{2} - \binom{n}{2}} (-xq^{\beta}; q)_{k}$$
$$= \sum_{k=0}^{n} {\alpha \choose n-k} {\beta + k \choose k} q^{\binom{n-k+1}{2} - (n-k)\alpha + n\beta} x^{k},$$

we obtain a q-analogue of (4).

In this paper, motivated by the two aforementioned combinatorial proofs for q = 1, we propose a combinatorial proof of (5) within the framework of partition theory by applying an algorithm due to Zeilberger [3].

2 The interpretation of (5) in partitions

A partition λ is defined as a finite sequence of nonnegative integers $(\lambda_1, \lambda_2, \ldots, \lambda_m)$ in decreasing order $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_m$. Each nonzero λ_i is called a part of λ . The number and sum of parts of λ are denoted by $\ell(\lambda)$ and $|\lambda|$, respectively.

Recall [1, Theorem 3.1] that

$$\binom{n+k}{r} = \sum_{\substack{\ell(\lambda) \leqslant r\\\lambda_1 \leqslant n+k-r}} q^{|\lambda|}.$$
 (6)

Therefore

$$\begin{bmatrix} m\\k \end{bmatrix} q^{\binom{k+1}{2}-mk} = q^{\binom{k+1}{2}-mk} \sum_{\substack{\ell(\lambda) \leqslant k\\\lambda_1 \leqslant m-k}} q^{|\lambda|} = \sum_{m-1 \geqslant \mu_1 > \dots > \mu_k \geqslant 0} q^{-|\mu|}$$

where $\mu_i = m - i - \lambda_{k-i+1}$ $(1 \leq i \leq k)$. Moreover, the coefficient of x^s in $(-xq^r; q)_{n+k-r}$ is equal to

$$\sum_{\substack{n+k-1 \geqslant \lambda_1 > \dots > \lambda_s \geqslant r}} q^{|\lambda|} = q^{\binom{s}{2} + rs} \sum_{\substack{\ell(\nu) \leqslant s \\ \nu_1 \leqslant n+k-r-s}} q^{|\nu|},$$

where $\nu_i = \lambda_i - r - s + i$ ($0 \leq i \leq s$). It follows that the coefficient of x^s in the left-hand side of (5) is given by

$$q^{\binom{r}{2} + \binom{s}{2} + rs} \sum_{k=0}^{m} (-1)^{m-k} \sum_{m-1 \ge \mu_1 > \dots > \mu_k \ge 0} \sum_{\substack{\ell(\lambda) \le r \\ \lambda_1 \le n+k-r}} \sum_{\substack{\ell(\nu) \le s \\ \nu_1 \le n+k-r-s}} q^{|\lambda| + |\nu| - |\mu|}.$$
 (7)

Now we need to prove the following relation

$$\sum_{\substack{\ell(\lambda)\leqslant r\\\lambda_1\leqslant n+k-r}}\sum_{\substack{\ell(\nu)\leqslant s\\\nu_1\leqslant n+k-r-s}}q^{|\lambda|+|\nu|} = \sum_{\substack{\ell(\lambda)\leqslant r+s\\\lambda_1\leqslant n+k-r-s}}\sum_{\substack{\ell(\nu)\leqslant r\\\nu_1\leqslant s}}q^{|\lambda|+|\nu|}.$$
(8)

In view of (6), the last identity is equivalent to

Zeilberger [3] gave a bijective proof of (9) using the partition interpretation (8). This bijection is then called *Algorithm Z* (see also [2]). For reader's convenience, we include a brief description of this algorithm. Note that Fu [6] also used this algorithm in her recent study of the Lebesgue identity.

3 Algorithm Z

For simplicity, performing parameter replacements $n + k - r - s \rightarrow t$ and $\nu \rightarrow \mu$, we can rewrite (8) as follows:

$$\sum_{\substack{\ell(\lambda)\leqslant r\\\lambda_1\leqslant s+t}}\sum_{\substack{\ell(\mu)\leqslant s\\\mu_1\leqslant t}}q^{|\lambda|+|\mu|} = \sum_{\substack{\ell(\lambda)\leqslant r+s\\\lambda_1\leqslant t}}\sum_{\substack{\ell(\mu)\leqslant r\\\mu_1\leqslant s}}q^{|\lambda|+|\mu|}.$$

The Algorithm Z constructs a bijection between pairs of partitions (λ, μ) and (λ', μ') with zeros permitted, satisfying

- (i) λ has r + s parts, all $\leq t$,
- (ii) μ has r parts, all $\leq s$,
- (iii) λ' has s parts, all $\leq t$,
- (iv) μ' has r parts, all $\leq s + t$,
- (v) $|\lambda| + |\mu| = |\lambda'| + |\mu'|$.

Here is a brief description of this algorithm. Let $\lambda = (\lambda_1, \ldots, \lambda_{r+s})$ and $\mu = (\mu_1, \ldots, \mu_r)$ be two partitions with $\lambda_1 \leq t$ and $\mu_1 \leq s$. For $1 \leq i \leq r$, place μ_i under $\lambda_{s-\mu_i+i}$. Note that $1 \leq s - \mu_i + i \leq r + s$ and if $i \neq j$ then $s - \mu_i + i \neq s - \mu_j + j$. The parts from λ with nothing below form a new partition λ' . It is clear that λ' has s parts, all less than or equal to t. Each of the other parts from λ is added to the parts from μ which lies below it, yielding a part in μ' . Note that μ' has r parts, all less than or equal to s + t.

For instance, let r = 6, s = 4, t = 10, and let $\lambda = (9, 8, 7, 7, 6, 6, 6, 4, 2, 0)$ and $\mu = (4, 2, 2, 1, 1, 0)$, then $\lambda' = (8, 7, 6, 2)$ and $\mu' = (13, 9, 8, 7, 5, 0)$.

		8	7			6			2		λ'
λ	9	8	7	7	6	6	6	4	2	0	
μ	4			2	2		1	1		0	
	13			9	8		7	5		0	μ'

The algorithm is clearly reversible. Let $\lambda' = (a_1, \ldots, a_s)$ and $\mu' = (b_1, \ldots, b_r)$. If $b_1 \leq a_s$, then $\lambda = (a_1, \ldots, a_s, b_1, \ldots, b_r)$ and $\mu = (0, \ldots, 0)$. Otherwise, for any $b_k > a_s$, we take the smallest $i_k \geq 1$ such that $b_k - i_k \leq a_{s-i_k}$ $(a_0 = +\infty)$ and $b_k - i_k$ becomes a part of λ and i_k becomes a positive part of μ .

4 The proof of (5)

By the inverse of Algorithm Z, the relation (8) holds and therefore (7) may be rewritten as

$$q^{\binom{r+s}{2}} \sum_{k=0}^{m} (-1)^{m-k} \sum_{m-1 \ge \mu_1 > \dots > \mu_k \ge 0} \sum_{\substack{\ell(\lambda) \le r+s \\ \lambda_1 \le n+k-r-s}} \sum_{\substack{\ell(\nu) \le r \\ \nu_1 \le s}} q^{|\lambda|+|\nu|-|\mu|}.$$
 (10)

For any pair $(\mu; \lambda) = (\mu_1, \dots, \mu_k; \lambda_1, \dots, \lambda_{r+s})$ such that $m-1 \ge \mu_1 > \dots > \mu_k \ge 0$ and $n+k-r-s \ge \lambda_1 \ge \dots \ge \lambda_{r+s} \ge 0$, we construct a new pair $(\mu'; \lambda')$ as follows:

- If $\mu_k > 0$ or $\mu = \emptyset$, then $\mu' = (\mu_1, \dots, \mu_k, 0)$ and $\lambda' = \lambda$;
- If $\mu_k = 0$ and $\lambda_1 < n + k r s$, then $\mu' = (\mu_1, \dots, \mu_{k-1})$ and $\lambda' = \lambda$;
- If $\mu_k = 0$ and $\lambda_1 = n + k r s$, we choose the largest *i* and *j* such that $\mu_{k+1-i} = i 1$ and $\lambda_j = \lambda_1$. If $i \leq j$ and $i \leq m - 1$, then let

$$\mu' = (\mu_1, \dots, \mu_{k-i}, i, \mu_{k+1-i}, \dots, \mu_k) \quad \text{and} \quad \lambda' = (\lambda_1 + 1, \dots, \lambda_i + 1, \lambda_{i+1}, \dots, \lambda_{r+s}).$$

If i > j, then let

$$\mu' = (\mu_1, \dots, \mu_{k-j-1}, \mu_{k+1-j}, \dots, \mu_k)$$
 and $\lambda' = (\lambda_1 - 1, \dots, \lambda_j - 1, \lambda_{j+1}, \dots, \lambda_{r+s}).$

Note that $|\lambda| - |\mu| = |\lambda'| - |\mu'|$ and the lengths of μ and μ' differ by 1. It is easy to see that the mapping $(\mu; \lambda) \mapsto (\mu'; \lambda')$ is a weight-preserving-sign-reversing involution. Only the pairs $(\mu; \lambda)$ such that $\mu = (m - 1, m - 2, ..., 1, 0), r + s \ge m$ and $\lambda_1 = \cdots = \lambda_m = n + m - r - s$ will survive. That is to say, the expression (10) is equal to 0 if $r + s \le m - 1$, and

$$q^{\binom{r+s}{2}} \sum_{\substack{\ell(\lambda) \leqslant r+s-m \\ \lambda_1 \leqslant n+m-r-s}} \sum_{\substack{\ell(\nu) \leqslant r \\ \nu_1 \leqslant s}} q^{|\lambda|+m(n+m-r-s)+|\nu|-\binom{m}{2}} \quad \text{if } r+s \geqslant m, \tag{11}$$

namely

$$\begin{bmatrix} n \\ r+s-m \end{bmatrix} \begin{bmatrix} r+s \\ r \end{bmatrix} q^{mn+\binom{r+s-m}{2}},$$

which is the coefficient of x^s in the right-hand side of (5). This completes the proof.

Acknowledgments. This work was partially supported by the project MIRA 2008 of Région Rhône-Alpes. The first author was sponsored by Shanghai Educational Development Foundation under the Chenguang Project (#2007CG29), Shanghai Rising-Star Program (#09QA1401700), Shanghai Leading Academic Discipline Project (#B407), and the National Science Foundation of China (#10801054).

References

- G. E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1998.
- [2] G. E. Andrews and D. M. Bressoud, Identities in combinatorics, III, Further aspects of ordered set sorting, Discrete Math. 49 (1984), 223–236.
- [3] D. M. Bressoud and D. Zeilberger, Generalized Rogers-Ramanujan bijections, Adv. Math. 78 (1989), 42–75.

- [4] R. Chapman, A curious identity revisited, Math. Gazette 87 (2003), 139–141.
- [5] W. Y. C. Chen and S. X. M. Pang, On the combinatorics of the Pfaff identity, Discrete Math. 309 (2009), 2190–2196.
- [6] A. M. Fu, A combinatorial proof of the Lebesgue identity, Discrete Math. 308 (2008), 2611–2613.
- [7] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley Publishing Co., 1989.
- [8] M. Hirschhorn, Comment on a curious identity, Math. Gazette 87 (2003), 528–530.
- S. J. X. Hou and J. Zeng, A q-analog of dual sequences with applications, European J. Combin. 28 (2007), 214–227.
- [10] E. Munarini, Generalization of a binomial identity of Simons, Integers 5 (2005), #A15.
- [11] H. Prodinger, A curious identity proved by Cauchy's integral formula, Math. Gazette 89 (2005), 266–267.
- [12] M. Shattuck, Combinatorial proofs of some Simons-type binomial coefficient identities, Integers 7 (2007), #A27.
- [13] S. Simons, A curious identity, Math. Gazette 85 (2001), 296–298.
- [14] Z.-W. Sun, Combinatorial identities in dual sequences, European J. Combin. 24 (2003), 709–718.
- [15] X. Wang and Y. Sun, A new proof of a curious identity, Math. Gazette 91 (2007), 105–106.