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bUniversité de Lyon; Université Lyon 1; Institut Camille Jordan, UMR 5208 du CNRS;
43, boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France

zeng@math.univ-lyon1.fr, http://math.univ-lyon1.fr/~zeng

Submitted: Sep 18, 2009; Accepted: Feb 2, 2010; Published: Feb 8, 2010

Mathematics Subject Classifications: 05A17, 05A30

Abstract

Using the Algorithm Z developed by Zeilberger, we give a combinatorial proof
of the following q-binomial coefficient identity
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which was obtained by Hou and Zeng [European J. Combin. 28 (2007), 214–227].

1 Introduction

Binomial coefficient identities continue to attract the interests of combinatorists and com-
puter scientists. As shown in [7, p. 218], differentiating the simple identity
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n times with respect to y, and then replacing k by m − n − k, we immediately get the
curious binomial coefficient identity:
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Identity (1) has been rediscovered by several authors in the last years. Indeed, Simons
[13] reproved the following special case of (1):

n
∑

k=0

(−1)n−k

(

n

k

)(

n + k

k

)

(1 + x)k =
n

∑

k=0

(

n

k

)(

n + k

k

)

xk. (2)

Several different proofs of (2) were soon given by Hirschhorn [8], Chapman [4], Prodinger
[11], and Wang and Sun [15]. As a key lemma in [14, Lemma 3.1], Sun proved the following
identity:
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Finally, by using the method of Prodinger [11], Munarini [10] generalized (2) to
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The identities (1), (3) and (4) are obviously equivalent. Recently, an elegant combinatorial
proof of (4) was given by Shattuck [12], and a little complicated combinatorial proof of
(2) was provided by Chen and Pang [5].

On the other hand, as a q-analogue of Sun’s identity (3), Hou and Zeng [9, (20)] proved
the following q-identity:
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where the q-shifted factorial is defined by (a; q)n = (1− a)(1− aq) · · · (1− aqn−1) and the
q-binomial coefficient
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Note that, rewriting (5) as
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we obtain a q-analogue of (4).
In this paper, motivated by the two aforementioned combinatorial proofs for q = 1, we

propose a combinatorial proof of (5) within the framework of partition theory by applying
an algorithm due to Zeilberger [3].
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2 The interpretation of (5) in partitions

A partition λ is defined as a finite sequence of nonnegative integers (λ1, λ2, . . . , λm) in
decreasing order λ1 > λ2 > · · · > λm. Each nonzero λi is called a part of λ. The number
and sum of parts of λ are denoted by ℓ(λ) and |λ|, respectively.

Recall [1, Theorem 3.1] that
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where νi = λi − r − s + i (0 6 i 6 s). It follows that the coefficient of xs in the left-hand
side of (5) is given by
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Now we need to prove the following relation
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In view of (6), the last identity is equivalent to
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Zeilberger [3] gave a bijective proof of (9) using the partition interpretation (8). This
bijection is then called Algorithm Z (see also [2]). For reader’s convenience, we include a
brief description of this algorithm. Note that Fu [6] also used this algorithm in her recent
study of the Lebesgue identity.
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3 Algorithm Z

For simplicity, performing parameter replacements n + k − r − s → t and ν → µ, we can
rewrite (8) as follows:

∑

ℓ(λ)6r
λ16s+t
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ℓ(µ)6s
µ16t

q|λ|+|µ| =
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ℓ(λ)6r+s
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q|λ|+|µ|.

The Algorithm Z constructs a bijection between pairs of partitions (λ, µ) and (λ′, µ′) with
zeros permitted, satisfying

(i) λ has r + s parts, all 6 t,

(ii) µ has r parts, all 6 s,

(iii) λ′ has s parts, all 6 t,

(iv) µ′ has r parts, all 6 s + t,

(v) |λ| + |µ| = |λ′| + |µ′|.

Here is a brief description of this algorithm. Let λ = (λ1, . . . , λr+s) and µ = (µ1, . . . , µr)
be two partitions with λ1 6 t and µ1 6 s. For 1 6 i 6 r, place µi under λs−µi+i. Note
that 1 6 s − µi + i 6 r + s and if i 6= j then s − µi + i 6= s − µj + j. The parts from λ

with nothing below form a new partition λ′. It is clear that λ′ has s parts, all less than or
equal to t. Each of the other parts from λ is added to the parts from µ which lies below
it, yielding a part in µ′. Note that µ′ has r parts, all less than or equal to s + t.

For instance, let r = 6, s = 4, t = 10, and let λ = (9, 8, 7, 7, 6, 6, 6, 4, 2, 0) and
µ = (4, 2, 2, 1, 1, 0), then λ′ = (8, 7, 6, 2) and µ′ = (13, 9, 8, 7, 5, 0).

8 7 6 2 λ′

λ 9 8 7 7 6 6 6 4 2 0

µ 4 2 2 1 1 0

13 9 8 7 5 0 µ′

The algorithm is clearly reversible. Let λ′ = (a1, . . . , as) and µ′ = (b1, . . . , br). If
b1 6 as, then λ = (a1, . . . , as, b1, . . . , br) and µ = (0, . . . , 0). Otherwise, for any bk > as,
we take the smallest ik > 1 such that bk − ik 6 as−ik (a0 = +∞) and bk − ik becomes a
part of λ and ik becomes a positive part of µ.

4 The proof of (5)

By the inverse of Algorithm Z, the relation (8) holds and therefore (7) may be rewritten
as
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For any pair (µ; λ) = (µ1, . . . , µk; λ1, . . . , λr+s) such that m − 1 > µ1 > · · · > µk > 0 and
n + k − r − s > λ1 > · · · > λr+s > 0, we construct a new pair (µ′; λ′) as follows:

• If µk > 0 or µ = ∅, then µ′ = (µ1, . . . , µk, 0) and λ′ = λ;

• If µk = 0 and λ1 < n + k − r − s, then µ′ = (µ1, . . . , µk−1) and λ′ = λ;

• If µk = 0 and λ1 = n+k−r−s, we choose the largest i and j such that µk+1−i = i−1
and λj = λ1. If i 6 j and i 6 m − 1, then let

µ′ = (µ1, . . . , µk−i, i, µk+1−i, . . . , µk) and λ′ = (λ1 + 1, . . . , λi + 1, λi+1, . . . , λr+s).

If i > j, then let

µ′ = (µ1, . . . , µk−j−1, µk+1−j, . . . , µk) and λ′ = (λ1−1, . . . , λj −1, λj+1, . . . , λr+s).

Note that |λ| − |µ| = |λ′| − |µ′| and the lengths of µ and µ′ differ by 1. It is easy to see
that the mapping (µ; λ) 7→ (µ′; λ′) is a weight-preserving-sign-reversing involution. Only
the pairs (µ; λ) such that µ = (m − 1, m − 2, . . . , 1, 0), r + s > m and λ1 = · · · = λm =
n+m−r−s will survive. That is to say, the expression (10) is equal to 0 if r+s 6 m−1,
and

q(
r+s

2 )
∑

ℓ(λ)6r+s−m
λ16n+m−r−s

∑

ℓ(ν)6r
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q|λ|+m(n+m−r−s)+|ν|−(m

2 ) if r + s > m, (11)

namely
[

n
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][

r + s

r

]

qmn+(r+s−m

2 ),

which is the coefficient of xs in the right-hand side of (5). This completes the proof.
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