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Abstract

In this short note, we first present a simple bijection between binary trees and

colored ternary trees and then derive a new identity related to generalized Catalan

numbers.
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1 Introduction

Recently, Mansour and the author [2] obtained an identity involving 2-Catalan numbers
Cn,2 = 1

2n+1

(

2n+1
n

)

and 3-Catalan numbers Cn,3 = 1
3n+1

(

3n+1
n

)

, i.e.,

[n/2]
∑

p=0

1

3p + 1

(

3p + 1

p

)(

n + p

3p

)

=
1

2n + 1

(

2n + 1

n

)

. (1.1)

In this short note, we first present a simple bijection between complete binary trees and
colored complete ternary trees and then derive the following generalized identity,

[n/2]
∑

p=0

m

3p + m

(

3p + m

p

)(

n + p + m − 1

n − 2p

)

=
m

2n + m

(

2n + m

n

)

. (1.2)

2 A bijective algorithm for binary and ternary trees

A colored ternary trees is a complete ternary tree such that all its vertices are signed a
nonnegative integer called color number. Let Tn,p denote the set of colored ternary trees
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T with p internal vertices such that the sum of all the color numbers of T is n−2p. Define
Tn =

⋃[n/2]
p=0 Tn,p. Let Bn denote the set of complete binary trees with n internal vertices.

For any B ∈ Bn, let P = v1v2 · · · vk be a path of length k of B (viewed from the root of
B). P is called a R-path, if (1) vi is the right child of vi−1 for 2 6 i 6 k and (2) the left
child of vi is a leaf for 1 6 i 6 k. In addition, P is called a maximal R-path if there exists
no vertex u such that uP or Pu forms a R-path. P is called an L-path, if k > 2 and vi is
the left child of vi−1 for 2 6 i 6 k. P is called a maximal L-path if there exists no vertex
u such that uP or Pu forms an L-path. Clearly, a leaf can never be R-path or L-path.

Note that the definition of L-path is different from that of R-path. Hence, if P is a
maximal R-path, then (1) the right child u of vk must either be a leaf or the left child of
u is not a leaf; (2) v1 must either be a left child of its father (if exists) or the father of v1

has a left child which is not a leaf. If P is a maximal L-path, then (1) vk must be a leaf
which is also a left child of vk−1; (2) v1 must be the right child of its father (if exists).

Theorem 2.1 There exists a simple bijection φ between Bn and Tn.

Proof. We first give the procedure to construct a complete binary tree from a colored
complete ternary tree.

Step 1. For each vertex v of T ∈ Tn with color number cv = k, remove the color number
and add an R-path P = v1v2 · · · vk of length k to v such that v is a right child of
vk and v1 is a child of the father (if exists) of v, and then annex a left leaf to vi

for 1 6 i 6 k. See Figure 1(a) for example.
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Step 2. Let T ∗ be the tree obtained from T by Step 1. For any internal vertex v of T ∗

which has out-degree 3, let T1, T2 and T3 be the three subtrees of v. Remove the
subtrees T1 and T2 , annex a left child v′ to v and take T1 and T2 as the left and
right subtrees of v′ respectively. See Figure 1(b) for example.

It is clear that any T ∈ Tn, after Step 1 and 2, generates a binary tree B ∈ Bn.
Conversely, we can obtain a colored ternary tree from a complete binary tree as follows.
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Step 3. Choose any maximal L-path of B ∈ Bn of length k (according to its definition,
k > 2), say P = v1v2 · · · vk, then each v2i−1 absorbs its left child v2i for 1 6 i 6

[k/2]. This operation guarantees the resulting vertices v2i−1 are of out-degree 3
for 1 6 i 6 [k/2] and vk is always a leaf if k is odd. See Figure 2(a) for example.
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Step 4. Choose any maximal R-path of T ′ derived from B by Step 3 (note that any
maximal R-path is not changed after this operation), say Q = u1u2 · · ·uk, let u
be the right child of uk, then u absorbs all the vertices u1, u2, . . . , uk and assign
the color number cu = k to u. Any remaining leaf is assigned a 0 at the end of
the process. See Figure 2(b) for example. Hence we get a colored ternary tree.

Given a complete ternary tree T with p internal vertices, there are a total number
of 3p + 1 vertices, choose n − 2p vertices with repetition allowed and define the color
number of a vertex to be the number of times that vertex is chosen. Then there are
(

n+p
n−2p

)

colored ternary trees in Tn generated by T . Note that 1
3p+1

(

3p+1
p

)

and 1
2n+1

(

2n+1
n

)

count the number of complete ternary trees with p internal vertices and complete binary
trees with n internal vertices respectively [3]. Then the bijection φ immediately leads to
(1.1).

To prove (1.2), consider the forest of colored ternary trees F = (T1, T2, . . . , Tm) with
Ti ∈ Tni

and n1 + n2 + · · · + nm = n, define φ(F ) = (φ(T1), φ(T2), . . . , φ(Tm)), then it is
clear that φ is a bijection between forests of colored ternary trees and forests of complete
binary trees. Note that there are totally m+3p vertices in a forest F of complete ternary
trees with m components and p internal vertices, so there are

(

m+n+p−1
n−2p

)

forests of colored
ternary trees with m components, p internal vertices and the sum of color numbers equal
to n − 2p. It is clear from [3] that m

3p+m

(

3p+m
p

)

counts the number of forests of complete

ternary trees with p internal vertices and m components, and that m
2n+m

(

2n+m
n

)

counts
the number forests of complete binary trees with n internal vertices and m components.
Then the above bijection φ immediately leads to (1.2).
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Remark: A similar type of bijection is presented by Edelman [1] in terms of non-
crossing partitions.

3 Further comments

It is well known [3] that the k-Catalan number Cn,k = 1
kn+1

(

kn+1
n

)

counts the number of
complete k-ary trees with n internal vertices, whose generating function Ck(x) satisfies

Ck(x) = 1 + xCk(x)k.

Let G(x) = 1
1−x

C3(
x2

(1−x)3
), then one can deduce that

G(x) =
1

1 − x
C3(

x2

(1 − x)3
)

=
1

1 − x
(1 +

x2

(1 − x)3
C3(

x2

(1 − x)3
)3)

=
1

1 − x
(1 + x2G(x)3),

which generates that G(x) = C2(x), the generating function for 2-Catalan numbers.
By the Lagrange inversion formula, we have

C3(x)m =
∑

p>0

m

3p + m

(

3p + m

p

)

xp,

C2(x)m =
∑

n>0

m

2n + m

(

2n + m

n

)

xn.

Then

G(x)m =
∑

p>0

m

3p + m

(

3p + m

p

)

x2p

(1 − x)3p+m

=
∑

n>0

xn

[n/2]
∑

p=0

m

3p + m

(

3p + m

p

)(

n + p + m − 1

n − 2p

)

.

Comparing the coefficient of xn in C2(x)m and G(x)m, one obtains (1.2).

Similarly, let F (x) = 1
1−x

Ck(
xk−1

(1−x)k ), then F (x) = 1+xF (x)
1−xk−1F (x)k−1 , using the Lagrange

inversion formula for the case k = 5, one has

[n/4]
∑

p=0

m

5p + m

(
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p

)(

n + p + m − 1

n − 4p

)

(3.1)

=

[n/2]
∑

p=0
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m + n

(

m + n + p − 1

p
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m + 2n − 2p − 1
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)

,
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which, in the case m = 1, leads to

[n/4]
∑

p=0

1

4p + 1

(

5p

p

)(

n + p

5p

)

=

[n/2]
∑

p=0

(−1)p 1

n + 1

(

n + p

n

)(

2n − 2p

n

)

. (3.2)

One may ask to give a combinatorial proof of (3.1) or (3.2). Later, based on the idea
of our bijection, Yan [4] provided nice proofs for them.
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