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Abstract

The unitary Cayley graph on n vertices, Xn, has vertex set Z

nZ
, and two vertices

a and b are connected by an edge if and only if they differ by a multiplicative unit
modulo n, i.e. gcd(a − b, n) = 1. A k-regular graph X is Ramanujan if and only if
λ(X) 6 2

√
k − 1 where λ(X) is the second largest absolute value of the eigenvalues

of the adjacency matrix of X. We obtain a complete characterization of the cases
in which the unitary Cayley graph Xn is a Ramanujan graph.

1 Unitary Cayley graphs

Given a finite additive abelian group G and a symmetric subset S of G, we define the
Cayley graph X(G, S) to be the graph whose vertex set is G, and in which two vertices v
and w in G are connected by an edge if and only if v − w is in S. A Cayley graph of the
form X(G, S) with G = Z

nZ
is called a circulant graph.

The unitary Cayley graph on n vertices, Xn, is defined to be the undirected graph
whose vertex set is Z

nZ
, and in which two vertices a and b are connected by an edge if and

only if gcd(a− b, n) = 1. This can also be stated as Xn = X
(

Z

nZ
,
(

Z

nZ

)∗)
, where Z

nZ
is the

additive group of integers modulo n and
(

Z

nZ

)∗
is the set of multiplicative units modulo

n. It is easy to see that Xn is a simple, ϕ(n)-regular graph, where ϕ is the Euler totient
function. Here ϕ(n) is defined by ϕ(1) = 1, and for an integer n > 1 with distinct prime
power factorization pe0

0 pe1

1 · · · pet

t for distinct primes p0, · · · , pt and nonnegative integers
e0, · · · , et, with t > 0, ϕ(n) = pe0−1

0 · · · pet−1
t (p0 − 1) · · · (pt − 1).

The eigenvalues of the adjacency matrix of X(G, S) for an abelian group G and sym-
metric subset S are

λm =
∑

s∈S

χm(s), (1)

for m = 0, · · · , |G| − 1, where χ0, · · · , χ|G|−1 are the irreducible characters of G (see, for
example, [Murty (2003)]). We therefore have the following lemma (see [Klotz, W. and
Sander, T. (2007)], for example).
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Lemma 1.1 The eigenvalues of any adjacency matrix of Xn are

λm(n) =
∑

a, (a,n)=1

e
2iπam

n , m = 0, . . . , n − 1. (2)

In fact, these are Ramanujan sums, which are known to have the simpler closed form

λm(n) = µ

(

n

(n, m)

)

ϕ(n)

ϕ
(

n
(n,m)

) , (3)

where µ is the Möbius function and ϕ is the Euler totient function (see [Murty (2003)], for
example). Recall that the Möbius function µ is defined for positive integers n by µ(n) = 0
if n is not square-free, µ(n) = 1 if n is square-free and has an even number of distinct
prime factors, and µ(n) = −1 if n is square-free and has an odd number of distinct prime
factors. Since the Möbius function is zero at non-square-free arguments, the eigenvalue
corresponding to m, 0 6 m 6 n − 1 is nonzero if and only if n

(n,m)
is square-free. When

n
(n,m)

is square-free,

|λm(n)| =
ϕ(n)

ϕ
(

n
(n,m)

) . (4)

Recall that the adjacency matrix of any k-regular graph X has eigenvalues between
−k and k, and k is an eigenvalue with multiplicity precisely equal to the number of
connected components of X. Furthermore, if λ(X) denotes the largest absolute value of
the eigenvalues of the adjacency matrix of X, smaller than k, then the graph X is called
Ramanujan if and only if

λ(X) 6 2
√

k − 1. (5)

Note that λ(X) is only defined for regular graphs X with 3 or more vertices, so when
discussing Xn, we always assume n > 3. Writing n in the form 2spe1

1 pe2

2 · · · pet

t for some
distinct odd primes p1 < p2 < · · · < pt, nonnegative integer s, and positive integers
e1, · · · , et, we can determine λ(Xn) as follows. Since Xn is ϕ(n)-regular, we find the
maximum absolute value of an eigenvalue λm(n) of the adjacency matrix of Xn, smaller
than ϕ(n). This can be accomplished by looking at (3).

Indeed, we see that if t = 0 then n = 2s and the eigenvalues have absolute value of
either 0 or ϕ(n) (since the only values of m, 0 6 m 6 n− 1, which make n

(n,m)
square-free

are m = 0 and m = 2s−1, resulting in eigenvalues ϕ(n) and −ϕ(n)). Thus λ(X2s) = 0
and so X2s satisfies (5) and thus is Ramanujan. To consider the case t > 0, we adopt
the notation max(a, 0) = (a)+ for any a. Then, if t > 0 and n

(n,m)
is to be squarefree,

m must clearly be divisible by 2(s−1)+pe1−1
1 ...pet−1

t . Looking at (4), it is apparent that
m = n/p1 maximizes the absolute value of λm(n) while keeping it smaller than ϕ(n),

since this choice minimizes the quantity ϕ
(

n
(n,m)

)

while keeping its value greater than 1,

with n
(n,m)

square-free (We can not take m = n/2, since ϕ
(

n
n/2

)

= ϕ(2) = 1.) Thus for
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t > 0, we have

λ(Xn) =
ϕ(n)

ϕ
(

n
(n/p1)

)

=
ϕ(n)

p1 − 1
(6)

= 2(s−1)+pe1−1
1 · · · pet−1

t (p2 − 1) · · · (pt − 1). (7)

We can use this to restate (5) in a simpler form for Xn when t > 1. Xn is Ramanujan
if and only if

λ(Xn) =
ϕ(n)

p1 − 1
6 2

√

ϕ(n) − 1. (8)

By noting that (8) implies ϕ(n)
p1−1

< 2
√

ϕ(n), we easily obtain that a necessary condition
for Xn to be Ramanujan when t > 1 is

ϕ(n)

p1 − 1
< 4(p1 − 1). (9)

We now have the tools to state and prove our main result.

Theorem 1.2 The graph Xn is Ramanujan if and only if n satisfies one of the following

conditions for some distinct odd primes p < q and natural s.

(a) n = 2s, s > 2

(b) n = p

(c) n = 2sp with s > 1, p > 2s−3 + 1

(d) n = p2, 2p2, 4p2

(e) n = pq, 2pq with p < q 6 4p − 5

(f) n = 4pq with p < q 6 2p − 3

Proof As in our discussion above, n = 2spe1

1 · · · pet

t . If t > 3 then

ϕ(n)

p1 − 1
> pe1−1

1 pe2−1
2 pe3−1

3 (p2 − 1)(p3 − 1) > 4(p1 − 1),

since p1 < p2 < p3 are odd primes, and p2 − 1 > p1 − 1 and p3 − 1 > 4. This violates the
necessary condition (9). Thus we see that if t > 3 (i.e. n has at least three distinct odd
prime factors), then Xn is not Ramanujan.

This shows that any n for which Xn is Ramanujan must have at most two distinct odd
prime factors, i.e. t 6 2. We have already shown in our earlier discussion that if t = 0 (i.e.
n = 2s, as in case (a)), then Xn is Ramanujan. Next, we consider t = 2, i.e. n = 2spbqc

for some distinct odd primes p < q, nonnegative integer s, and positive integers b, c. By
(9), the graph Xn will not be Ramamujan if

ϕ(n)

p − 1
= 2(s−1)+pb−1qc−1(q − 1) > 4(p − 1).
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This inequality holds unless b = c = 1 and s 6 2, since if s > 2 we have 2(s−1)+ > 4 and
q − 1 > p − 1, and if c > 1 or b > 1, we have q − 1 > 4 and pb−1qc−1 > p − 1. Thus if
t = 2, Xn is Ramanujan only if n has the form pq, 2pq, or 4pq. If n = pq or n = 2pq, we
have ϕ(n)

p−1
= (q − 1), and the Ramanujan condition (8) is

q − 1 =
ϕ(n)

p − 1
6 2

√

ϕ(n) − 1 = 2
√

(p − 1)(q − 1) − 1,

which is easily seen to be equivalent to

q − 1 6 4(p − 1) − 4

q − 1
.

Noting that p < q are odd primes, and in particular q > 5 (so 4
q−1

6 1), we see that

this implies q 6 4p − 5, as in case (e) above, and it is straightforward to check that the

converse holds as well. On the other hand, if n = 4pq, we have ϕ(n)
p−1

= 2(q − 1), and the

Ramanujan condition (8) is

ϕ(n)

p − 1
= 2(q − 1) 6 2

√

2(p − 1)(q − 1) − 1 = 2
√

ϕ(n) − 1,

which, similarly, is equivalent to

q − 1 6 2(p − 1) − 1

q − 1
.

Again, we note that p < q are odd primes, and q > 5 (so 1
q−1

< 1), to see that the

above line is equivalent to q 6 2p − 3, as in case (f). Thus we see that cases (e) and (f)
completely characterize the values of n with exactly two distinct odd prime factors such
that Xn is Ramanujan, as we wanted.

Finally we must consider the case t = 1, i.e. n has exactly one odd prime factor. Here
n = 2spb for some odd prime p, nonnegative integer s, and positive integer b. If n is prime,
i.e. s = 0, b = 1, then the graph Xn is easily seen to be the complete graph on n vertices,
which is well-known to be Ramanujan [Murty (2003)]. More generally, with n = 2spb, we
see that by (9), Xn will not be Ramanujan if

ϕ(n)

p − 1
= 2(s−1)+pb−1

> 4(p − 1).

This holds unless b = 1 and s is sufficiently small compared to p, or b = 2 and s 6 2,
since otherwise, pb−1 > (p − 1), and 2s−1 > 4 for s > 3. Suppose b = 2 and s 6 2.
Since ϕ(2p2) = ϕ(p2) = p(p − 1), the cases s = 0 and s = 1 are identical, because the
Ramanujan condition (8) depends only on ϕ(n). It is straightforward to check that if
n = p2 or 2p2, then

p =
ϕ(n)

p − 1
6 2

√

ϕ(n) − 1 = 2
√

p(p − 1) − 1,
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while if n = 4p2, then

2p =
ϕ(n)

p − 1
6 2

√

ϕ(n) − 1 = 2
√

2p(p − 1) − 1,

i.e. the Ramanujan condition (8) is satisfied in these three cases, and thus Xp2, X2p2 ,
and X4p2 are all Ramanujan for any odd prime p, as claimed in case (d). The final case

to consider is b = 1 and s > 1. In this case n = 2sp and ϕ(n)
p−1

= 2s−1. The Ramanujan

condition (8) is

2s−1 =
ϕ(n)

p − 1
6 2

√

ϕ(n) − 1 = 2
√

2s−1(p − 1) − 1,

which is easily rearranged to
p > 2s−3 + 21−s + 1.

Thus we see that for s > 1, X2sp is Ramanujan whenever p > 2s−3 +21−s +1. Since p > 3
is an odd prime, it is easily verified that this is equivalent to p > 2s−3 + 1, as claimed in
case (c).

We have now examined all possible cases for the prime decomposition of n, so we are
done.

2 Concluding remarks

We have completely characterized which unitary Cayley graphs are Ramanujan. We
remark that every case of Theorem 1 gives rise to infinite families of Ramanujan graphs
in this form. As shown by Murty in [Murty (2005)], it is impossible to construct an infinite
family of k-regular abelian Cayley graphs which are all Ramanujan for any particular k.
However, finding examples of Ramanujan graphs in the way that we have presented here
is still of some interest. It is also interesting to remark on some other work that has been
done on unitary Cayley graphs. Various properties of the graph Xn were determined in
[Klotz, W. and Sander, T. (2007)], including the chromatic number, the clique number,
the independence number, the diameter, and the vertex connectivity, in addition to some
work on the eigenvalues. The energy of Xn was determined and studied independently
in [Ilić (2009)] and [Ramaswamy, H.N. and Veena, C.R. (2009)]. It is also interesting to
note that [Ramaswamy, H.N. and Veena, C.R. (2009)] hints at a new approach to finding
the eigenvalues of Xn using properties of the graph instead of relying on their expression
as Ramanujan sums.

Another point of interest arises in noting that unitary Cayley graphs are examples
of connected circulant integral graphs. A recent paper by Wasin So (see [So (2005)])
characterizes the family of integral circulant graphs, and it is worth noting that this
entire family of graphs may easily be constructed from the graphs Xn which we have
discussed in this paper. This fact naturally invites attempting to apply the results of
Theorem 1 to larger families of integral circulant graphs.

For further discussion on the topic of Ramanujan graphs, one is invited to look at
[Murty (2003)].
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