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Abstract

It is shown that by eliminating duality theory of vector spaces from a recent proof
of Kouba [A duality based proof of the Combinatorial Nullstellensatz, Electron. J.

Combin. 16 (2009), #N9] one obtains a direct proof of the nonvanishing-version
of Alon’s Combinatorial Nullstellensatz for polynomials over an arbitrary integral
domain. The proof relies on Cramer’s rule and Vandermonde’s determinant to
explicitly describe a map used by Kouba in terms of cofactors of a certain matrix.

That the Combinatorial Nullstellensatz is true over integral domains is a well-
known fact which is already contained in Alon’s work and emphasized in recent
articles of Micha lek and Schauz; the sole purpose of the present note is to point out
that not only is it not necessary to invoke duality of vector spaces, but by not doing
so one easily obtains a more general result.

1 Introduction

The Combinatorial Nullstellensatz is a very useful theorem (see [1]) about multivari-
ate polynomials over an integral domain which bears some resemblance to the classical
Nullstellensatz of Hilbert.

Theorem 1 (Alon, Combinatorial Nullstellensatz, ideal-containment-version, Theorem
1.1 in [1]). Let K be a field, R ⊆ K a subring, f ∈ R[x1, . . . , xn], S1, . . . , Sn arbitrary
nonempty subsets of K, and gi :=

∏

s∈Si
(xi − s) for every 1 6 i 6 n. If f(s1, . . . , sn) = 0
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for every (s1, . . . , sn) ∈ S1 × · · ·×Sn, then there exist polynomials hi ∈ R[x1, . . . , xn] with
the property that deg(hi) 6 deg(f) − deg(gi) for every 1 6 i 6 n, and f =

∑n

i=1 higi.

Theorem 2 (Alon, Combinatorial Nullstellensatz, nonvanishing-version, Theorem 1.2 in
[1]). Let K be a field, R ⊆ K a subring, and f ∈ R[x1, . . . , xn]. Let c · xd1

1 · · ·xdn

n be a
term in f with c 6= 0 whose degree d1 + · · · + dn is maximum among all degrees of terms
in f . Then every product S1 × · · · × Sn, where each Si is an arbitrary finite subset of R

satisfying |Si| = di + 1, contains at least one point (s1, . . . , sn) with f(s1, . . . , sn) 6= 0.

Three comments are in order. First, talking about subrings of a field is equivalent to
talking about integral domains: every subring of a field clearly is an integral domain, and,
conversely, every integral domain R is (isomorphic to) a subring of its field of fractions
Quot(R). Second, strictly speaking, rings are mentioned in [1] only in Theorem 1, but
Alon’s proof in [1] of Theorem 2 is valid for polynomials over integral domains as well.
Third, it is intended that the Si are allowed to be subsets of K in Theorem 1 but required
to be subsets of R in Theorem 2, but this is done only for convenience. Theorem 2 is
easily seen to be equivalent to the formulation obtained when ‘arbitrary finite subset of
R’ is replaced by ‘arbitrary finite subset of K’.

In [1], Theorem 2 was deduced from Theorem 1. In [3], Kouba gave a beautifully
simple and direct proof of the nonvanishing-version of the Combinatorial Nullstellensatz,
bypassing the use of the ideal-containment-version. Kouba’s argument was restricted to
the case of polynomials over a field and at one step applied a suitably chosen linear form
on the vector space K[x1, . . . , xn] to the given polynomial f in Theorem 2.

However, for Kouba’s idea to work, it is not necessary to have recourse to duality
theory of vector spaces and in the following section it will be shown how to make Kouba’s
idea work without it, thus obtaining a direct proof of the full Theorem 2.

Two relevant recent articles ought to be mentioned. A very short direct proof of
Theorem 2 was given by Micha lek in [5] who explicitly remarks that the proof works for
integral domains as well. Moreover, the differences

{

± (s − s′) : {s, s′} ∈
(

Sk

2

)}

in the
proof below play a similar role in Micha lek’s proof. In [6], Schauz obtained far-reaching
generalizations and sharpenings of Theorem 2, expressly working with integral domains
and generalizations thereof throughout the paper.

The present author wishes to emphasize that the proof in the present paper differs from
Kouba’s proof only in the setting and the way in which the coefficients for Kouba’s linear
form are obtained and he offers the following as its raison d’être: Mathematical proofs
should be treated as mathematical objects in their own right and Kouba’s argument is a
mathematical proof which is worth being placed into what the present author feels is its
proper generality. In [3], the argument was presented under the heading of vector space
duality and with explicit reference to (dual) bases—notions which essentially depend on
the ability to uniquely invert the scalar multiplication operation when the scalar ring of a
module is a field. Casual readers hence might get away with the impression that Kouba’s
argument essentially rests on those things. However, the argument emerges unscathed and
in greater generality when moved to the setting where the scalar ring is merely assumed to
be an integral domain. What is essential in Kouba’s proof is commutativity of the scalar
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ring and absence of zero-divisors (any substantial weakening of these two assumptions
seems to require to vary the argument substantially), and it is the purpose of the present
note to try to lay bare the basic mechanism of Kouba’s proof.

2 Proof of Theorem 2

The proof of the Theorem 2 will be based on the following simple lemma.

Lemma 3. Let R be an integral domain. Let ∅ 6= S = {s1, . . . , sm} ⊆ R be an arbitrary

finite subset. Then there exist elements λ
(S)
1 , . . . , λ

(S)
m of R such that

λ
(S)
1 · (1, s1, s

2
1, . . . , s

m−1
1 ) + · · · + λ(S)

m · (1, sm, s2
m, . . . , sm−1

m )

= (0, 0, 0, . . . , 0,
∏

16i<j6m

(si − sj)). (1)

(Note that for m = 1 the claim is trivially true with λ
(S)
1 := 1 and, as usual, taking the

then empty product to be 1.)

Proof. Let [m] := {1, . . . , m}. Define b to be the right-hand side of the claimed equation,
taken as a column vector, and let A = (aij)(i,j)∈[m]2 be the Vandermonde matrix defined by
aij := si−1

j . Then the statement of the lemma is equivalent to the existence of a solution

λ(S) ∈ Rm of the system of linear equations Aλ(S) = b. By the well-known formula for the
determinant of a Vandermonde matrix (see [4], Ch. XIII, §4, example after Prop. 4.10),
det(A) =

∏

16i<j6m(si − sj).
Since S is a set, all factors of this product are nonzero, and since R has no zero-

divisors, the determinant is therefore nonzero as well. Now let αij be the cofactors of A,
i.e. αij := (−1)i+j det(A(ij)), where A(ij) is the (m − 1) × (m − 1) matrix obtained from
A by deleting the i-th row and the j-th column (see [2], Ch. IX, §3, before Lemma 1).
By Cramer’s rule (which is valid in any commutative ring, see Ch. IX, §3, Theorem 6 in
[2] or Ch. XIII, §4, Theorem 4.4 in [4]), for every j ∈ [m],

det(A) · λ
(S)
j =

m
∑

i=1

αijbi.

Using bm = det(A), bi = 0 for every 1 6 i < m, and the commutativity of an integral
domain, this reduces to

det(A) ·
(

λ
(S)
j − αmj

)

= 0.

Hence, since det(A) 6= 0 and R has no zero-divisors, if follows that the cofactors

λ
(S)
j = αmj ∈ R provide explicit elements with the desired property.

Using this lemma, Kouba’s argument may now be carried out without change in the
setting of integral domains.
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Proof of Theorem 2. Let R be an arbitrary integral domain and f ∈ R[x1, . . . , xn] be
an arbitrary polynomial. Let d1, . . . , dn > 0 be the exponents of a term c ·xd1

1 · · ·xdn

n with
c 6= 0 which has maximum degree in f . For each k ∈ [n], choose an arbitrary finite subset
Sk ⊆ R of size dk + 1 and apply Lemma 3 with S = Sk and m = |S| to obtain a family

of elements (λ
(Sk)
sk

)sk∈Sk
of R (where in order to avoid double indices the coefficients λ are

now being indexed by the elements of Sk directly, not by an enumeration of each Sk) with
the property that

∑

sk∈Sk

λ(Sk)
sk

· sℓ
k = 0 for every ℓ ∈ {0, . . . , dk − 1}, (2)

∑

sk∈Sk

λ(Sk)
sk

· sdk

k =
∏

{s,s′}∈(Sk
2 )

(s − s′) =: rk, (3)

where
∏

{s,s′}∈(Sk
2 )(s− s′) = rk is not a well-defined element of R but only defined up to a

sign (since (s−s′) = −(s′−s) = (−1)·(s′−s) and (−1)·(−1) = −(−1) = 1, in every ring),
depending on how the elements of Sk are labelled. However, whatever specific labelling
one chooses, rk 6= 0 since R does not have zero-divisors. Since the argument below does
not make use of anything more specific about rk than its not being zero, it does not seem
to be worthwhile to introduce a labelling of the elements of each Sk.

Now, using the coefficient families (λ
(Sk)
sk

)sk∈Sk
, define, à la Kouba, the map

Φ : R[x1, . . . , xn] −→ R

g 7−→
∑

(s1,...,sn)∈S1×···×Sn

λ(S1)
s1

· · ·λ(Sn)
sn

· g(s1, . . . , sn). (4)

Due to distributivity of · over + and commutativity of · in an integral domain, Φ is an
R-linear form on the R-module R[x1, . . . , xn]. In particular, for every polynomial f , the
value Φ(f) can be evaluated termwise as

Φ(f) =
∑

t a term in f

Φ(t). (5)

If t = c · x
d′1
1 · · ·x

d′n
n is an arbitrary term in R[x1, . . . , xn], then

Φ(t) = c · Φ(x
d′1
1 · · ·xd′n

n ) = c ·
∑

(s1,...,sn)∈S1×···×Sn

λ(S1)
s1

· · ·λ(Sn)
sn

· s
d′1
1 · · · sd′n

n

= c ·
∑

s1∈S1

· · ·
∑

sn∈Sn

λ(S1)
s1

· · ·λ(Sn)
sn

· s
d′1
1 · · · sd′n

n

= c ·
n

∏

k=1

(

∑

sk∈Sk

λ(Sk)
sk

s
d′

k

k

)

, (6)

where in the last step again use has been made of the commutativity of an integral domain.
By (6) and (2) it follows that for every term t, if there is at least one exponent d′

i with
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d′
i < di, then Φ(t) = 0. Moreover, by the choice of the term c · xd1

1 · · ·xdn

n , every term

c′ · x
d′1
1 · · ·x

d′n
n of f which is different from the term c · xd1

1 · · ·xdn

n must, even if it has itself
maximum degree in f , contain at least one exponent d′

i with d′
i < di. Therefore

∑

(s1,...,sn)∈S1×···×Sn

λ(S1)
s1

· · ·λ(Sn)
sn

· f(s1, . . . , sn)
(4)
= Φ(f)

(5),(6),(2)
= c · Φ(xd1

1 · · ·xdn

n ) =

(6),(3)
= c ·

n
∏

k=1

∏

{s,s′}∈(Sk
2 )

(s − s′) = c ·
n

∏

k=1

rk 6= 0, (7)

since R has no zero-divisors. Obviously this implies that there exists at least one point
(s1, . . . , sn) ∈ S1 × · · · × Sn where f does not vanish.

3 Concluding question

Is there any interesting use for the fact that even in the case of integral domains the
coefficients of Kouba’s map can be explicitly expressed in terms of cofactors of the matrices
(si−1

j )?
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