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Abstract

The trace of a family of sets A on a set X is A|X = {A ∩ X : A ∈ A}. If A is a

family of k-sets from an n-set such that for any r-subset X the trace A|X does not

contain a maximal chain, then how large can A be? Patkós conjectured that, for n

sufficiently large, the size of A is at most
(

n−k+r−1
r−1

)

. Our aim in this paper is to

prove this conjecture.

1 Introduction

Let [n] denote the set of integers {1, 2, . . . , n}. Given a set X we write P(X) for its power
set and X(k) for the set of all its k-element subsets (or k-subsets). The trace of a family
A of sets on a set X is A|X = {A ∩ X : A ∈ A}.

Vapnik and Chervonenkis [8], Sauer [6] and Shelah [7] independently showed that if
A ⊂ P([n]) is a family with more than

∑

k−1
i=0

(

n

i

)

sets, then there is a k-subset X of
[n] such that A|X = P(X). This bound is sharp, as shown for example by the family
{A ⊂ [n] : |A| < k}, but no characterisation for the extremal families is known.

The uniform case of the problem was considered by Frankl and Pach [1]. They proved
that if A ⊂ [n](k) is a family with more than

(

n

k−1

)

sets, then there is a k-subset X of [n]
such that A|X = P(X). This bound is not sharp and was improved later by Mubayi and
Zhao [3], but the exact bound is still unknown.

While the above problems concern families with traces not containing the power set,
Patkós [4, 5] considered the case of families with traces not containing a maximal chain.
Here a maximal chain of a set X is a family of the form X0 ⊂ X1 ⊂ X2 . . . ⊂ Xr = X,
where |Xi| = i for all i. He proved in [5] that if A ⊂ P([n]) is a family with more
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than
∑

k−1
i=0

(

n

i

)

sets, then there is a k-subset X of [n] such that the trace A|X contains
a maximal chain of X, with the only extremal families being {A ⊂ [n] : |A| < k} and
{A ⊂ [n] : |A| > n − k}. This beautiful result is an extension of the result of Vap-
nik and Chervonenkis, Sauer and Shelah. For the k-uniform case, he proved in [4] that
{A ∈ [n](k) : 1 ∈ A} is an extremal family for n sufficiently large: in other words, if
A ⊂ [n](k) has more than

(

n−1
k−1

)

sets, then there is a k-subset X of [n] such that the trace
A|X contains a maximal chain of X. He also proved the stability of this extremal family.
He further conjectured that for any k > r > 2, if n is sufficiently large and A ⊂ [n](k) has
more than

(

n−k+r−1
r−1

)

sets there is an r-subset X of [n] such that the trace A|X contains
a maximal chain of X.

In this paper, we prove this conjecture. Our proof also shows that the only extremal
families are of the form {A ∈ [n](k) : D ⊂ A}, for some (k − r + 1)-subset D of [n].

For n > k and r > 1, we define W (n, k, r) to be the maximum size of a k-uniform family
A ⊂ [n](k) with the property that for any r-subset X the trace A|X does not contain a max-
imal chain of X. Thus, our main result is to show that for k > r, W (n, k, r) =

(

n−k+r−1
r−1

)

,
provided n is sufficiently large:

Theorem 1.1. Let k > r−1. Then there exists an n0(k, r) such that for any n > n0(k, r),
W (n, k, r) =

(

n−k+r−1
r−1

)

.

Patkós [4] proved the case k = r using a stability theorem of Hilton and Milner [2] about
intersecting families. Our proof for the general case, which does not use Patkós’ result, is
self-contained, and in fact also yields a simpler proof of Patkós’ result.

2 Main Result

The idea of the proof is as follows. We split the problem into two cases: the case when A is
intersecting and the case when A is non-intersecting. It turns out that the former case can
be done in a straightforward way by induction. For the latter case, we reduce the problem
to considering extremal families with traces not containing an “almost” maximal chain.
Here, an almost maximal chain of a set X is a maximal chain of X without the empty set,
i.e. a family of the form {X1 ⊂ X2 . . . ⊂ Xr = X : |Xi| = i}. (Interestingly, almost maxi-
mal chains were also considered by Patkós [4].) At this point, it looks like we might need
to further reduce the problem to considering extremal families with traces not containing
an “almost almost” maximal chain and so on. But luckily, this is not the case, as one
can bound the sizes of extremal families with traces not containing an almost maximal
chain in terms of the sizes of extremal families with traces not containing a maximal chain.

For n > k and r > 2, we define U(n, k, r) for the maximum size of a k-uniform fam-
ily A ⊂ [n](k) with the property that for any r-subset X the trace A|X does not contain
an almost maximal chain of X. With this notation, we have the following lemma.
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Lemma 2.1. For k, r > 2, U(n, k, r) 6
n

k
W (n − 1, k − 1, r − 1).

Proof. Let A ⊂ [n](k) be such that for any r-subset X the trace A|X does not contain an
almost maximal chain of X.

For each x ∈ [n], define B{x} = {A ∈ A : x ∈ A}. We then claim that |B{x}| 6

W (n − 1, k − 1, r − 1). Suppose not, then the family C{x} = {B \ {x} : B ∈ B{x}} is a
(k− 1)-uniform family in ([n] \ {x})(k−1) with size greater than W (n− 1, k− 1, r− 1). By
definition, there exists an (r − 1)-subset X not containing x such that the trace (C{x})|X
contains a maximal chain of X. So, (B{x})|X∪{x} contains an almost maximal chain of
X ∪ {x}. This is a contradiction.

By averaging over all possible x, we have |A| 6
n

k
W (n − 1, k − 1, r − 1).

We can now prove our main theorem. Note that for k < r, we have W (n, k, r) =
(

n

k

)

.
Also, W (n, k, 1) = 1.

Proof of Theorem 1.1. We use induction on r, and for fixed r induction on k. The theo-
rem is clearly true for r = 1. So fix r > 1 and suppose that the theorem is true for r − 1
(and all k > r − 2). For our given value of r, the theorem is trivially true for k = r − 1.

Now fix k > r and suppose that the theorem is true for k − 1. Let A ⊂ [n](k) be a
k-uniform family such that for any r-subset X the trace A|X does not contain a maximal
chain of X.

Case 1: A is intersecting.

We may assume
⋂

A∈A A = ∅. Otherwise, let x ∈
⋂

A∈A A, and then by induction, we
have

|A| = |{A \ x : A ∈ A}| 6 W (n − 1, k − 1, r)

=

(

n − k + r − 1

r − 1

)

, as required.

Now let l = min{|A∩B| : A, B ∈ A}: so l > 1. Pick A, B such that |A∩B| = l. We may
then write A = A1 ∪ A2, where A1 = {C ∈ A : C ⊃ A ∩ B} and A2 = A \ A1. Since
⋂

A∈A A = ∅, we have A2 6= ∅. Pick D ∈ A2. Note that (A ∩ B) \ D 6= ∅.

Claim 1. |A1| 6 8k
(

n−k

r−2

)

.

Proof of Claim 1. For each S ⊂ A∪B∪D, define BS = {C ∈ A1 : C∩(A∪B∪D) = S} and
CS = {F \ S : F ∈ BS}. BS is non-empty only if S ⊃ A∩B. Suppose |BS| > W (n− |A∪
B∪D|, k−|S|, r−1), then there exists an (r−1)-subset X ⊂ [n]\(A∪B∪D) such that the
trace CS|X contains a maximal chain of X. Pick a ∈ (A∩B)\D, then BS|X∪{a} contains an
almost maximal chain of X∪{a} and D∩(X∪{a}) = ∅. This is a contradiction as A|X∪{a}

would contain a maximal chain of X∪{a}. Hence, |BS| 6 W (n−k, k−|S|, r−1) 6
(

n−k

r−2

)

.

Summing over all possible sets S, of which there are at most 8k, we have |A1| 6 8k
(

n−k

r−2

)

.
This completes the proof of the claim.
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Claim 2. |A2| 6 4k
(

n−k

r−2

)

.

Proof of Claim 2. As before, for each S ⊂ A∪B, we define BS = {C ∈ A2 : C∩(A∪B) =
S} and CS = {F \ S : F ∈ BS}. By the minimality of l, BS is non-empty only if
S ∩ (A \ B) 6= ∅. Suppose |BS| > W (n − |A ∪ B|, k − |S|, r − 1), then there exists an
(r− 1)-subset X ⊂ [n] \ (A∪B) such that the trace CS|X contains a maximal chain of X.
Pick a ∈ S ∩ (A \ B), then BS |X∪{a} contains an almost maximal chain of X ∪ {a} and
B ∩ (X ∪ {a}) = ∅. This is a contradiction as A|X∪{a} would contain a maximal chain of

X ∪ {a}. Hence, |BS| 6 W (n − k, k − |S|, r − 1) 6
(

n−k

r−2

)

. Summing over all possible sets

S, of which there are at most 4k, we have |A2| 6 4k
(

n−k

r−2

)

. This completes the proof of
the claim.

So |A| = |A1| + |A2| 6 (8k + 4k)
(

n−k

r−2

)

, which is certainly at most
(

n−k+r−1
r−1

)

for n suffi-
ciently large.

Case 2: A is non-intersecting.

Let A and B be in A such that A ∩ B = ∅. We may then write A = A1 ∪ A2, where
A1 = {C ∈ A : C ∩ A 6= ∅} and A2 = A \ A1. It is easy to see that A2 is a k-uniform
family in ([n]\A)(k) such that for any r-subset X in [n]\A the trace A2|X does not contain
an almost maximal chain of X. Indeed, if A2|X contains an almost maximal chain of X

for some r-subset X in [n] \ A, then A|X would contain a maximal chain of X, as A ∈ A
and A ∩ X = ∅. So, by Lemma 2.1, we have

|A2| 6 U(n − k, k, r)

6
n − k

k
W (n − k − 1, k − 1, r − 1)

6
n − k

k
W (n, k − 1, r − 1)

=
n − k

k

(

n − k + r − 1

r − 2

)

=
r − 1

k

(

n − k + r − 1

r − 1

)

.

We are now left to bound the size of A1.

Claim 3. |A1| 6 4k
(

n−k

r−2

)

.

Proof of Claim 3. Again, for each S ⊂ A∪B, we define BS = {C ∈ A1 : C∩ (A∪B) = S}
and CS = {F \ S : F ∈ BS}. BS is non-empty only if S ∩ A 6= ∅. Suppose |BS| >

W (n−|A∪B|, k−|S|, r−1), then there exists an (r−1)-subset X ⊂ [n]\(A∪B) such that
the trace CS|X contains a maximal chain of X. Pick a ∈ S ∩A, then BS |X∪{a} contains an
almost maximal chain of X∪{a} and B∩(X∪{a}) = ∅. This is a contradiction as A|X∪{a}

would contain a maximal chain of X∪{a}. Hence, |BS| 6 W (n−k, k−|S|, r−1) 6
(

n−k

r−2

)

.

Summing over all possible sets S, of which there are at most 4k, we have |A1| 6 4k
(

n−k

r−2

)

.
This completes the proof of the claim.
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So we have

|A| = |A1| + |A2|

6 4k

(

n − k

r − 2

)

+
r − 1

k

(

n − k + r − 1

r − 1

)

.

As k > r − 1, this is certainly at most
(

n−k+r−1
r−1

)

for n sufficiently large.

Note that for a fixed r, equality can only hold (for n sufficiently large) if
⋂

A∈A A 6= ∅ for
each of the induction steps. This shows that the only extremal families are of the form
{A ∈ [n](k) : D ⊂ A}, for some (k − r + 1)-subset D of [n].

3 Remarks

In this section, we give a few remarks relating to the proof of Theorem 1.1.

To give an explicit n0(k, r), we need
(

n−k+r−1
r−1

)

> max{4k
(

n−k

r−2

)

+ r−1
k

(

n−k+r−1
r−1

)

, (8k +

4k)
(

n−k

r−2

)

} and so we can take n0(k, r) = r8k. This is clearly not optimal. A more careful
case analysis shows that n0(k, 2) = 2k and trivially n0(k, 1) = k. This suggests that
n0(k, r) = rk might suffice, but actually we believe that n0(k, r) can be as small as 2k+1.

Conjecture 3.1. For k > r > 3, Theorem 1.1 holds with n0(k, r) = 2k + 1.

Note that this cannot be improved to 2k in general - for example, one can check that
n0(3, 3) = 7.

While we have shown that there is a unique (up to permutation of the ground set) ex-
tremal family for n large, we are also interested in finding extremal families for all n > k.
For the case r = 2 and k + 1 6 n < 2k, [k + 1](k) is the unique (up to permutation)
extremal family.

Conjecture 3.2. Let r > 2. For k + r − 1 6 n < 2k, W (n, k, r) =
(

k+r−1
k

)

and the only

extremal family is of the form [k + r − 1](k). For n > 2k, W (n, k, r) =
(

n−k+r−1
r−1

)

and the

only extremal family is of the form {A ∈ [n](k) : 1, 2, . . . , k − r + 1 ∈ A}.
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