Combinatorial proof of a curious q-binomial coefficient identity

Victor J. W. Guo ${ }^{a}$ and Jiang Zeng ${ }^{b}$
${ }^{a}$ Department of Mathematics, East China Normal University, Shanghai 200062, People's Republic of China jwguo@math.ecnu.edu.cn, http://math.ecnu.edu.cn/~jwguo

${ }^{b}$ Université de Lyon; Université Lyon 1; Institut Camille Jordan, UMR 5208 du CNRS; 43, boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France zeng@math.univ-lyon1.fr, http://math.univ-lyon1.fr/~zeng

Submitted: Sep 18, 2009; Accepted: Feb 2, 2010; Published: Feb 8, 2010
Mathematics Subject Classifications: 05A17, 05A30

$$
\begin{aligned}
& \text { Abstract } \\
& \text { Using the Algorithm Z developed by Zeilberger, we give a combinatorial proof } \\
& \text { of the following } q \text {-binomial coefficient identity } \\
& \qquad \sum_{k=0}^{m}(-1)^{m-k}\left[\begin{array}{c}
m \\
k
\end{array}\right]\left[\begin{array}{c}
n+k \\
a
\end{array}\right]\left(-x q^{a} ; q\right)_{n+k-a} q^{(k+1} \begin{array}{c}
(1)-m k+\binom{a}{2}
\end{array} \\
& \qquad=\sum_{k=0}^{n}\left[\begin{array}{c}
n \\
k
\end{array}\right]\left[\begin{array}{c}
m+k \\
a
\end{array}\right] x^{m+k-a} q^{m n+\binom{k}{2}}
\end{aligned}
$$

which was obtained by Hou and Zeng [European J. Combin. 28 (2007), 214-227].

1 Introduction

Binomial coefficient identities continue to attract the interests of combinatorists and computer scientists. As shown in [7, p. 218], differentiating the simple identity

$$
\sum_{k \leqslant m}\binom{m+r}{k} x^{k} y^{m-k}=\sum_{k \leqslant m}\binom{-r}{k}(-x)^{k}(x+y)^{m-k}
$$

n times with respect to y, and then replacing k by $m-n-k$, we immediately get the curious binomial coefficient identity:

$$
\begin{equation*}
\sum_{k \geqslant 0}\binom{m+r}{m-n-k}\binom{n+k}{n} x^{m-n-k} y^{k}=\sum_{k \geqslant 0}\binom{-r}{m-n-k}\binom{n+k}{n}(-x)^{m-n-k}(x+y)^{k} \tag{1}
\end{equation*}
$$

Identity (1) has been rediscovered by several authors in the last years. Indeed, Simons [13] reproved the following special case of (1):

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}\binom{n+k}{k}(1+x)^{k}=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} x^{k} \tag{2}
\end{equation*}
$$

Several different proofs of (2) were soon given by Hirschhorn [8], Chapman [4], Prodinger [11], and Wang and Sun [15]. As a key lemma in [14, Lemma 3.1], Sun proved the following identity:

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k}\binom{n+k}{a}(1+x)^{n+k-a}=\sum_{k=0}^{n}\binom{n}{k}\binom{m+k}{a} x^{m+k-a} . \tag{3}
\end{equation*}
$$

Finally, by using the method of Prodinger [11], Munarini [10] generalized (2) to

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{n-k}\binom{\beta-\alpha+n}{n-k}\binom{\beta+k}{k}(1+x)^{k}=\sum_{k=0}^{n}\binom{\alpha}{n-k}\binom{\beta+k}{k} x^{k} \tag{4}
\end{equation*}
$$

The identities (1), (3) and (4) are obviously equivalent. Recently, an elegant combinatorial proof of (4) was given by Shattuck [12], and a little complicated combinatorial proof of (2) was provided by Chen and Pang [5].

On the other hand, as a q-analogue of Sun's identity (3), Hou and Zeng [9, (20)] proved the following q-identity:

$$
\begin{align*}
& \sum_{k=0}^{m}(-1)^{m-k}\left[\begin{array}{c}
m \\
k
\end{array}\right]\left[\begin{array}{c}
n+k \\
r
\end{array}\right]\left(-x q^{r} ; q\right)_{n+k-r} q^{\binom{k+1}{2}-m k+\binom{r}{2}} \\
& =\sum_{k=0}^{n}\left[\begin{array}{c}
n \\
k
\end{array}\right]\left[\begin{array}{c}
m+k \\
r
\end{array}\right] x^{m+k-r} q^{m n+\binom{k}{2}}, \tag{5}
\end{align*}
$$

where the q-shifted factorial is defined by $(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)$ and the q-binomial coefficient $\left[\begin{array}{l}\alpha \\ k\end{array}\right]$ is defined as

$$
\left[\begin{array}{l}
\alpha \\
k
\end{array}\right]= \begin{cases}\frac{\left(q^{\alpha-k+1} ; q\right)_{k}}{(q ; q)_{k}}, & \text { if } k \geqslant 0 \\
0, & \text { if } k<0\end{cases}
$$

Note that, rewriting (5) as

$$
\begin{aligned}
& \sum_{k=0}^{n}(-1)^{n-k}\left[\begin{array}{c}
\beta-\alpha+n \\
n-k
\end{array}\right]\left[\begin{array}{c}
\beta+k \\
k
\end{array}\right] q^{\binom{n-k}{2}-\binom{n}{2}}\left(-x q^{\beta} ; q\right)_{k} \\
& \quad=\sum_{k=0}^{n}\left[\begin{array}{c}
\alpha \\
n-k
\end{array}\right]\left[\begin{array}{c}
\beta+k \\
k
\end{array}\right] q^{\binom{n-k+1}{2}-(n-k) \alpha+n \beta} x^{k},
\end{aligned}
$$

we obtain a q-analogue of (4).
In this paper, motivated by the two aforementioned combinatorial proofs for $q=1$, we propose a combinatorial proof of (5) within the framework of partition theory by applying an algorithm due to Zeilberger [3].

2 The interpretation of (5) in partitions

A partition λ is defined as a finite sequence of nonnegative integers $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ in decreasing order $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{m}$. Each nonzero λ_{i} is called a part of λ. The number and sum of parts of λ are denoted by $\ell(\lambda)$ and $|\lambda|$, respectively.

Recall [1, Theorem 3.1] that

$$
\left[\begin{array}{c}
n+k \tag{6}\\
r
\end{array}\right]=\sum_{\substack{\ell(\lambda) \leqslant r \\
\lambda_{1} \leqslant n+k-r}} q^{|\lambda|} .
$$

Therefore

$$
\left[\begin{array}{c}
m \\
k
\end{array}\right] q^{\binom{k+1}{2}-m k}=q^{\binom{k+1}{2}-m k} \sum_{\substack{\ell(\lambda) \leqslant k \\
\lambda_{1} \leqslant m-k}} q^{|\lambda|}=\sum_{m-1 \geqslant \mu_{1}>\cdots>\mu_{k} \geqslant 0} q^{-|\mu|},
$$

where $\mu_{i}=m-i-\lambda_{k-i+1}(1 \leqslant i \leqslant k)$. Moreover, the coefficient of x^{s} in $\left(-x q^{r} ; q\right)_{n+k-r}$ is equal to

$$
\sum_{n+k-1 \geqslant \lambda_{1}>\cdots>\lambda_{s} \geqslant r} q^{|\lambda|}=q^{\binom{s}{2}+r s} \sum_{\substack{\ell(\nu) \leqslant s \\ \nu_{1} \leqslant n+k-r-s}} q^{|\nu|},
$$

where $\nu_{i}=\lambda_{i}-r-s+i(0 \leqslant i \leqslant s)$. It follows that the coefficient of x^{s} in the left-hand side of (5) is given by

$$
\begin{equation*}
q^{\binom{r}{2}+\binom{s}{2}+r s} \sum_{k=0}^{m}(-1)^{m-k} \sum_{m-1 \geqslant \mu_{1}>\cdots>\mu_{k} \geqslant 0} \sum_{\substack{\ell(\lambda) \leqslant r \\ \lambda_{1} \leqslant n+k-r}} \sum_{\substack{\ell(\nu) \leqslant s \\ \nu_{1} \leqslant n+k-r-s}} q^{|\lambda|+|\nu|-|\mu|} . \tag{7}
\end{equation*}
$$

Now we need to prove the following relation

$$
\begin{equation*}
\sum_{\substack{\ell(\lambda) \leqslant r \\ \lambda_{1} \leqslant n+k-r}} \sum_{\substack{\ell(\nu) \leqslant s \\ \nu_{1} \leqslant n+k-r-s}} q^{|\lambda|+|\nu|}=\sum_{\substack{\ell(\lambda) \leqslant r+s \\ \lambda_{1} \leqslant n+k-r-s}} \sum_{\substack{\ell(\nu) \leqslant r \\ \nu_{1} \leqslant s}} q^{|\lambda|+|\nu|} . \tag{8}
\end{equation*}
$$

In view of (6), the last identity is equivalent to

$$
\left[\begin{array}{c}
n+k \tag{9}\\
r
\end{array}\right]\left[\begin{array}{c}
n+k-r \\
s
\end{array}\right]=\left[\begin{array}{c}
n+k \\
r+s
\end{array}\right]\left[\begin{array}{c}
r+s \\
r
\end{array}\right] .
$$

Zeilberger [3] gave a bijective proof of (9) using the partition interpretation (8). This bijection is then called Algorithm Z (see also [2]). For reader's convenience, we include a brief description of this algorithm. Note that Fu [6] also used this algorithm in her recent study of the Lebesgue identity.

3 Algorithm Z

For simplicity, performing parameter replacements $n+k-r-s \rightarrow t$ and $\nu \rightarrow \mu$, we can rewrite (8) as follows:

$$
\sum_{\substack{\ell(\lambda) \leqslant r \\ \lambda_{1} \leqslant s+t}} \sum_{\substack{\ell(\mu) \leqslant s \\ \mu_{1} \leqslant t}} q^{|\lambda|+|\mu|}=\sum_{\substack{\ell(\lambda) \leqslant r+s \\ \lambda_{1} \leqslant t}} \sum_{\substack{\ell(\mu) \leqslant r \\ \mu_{1} \leqslant s}} q^{|\lambda|+|\mu|} .
$$

The Algorithm Z constructs a bijection between pairs of partitions (λ, μ) and $\left(\lambda^{\prime}, \mu^{\prime}\right)$ with zeros permitted, satisfying
(i) λ has $r+s$ parts, all $\leqslant t$,
(ii) μ has r parts, all $\leqslant s$,
(iii) λ^{\prime} has s parts, all $\leqslant t$,
(iv) μ^{\prime} has r parts, all $\leqslant s+t$,
(v) $|\lambda|+|\mu|=\left|\lambda^{\prime}\right|+\left|\mu^{\prime}\right|$.

Here is a brief description of this algorithm. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r+s}\right)$ and $\mu=\left(\mu_{1}, \ldots, \mu_{r}\right)$ be two partitions with $\lambda_{1} \leqslant t$ and $\mu_{1} \leqslant s$. For $1 \leqslant i \leqslant r$, place μ_{i} under $\lambda_{s-\mu_{i}+i}$. Note that $1 \leqslant s-\mu_{i}+i \leqslant r+s$ and if $i \neq j$ then $s-\mu_{i}+i \neq s-\mu_{j}+j$. The parts from λ with nothing below form a new partition λ^{\prime}. It is clear that λ^{\prime} has s parts, all less than or equal to t. Each of the other parts from λ is added to the parts from μ which lies below it, yielding a part in μ^{\prime}. Note that μ^{\prime} has r parts, all less than or equal to $s+t$.

For instance, let $r=6, s=4, t=10$, and let $\lambda=(9,8,7,7,6,6,6,4,2,0)$ and $\mu=(4,2,2,1,1,0)$, then $\lambda^{\prime}=(8,7,6,2)$ and $\mu^{\prime}=(13,9,8,7,5,0)$.

		8	7			6			2		λ^{\prime}
λ	9	8	7	7	6	6	6	4	2	0	
μ	4			2	2		1	1		0	
	13			9	8		7	5		0	μ^{\prime}

The algorithm is clearly reversible. Let $\lambda^{\prime}=\left(a_{1}, \ldots, a_{s}\right)$ and $\mu^{\prime}=\left(b_{1}, \ldots, b_{r}\right)$. If $b_{1} \leqslant a_{s}$, then $\lambda=\left(a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{r}\right)$ and $\mu=(0, \ldots, 0)$. Otherwise, for any $b_{k}>a_{s}$, we take the smallest $i_{k} \geqslant 1$ such that $b_{k}-i_{k} \leqslant a_{s-i_{k}}\left(a_{0}=+\infty\right)$ and $b_{k}-i_{k}$ becomes a part of λ and i_{k} becomes a positive part of μ.

4 The proof of (5)

By the inverse of Algorithm Z, the relation (8) holds and therefore (7) may be rewritten as

$$
\begin{equation*}
q^{\binom{r+s}{2}} \sum_{k=0}^{m}(-1)^{m-k} \sum_{m-1 \geqslant \mu_{1}>\cdots>\mu_{k} \geqslant 0} \sum_{\substack{\ell(\lambda) \leqslant r+s \\ \lambda_{1} \leqslant n+k-r-s}} \sum_{\substack{\ell(\nu) \leqslant r \\ \nu_{1} \leqslant s}} q^{|\lambda|+|\nu|-|\mu|} . \tag{10}
\end{equation*}
$$

For any pair $(\mu ; \lambda)=\left(\mu_{1}, \ldots, \mu_{k} ; \lambda_{1}, \ldots, \lambda_{r+s}\right)$ such that $m-1 \geqslant \mu_{1}>\cdots>\mu_{k} \geqslant 0$ and $n+k-r-s \geqslant \lambda_{1} \geqslant \cdots \geqslant \lambda_{r+s} \geqslant 0$, we construct a new pair $\left(\mu^{\prime} ; \lambda^{\prime}\right)$ as follows:

- If $\mu_{k}>0$ or $\mu=\emptyset$, then $\mu^{\prime}=\left(\mu_{1}, \ldots, \mu_{k}, 0\right)$ and $\lambda^{\prime}=\lambda$;
- If $\mu_{k}=0$ and $\lambda_{1}<n+k-r-s$, then $\mu^{\prime}=\left(\mu_{1}, \ldots, \mu_{k-1}\right)$ and $\lambda^{\prime}=\lambda$;
- If $\mu_{k}=0$ and $\lambda_{1}=n+k-r-s$, we choose the largest i and j such that $\mu_{k+1-i}=i-1$ and $\lambda_{j}=\lambda_{1}$. If $i \leqslant j$ and $i \leqslant m-1$, then let

$$
\mu^{\prime}=\left(\mu_{1}, \ldots, \mu_{k-i}, i, \mu_{k+1-i}, \ldots, \mu_{k}\right) \quad \text { and } \quad \lambda^{\prime}=\left(\lambda_{1}+1, \ldots, \lambda_{i}+1, \lambda_{i+1}, \ldots, \lambda_{r+s}\right)
$$

If $i>j$, then let

$$
\mu^{\prime}=\left(\mu_{1}, \ldots, \mu_{k-j-1}, \mu_{k+1-j}, \ldots, \mu_{k}\right) \quad \text { and } \quad \lambda^{\prime}=\left(\lambda_{1}-1, \ldots, \lambda_{j}-1, \lambda_{j+1}, \ldots, \lambda_{r+s}\right)
$$

Note that $|\lambda|-|\mu|=\left|\lambda^{\prime}\right|-\left|\mu^{\prime}\right|$ and the lengths of μ and μ^{\prime} differ by 1 . It is easy to see that the mapping $(\mu ; \lambda) \mapsto\left(\mu^{\prime} ; \lambda^{\prime}\right)$ is a weight-preserving-sign-reversing involution. Only the pairs $(\mu ; \lambda)$ such that $\mu=(m-1, m-2, \ldots, 1,0), r+s \geqslant m$ and $\lambda_{1}=\cdots=\lambda_{m}=$ $n+m-r-s$ will survive. That is to say, the expression (10) is equal to 0 if $r+s \leqslant m-1$, and

$$
\begin{equation*}
q^{\binom{+s}{2}} \sum_{\substack{\ell(\lambda) \leqslant r+s-m \\ \lambda_{1} \leqslant n+m-r-s}} \sum_{\ell(\nu) \leqslant r} q^{|\lambda|+m(n+m-r-s)+|\nu|-\binom{m}{2}} \quad \text { if } r+s \geqslant m, \tag{11}
\end{equation*}
$$

namely

$$
\left[\begin{array}{c}
n \\
r+s-m
\end{array}\right]\left[\begin{array}{c}
r+s \\
r
\end{array}\right] q^{m n+\left({ }_{2}^{r+s-m}\right)},
$$

which is the coefficient of x^{s} in the right-hand side of (5). This completes the proof.
Acknowledgments. This work was partially supported by the project MIRA 2008 of Région Rhône-Alpes. The first author was sponsored by Shanghai Educational Development Foundation under the Chenguang Project (\#2007CG29), Shanghai Rising-Star Program (\#09QA1401700), Shanghai Leading Academic Discipline Project (\#B407), and the National Science Foundation of China (\#10801054).

References

[1] G. E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1998.
[2] G. E. Andrews and D. M. Bressoud, Identities in combinatorics, III, Further aspects of ordered set sorting, Discrete Math. 49 (1984), 223-236.
[3] D. M. Bressoud and D. Zeilberger, Generalized Rogers-Ramanujan bijections, Adv. Math. 78 (1989), 42-75.
[4] R. Chapman, A curious identity revisited, Math. Gazette 87 (2003), 139-141.
[5] W. Y. C. Chen and S. X. M. Pang, On the combinatorics of the Pfaff identity, Discrete Math. 309 (2009), 2190-2196.
[6] A. M. Fu, A combinatorial proof of the Lebesgue identity, Discrete Math. 308 (2008), 2611-2613.
[7] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, AddisonWesley Pubilshing Co., 1989.
[8] M. Hirschhorn, Comment on a curious identity, Math. Gazette 87 (2003), 528-530.
[9] S. J. X. Hou and J. Zeng, A q-analog of dual sequences with applications, European J. Combin. 28 (2007), 214-227.
[10] E. Munarini, Generalization of a binomial identity of Simons, Integers 5 (2005), \#A15.
[11] H. Prodinger, A curious identity proved by Cauchy's integral formula, Math. Gazette 89 (2005), 266-267.
[12] M. Shattuck, Combinatorial proofs of some Simons-type binomial coefficient identities, Integers 7 (2007), \#A27.
[13] S. Simons, A curious identity, Math. Gazette 85 (2001), 296-298.
[14] Z.-W. Sun, Combinatorial identities in dual sequences, European J. Combin. 24 (2003), 709-718.
[15] X. Wang and Y. Sun, A new proof of a curious identity, Math. Gazette 91 (2007), 105-106.

