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Abstract

A rainbow subgraph of an edge-colored graph is a subgraph whose edges have
distinct colors. The color degree of a vertex v is the number of different colors on
edges incident to v. Wang and Li conjectured that for k > 4, every edge-colored
graph with minimum color degree at least k contains a rainbow matching of size
at least ⌈k/2⌉. We prove the slightly weaker statement that a rainbow matching of
size at least ⌊k/2⌋ is guaranteed. We also give sufficient conditions for a rainbow
matching of size at least ⌈k/2⌉ that fail to hold only for finitely many exceptions
(for each odd k).

1 Introduction

Given a coloring of the edges of a graph, a rainbow matching is a matching whose edges

have distinct colors. The study of rainbow matchings began with Ryser, who conjectured

that every Latin square of odd order contains a Latin transversal [3]. An equivalent

statement is that when n is odd, every proper n-edge-coloring of the complete bipartite

graph Kn,n contains a rainbow perfect matching.

Wang and Li [4] studied rainbow matchings in arbitrary edge-colored graphs. We use

the model of graphs without loops or multi-edges. The color degree of a vertex v in an

edge-colored graph G, written d̂G(v), is the number of different colors on edges incident

to v. The minimum color degree of G, denoted δ̂(G), is minv∈V (G) d̂G(v).

Wang and Li [4] proved that every edge-colored graph G contains a rainbow matching

of size at least ⌈5δ̂(G)−3
12

⌉. They conjectured that a rainbow matching of size at least
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⌈δ̂(G)/2⌉ can be guaranteed when δ̂(G) > 4. A properly 3-edge-colored complete graph

with four vertices has no rainbow matching of size 2, but Li and Xu [2] proved the

conjecture for all larger properly edge-colored complete graphs. Proper edge-colorings of

complete graphs using the fewest colors show that the conjecture is sharp.

We strengthen the bound of Wang and Li for general edge-colored graphs, proving the

conjecture when δ̂(G) is even. When δ̂(G) is odd, we obtain various sufficient conditions

for a rainbow matching of size ⌈δ̂(G)/2⌉. Our results are the following:

Theorem 1.1. Any edge-colored graph G has a rainbow matching of size at least ⌊δ̂(G)/2⌋.

Theorem 1.2. Each condition below guarantees that an edge-colored graph G has a rain-

bow matching of size at least ⌈δ̂(G)/2⌉.

(a) G contains more than 3(δ̂(G)−1)
2

vertices.

(b) G is triangle-free.

(c) G is properly edge-colored, G 6= K4, and |V (G)| 6= δ̂(G) + 2.

Condition (a) in Theorem 1.2 implies that, for each odd k, only finitely many edge-colored

graphs with minimum color degree k can fail to have a rainbow matching of size ⌈k/2⌉,

where an edge-coloring is viewed as a partition of the edge set. Condition (c) guarantees

that failure for a properly edge-colored graph can occur only for K4 or a graph obtained

from Kk+2 by removing a matching.

A survey on rainbow matchings and other rainbow subgraphs appears in [1]. Subgraphs

whose edges have distinct colors have also been called heterochromatic, polychromatic, or

totally multicolored, but “rainbow” is the most common term.

2 Notation and Tools

Let G be an n-vertex edge-colored graph other than K4, and let k = δ̂(G). If n = k + 1,

then G is a properly edge-colored complete graph and has a rainbow matching of size

⌈k/2⌉, by the result of Li and Xu [2]. Therefore, we may assume that n > k + 2.

Let M be a subgraph of G whose edges form a largest rainbow matching, and let

c = k/2 − |E(M)|. We may assume throughout that c > 1/2, since otherwise G has a

rainbow matching of size ⌈k/2⌉. Let H be the subgraph induced by V (G) − V (M), and

let p = |V (H)|. Note that p = n− (k−2c). Since n > k +2, we conclude that p > 2c+2.

Let A be the spanning bipartite subgraph of G whose edge set consists of all edges

joining V (M) and V (H) (see Figure 1). We say that a vertex v is incident to a color

if some edge incident to v has that color. A vertex u ∈ V (M) is incident to at most

|V (M)| − 1 colors in the subgraph induced by V (M), so u is incident to at least 2c + 1

colors in A. That is,

d̂A(u) > 2c + 1. (1)
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Figure 1: V (M) and V (H) partition V (G).

We say that a color appearing in G is free if it does not appear on an edge of M . Let B

denote the spanning subgraph of A whose edges have free colors. We prove our results by

summing the color degrees in B of the vertices of H . We find upper and lower bounds for

d̂B(V (H)), where f(S) =
∑

s∈S f(s) when f is defined on elements of S. These bounds

will yield a contradiction when c is too large, that is, when M is too small.

There are only k/2 − c non-free colors, so a vertex w ∈ V (H) is incident to at least

k/2+ c free colors. By the maximality of M , no free color appears in H , so the free colors

incident to w occur on edges of B. That is, d̂B(w) > k/2 + c. Summing over V (H) yields

d̂B(V (H)) > p(k/2 + c). (2)

Let the edges of M be u1v1, . . . , uk/2−cvk/2−c. For 1 6 j 6 k/2 − c, let Bj be the

subgraph of B induced by V (H) ∪ {uj, vj}. Note that d̂Bj
(w) 6 2 for w ∈ V (H).

Lemma 2.1. If at least three vertices in V (H) have positive color degree in Bj, then only

one such vertex can have color degree 2 in Bj. Furthermore,

d̂Bj
(V (H)) 6 p + 1. (3)

Proof. Let w1, w2, and w3 be vertices of H such that d̂Bj
(w1) = d̂Bj

(w2) = 2 and d̂Bj
(w3) >

1. By symmetry, we may assume that w3vj ∈ E(Bj). Maximality of M requires ujw1 and

vjw2 to have the same color. Since d̂Bj
(w2) = 2, the color on ujw2 differs from this. Now

ujw1 or ujw2 has a color different from vjw3, which yields a larger rainbow matching.

Now consider d̂Bj
(V (H)). Since p > 2c+2, we have p > 3. If d̂Bj

(V (H)) > p+2, then

d̂B(w) 6 2 for all w ∈ V (H) requires that there be three vertices as forbidden above.

For p > 4, the next lemma determines the structure of Bj when d̂Bj
(V (H)) = p + 1.

Let NG(x) denote the neighborhood of a vertex x in a graph G.
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Lemma 2.2. For p > 4, if d̂Bj
(V (H)) = p + 1 for some j, then

(a) K3 ⊆ G,

(b) G is not properly edge-colored, and

(c) c 6 1/2.

Proof. Since p + 1 > 5, at least three vertices of H have positive color degree in Bj . Now

Lemma 2.1 requires that there be one vertex w such that d̂Bj
(w)=2, while d̂Bj

(w′) = 1

for each other vertex w′ in V (H). Now {uj, vj , w} induces a triangle in G. Let λ1 and λ2

be the colors on ujw and vjw, respectively. Partition V (H)−{w} into two sets by letting

U = NBj
(uj) − {w} and V = NBj

(vj) − {w}. By the maximality of M , all edges joining

uj to U have color λ2, and all edges joining vj to V have color λ1. If U and V are both

nonempty, then replacing ujvj with edges to each yields a larger rainbow matching in G.

Hence U or V is empty and the other has size p− 1. Now G is not properly edge-colored

and either d̂A(uj) 6 2 or d̂A(vj) 6 2. By (1), 2c + 1 6 2 and c 6 1/2.

3 Proof of the Main Results

Theorem 1.1. Every edge-colored graph with minimum color degree k has a rainbow

matching of size at least ⌊k/2⌋.

Proof. In the previous notation, the maximum size of a rainbow matching is k/2− c, and

p > 2c + 2. Thus p 6 3 implies c 6 1/2. If p > 4 and c > 1, then Lemma 2.2(c) yields

d̂B(V (H)) 6
∑k/2−c

j=1 d̂Bj
(V (H)) 6 p(k/2 − c), which contradicts (2).

Theorem 1.2. Each condition below guarantees that an n-vertex edge-colored graph G

with minimum color degree k has a rainbow matching of size at least ⌈k/2⌉.

(a) n > 3(k−1)
2

.

(b) G is triangle-free.

(c) G is properly edge-colored, G 6= K4, and n 6= k + 2.

Proof. If G has no rainbow matching of size ⌈k/2⌉, then Theorem 1.1 yields c = 1/2 in the

earlier notation. Now (3) implies d̂B(V (H)) 6
∑k/2−1/2

j=1 d̂Bj
(V (H)) 6 (p + 1)(k/2− 1/2).

Combining this with (2) yields p(k/2 + 1/2) 6 (p + 1)(k/2 − 1/2), which simplifies to

p 6 (k − 1)/2. Hence n 6 3(k − 1)/2.

If G is a properly edge-colored complete graph other than K4, then the result of Li and

Xu [2] suffices. If G is triangle-free or properly edge-colored with at least k + 3 vertices,

then p > 4 and Lemma 2.2 yield d̂B(V (H)) 6 p(k/2−c), which again contradicts (2).
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