A New Approach to the Dyson Coefficients

Sabrina X.M. Pang
College of Mathematics and Statistics
Hebei University of Economics and Business
Shijiazhuang 050061, P.R. China
stpangxingmei@heuet.edu.cn
Lun Lv*
School of Science
Hebei University of Science and Technology
Shijiazhuang 050018, P.R. China
klunlv@gmail.com

Submitted: Feb 16, 2010; Accepted: Aug 16, 2010; Published: Aug 24, 2010
Mathematics Subject Classifications: 05A30, 33D70

Abstract

In this paper, we introduce a direct method to evaluate the Dyson coefficients.

1 Introduction

In 1962, Dyson [2] conjectured the following constant term identity.
Theorem 1.1 (Dyson's Conjecture). For nonnegative integers $a_{1}, a_{2}, \ldots, a_{n}$,

$$
\underset{\mathbf{x}}{\mathrm{CT}} D_{n}(\mathbf{x}, \mathbf{a})=\frac{\left(a_{1}+a_{2}+\cdots+a_{n}\right)!}{a_{1}!a_{2}!\cdots a_{n}!},
$$

where $\mathrm{CT}_{\mathbf{x}} f(\mathbf{x})$ denotes the constant term and

$$
D_{n}(\mathbf{x}, \mathbf{a}):=\prod_{1 \leqslant i \neq j \leqslant n}\left(1-\frac{x_{i}}{x_{j}}\right)^{a_{i}} . \quad \text { (Dyson product) }
$$

*Corresponding author

Dyson's conjecture was proved independently by Gunson [5] and Wilson [11]. In 1970, a brief and elegant proof was published by Good [4]. Later Zeilberger [13] gave a combinatorial proof.

The q-analog of Theorem 1.1 was conjectured by Andrews [1] in 1975, and was first proved, combinatorially, by Zeilberger and Bressoud [14]. Recently, Gessel and Xin [3] gave a different proof by using properties of formal Laurent series.

In recent years, there has been increasing interest in evaluating the coefficients of monomials $M:=\prod_{i=1}^{n} x_{i}^{b_{i}}$, where $\sum_{i=1}^{n} b_{i}=0$, in the Dyson product. Based on Good's proof, Kadell [6] gave three non-constant term coefficients. Sills and Zeilberger [10] described an algorithm that automatically conjectures and proves closed-form expressions. Later, Sills [9] extended Good's idea and obtained the closed-form expressions for M being $\frac{x_{s}}{x_{r}}, \frac{x_{s} x_{t}}{x_{r}^{2}}, \frac{x_{t} x_{u}}{x_{r} x_{s}}$, respectively. By virtue of Zeilberger and Sills' Maple package GoodDyson, Lv, Xin and Zhou [7] found two closed-form expressions for M that has a square in the numerator. Moreover, by generalizing Gessel-Xin's method [3] for proving the ZeilbergerBressoud q-Dyson Theorem, Lv, Xin and Zhou [8] established a family of q-Dyson style constant term identities.

In this note, we propose a direct calculation approach to evaluating the coefficients in the Dyson product, and illustrate this approach through the case of $M=x_{r}^{2} / x_{s}^{2}$. The applications of our method to other cases like $M=\frac{x_{r}^{2}}{x_{s} x_{t}}, M=\frac{x_{r}}{x_{s}}$ are analogous, and thus omitted. More explicitly, we will show that our approach leads to the following theorem.
Theorem 1.2 (Theorem $1.2[7])$. Let r and s be distinct integers with $1 \leqslant r, s \leqslant n$. Then

$$
\begin{equation*}
\underset{\mathbf{x}}{\mathrm{CT}} \frac{x_{s}^{2}}{x_{r}^{2}} D_{n}(\mathbf{x}, \mathbf{a})=\frac{a_{r}}{\left(1+a^{(r)}\right)\left(2+a^{(r)}\right)}\left[\left(a_{r}-1\right)-\sum_{\substack{i=1, i \neq r, s}}^{n} \frac{a_{i}(1+a)}{\left(1+a^{(r)}-a_{i}\right)}\right] C_{n}(\mathbf{a}), \tag{1.1}
\end{equation*}
$$

where $a:=a_{1}+a_{2}+\cdots+a_{n}, a^{(j)}:=a-a_{j}$ and $C_{n}(\mathbf{a}):=\frac{\left(a_{1}+a_{2}+\cdots+a_{n}\right)!}{a_{1}!a_{2}!\cdots a_{n}!}$.

2 A New Approach to Theorem 1.2

In this section, we will deduce the coefficient for $M=\frac{x_{r}^{2}}{x_{s}^{2}}$. By induction on n, we have the following identity,

$$
\begin{equation*}
\sum_{k=2}^{n} \frac{(m+k-1)!}{(k-2)!}=\frac{(m+n)!}{(m+2)(n-2)!}, m, n \in \mathbb{N} . \tag{2.1}
\end{equation*}
$$

Let

$$
\Delta\left(x_{1}, x_{2}, \ldots, x_{n}\right):=\prod_{i<j}\left(x_{i}-x_{j}\right)=\left|\begin{array}{cccc}
x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1} \\
x_{1}^{n-2} & x_{2}^{n-2} & \cdots & x_{n}^{n-2} \\
\vdots & \vdots & \vdots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right|
$$

be the Vandermonde determinant in $x_{1}, x_{2}, \ldots, x_{n}$. Then [12] presents the following result.

Lemma 2.1 (Lemma 1-2.12, [12]). For each $i=1,2, \ldots, n$, if $f\left(x_{i}\right) \in \mathbb{C}\left(\left(x_{i}\right)\right)$, then we have

$$
\begin{align*}
\partial_{x_{2}} \partial_{x_{3}} \cdots \partial_{x_{n}} f\left(x_{1}\right) & =\Delta\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{-1}\left|\begin{array}{cccc}
f\left(x_{1}\right) & f\left(x_{2}\right) & \cdots & f\left(x_{n}\right) \\
x_{1}^{n-2} & x_{2}^{n-2} & \cdots & x_{n}^{n-2} \\
\vdots & \vdots & \vdots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right| \tag{2.2}\\
& =\sum_{i=1}^{n} \frac{f\left(x_{i}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} \tag{2.3}
\end{align*}
$$

where $\partial_{a} f(x):=\frac{f(x)-f(a)}{x-a}$.
The following lemma is vital to our approach.
Lemma 2.2 (Main Lemma). For $n \geqslant 2$, we have

$$
\begin{equation*}
\frac{V_{1}}{x_{1}}+\frac{V_{2}}{x_{2}}+\cdots+\frac{V_{n}}{x_{n}}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}, \tag{2.4}
\end{equation*}
$$

where $V_{m}:=\prod_{\substack{i=1 \\ i \neq m}}^{n}\left(1-\frac{x_{m}}{x_{i}}\right)^{-1}$ for $m=1,2, \ldots, n$.
Proof. Let $f\left(x_{i}\right)=\frac{1}{x_{i}^{2}}$ for $i=1,2, \ldots, n$. First we claim that

$$
\begin{equation*}
\partial_{x_{2}} \partial_{x_{3}} \cdots \partial_{x_{n}} f\left(x_{1}\right)=\frac{(-1)^{n-1}}{x_{1} x_{2} \cdots x_{n}}\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}\right) . \tag{2.5}
\end{equation*}
$$

We prove (2.5) by induction on n. Clearly, (2.5) holds when $n=2$. Assume that (2.5) holds with n replaced by $n-1$. Then we have

$$
\begin{aligned}
\partial_{x_{2}} \partial_{x_{3}} & \cdots \partial_{x_{n}} f\left(x_{1}\right)=\partial_{x_{2}}\left[\frac{(-1)^{n-2}}{x_{1} x_{3} \cdots x_{n}}\left(\frac{1}{x_{1}}+\frac{1}{x_{3}}+\cdots+\frac{1}{x_{n}}\right)\right] \quad \text { by induction hypothesis } \\
& =\frac{\left[\frac{(-1)^{n-2}}{x_{1} x_{3} \cdots x_{n}}\left(\frac{1}{x_{1}}+\frac{1}{x_{3}}+\cdots+\frac{1}{x_{n}}\right)\right]-\left[\frac{(-1)^{n-2}}{x_{2} x_{3} \cdots x_{n}}\left(\frac{1}{x_{2}}+\frac{1}{x_{3}}+\cdots+\frac{1}{x_{n}}\right)\right]}{x_{1}-x_{2}} \\
& =\frac{(-1)^{n-2}}{x_{3} \cdots x_{n}}\left[\left(\frac{1}{x_{1}^{2}}-\frac{1}{x_{2}^{2}}\right)+\left(\frac{1}{x_{1} x_{3}}-\frac{1}{x_{2} x_{3}}\right)+\cdots+\left(\frac{1}{x_{1} x_{n}}-\frac{1}{x_{2} x_{n}}\right)\right] \frac{1}{x_{1}-x_{2}} \\
& =\frac{(-1)^{n-2}}{x_{3} \cdots x_{n}}\left[-\frac{x_{1}+x_{2}}{x_{1}^{2} x_{2}^{2}}-\frac{1}{x_{1} x_{2} x_{3}}-\cdots-\frac{1}{x_{1} x_{2} x_{n}}\right] \\
& =\frac{(-1)^{n-1}}{x_{1} x_{2} \cdots x_{n}}\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}\right) .
\end{aligned}
$$

Furthermore, it follows by (2.3) that

$$
\begin{aligned}
& \sum_{i=1}^{n} \frac{1 / x_{i}^{2}}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}=\frac{(-1)^{n-1}}{x_{1} x_{2} \cdots x_{n}}\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}\right) \\
\Leftrightarrow & x_{1} x_{2} \cdots x_{n} \sum_{i=1}^{n} \frac{1 / x_{i}^{2}}{\prod_{j \neq i}\left(x_{j}-x_{i}\right)}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}} \\
\Leftrightarrow & \sum_{i=1}^{n} \frac{1}{x_{i}} \cdot \frac{1}{\prod_{j \neq i}\left(1-x_{i} / x_{j}\right)}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}} \\
\Leftrightarrow & \frac{V_{1}}{x_{1}}+\frac{V_{2}}{x_{2}}+\cdots+\frac{V_{n}}{x_{n}}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}} .
\end{aligned}
$$

This completes the proof.
Now we are ready to prove Theorem 1.2. Without loss of generality, we may assume $r=1$ and $s=2$ in Theorem 1.2.

A new approach to Theorem 1.2. By (2.4) we have

$$
\frac{V_{1}-1}{x_{1}}+\frac{V_{2}-1}{x_{2}}+\cdots+\frac{V_{n}-1}{x_{n}}=0 .
$$

Multiplying both sides by $\frac{x_{2}}{V_{4}-1}$ yields

$$
\begin{equation*}
\frac{x_{2}}{x_{4}}=\frac{\left(1-V_{1}\right) x_{2}}{\left(V_{4}-1\right) x_{1}}+\frac{1-V_{2}}{V_{4}-1}+\frac{\left(1-V_{3}\right) x_{2}}{\left(V_{4}-1\right) x_{3}}+\frac{\left(1-V_{5}\right) x_{2}}{\left(V_{4}-1\right) x_{5}}+\cdots+\frac{\left(1-V_{n}\right) x_{2}}{\left(V_{4}-1\right) x_{n}} \tag{2.6}
\end{equation*}
$$

Note that $D_{n}(\mathbf{x}, \mathbf{a})=V_{1}^{-a_{1}} V_{2}^{-a_{2}} \cdots V_{n}^{-a_{n}}$, (2.6) implies that

$$
\begin{align*}
& \frac{x_{2}^{2}}{x_{1} x_{4}} D_{n}(\mathbf{x}, \mathbf{a})=\frac{x_{2}^{2}}{x_{1} x_{4}} \prod_{j=1}^{n} V_{j}^{-a_{j}} \\
& \quad=\frac{x_{2}}{x_{1}}\left[\frac{\left(1-V_{1}\right) x_{2}}{\left(V_{4}-1\right) x_{1}}+\frac{1-V_{2}}{V_{4}-1}+\frac{\left(1-V_{3}\right) x_{2}}{\left(V_{4}-1\right) x_{3}}+\frac{\left(1-V_{5}\right) x_{2}}{\left(V_{4}-1\right) x_{5}}+\cdots+\frac{\left(1-V_{n}\right) x_{2}}{\left(V_{4}-1\right) x_{n}}\right] \prod_{j=1}^{n} V_{j}^{-a_{j}} . \tag{2.7}
\end{align*}
$$

Multiplying both sides by $V_{4}-1$ and taking the constant term in the x 's, (2.7) can be rewritten as follows

$$
\begin{equation*}
F\left(a_{1}\right)-F\left(a_{1}-1\right)=\underset{\mathbf{x}}{\mathrm{CT}}\left[\frac{x_{2}}{x_{1}}\left(V_{2}-1\right)+\frac{x_{2}^{2}}{x_{1} x_{3}}\left(V_{3}-1\right)+\cdots+\frac{x_{2}^{2}}{x_{1} x_{n}}\left(V_{n}-1\right)\right] \prod_{j=1}^{n} V_{j}^{-a_{j}} \tag{2.8}
\end{equation*}
$$

where $F\left(a_{1}\right):=\mathrm{CT}_{\mathbf{x}} \frac{x_{2}^{2}}{x_{1}^{2}} \prod_{j=1}^{n} V_{j}^{-a_{j}}$.
For $j=3,4, \ldots, n$, observe that

$$
\begin{align*}
& \underset{\mathbf{x}}{\mathrm{CT}} \frac{x_{2}^{2}}{x_{1} x_{j}}\left(V_{j}-1\right) \prod_{j=1}^{n} V_{j}^{-a_{j}}=\underset{\mathbf{x}}{\mathrm{CT}} \frac{x_{2}^{2}}{x_{1} x_{j}} D_{n}\left(\mathbf{x},\left(a_{1}, \ldots, a_{j-1}, a_{j}-1, a_{j+1}, \ldots, a_{n}\right)\right)-\underset{\mathbf{x}}{\mathrm{CT}} \frac{x_{2}^{2}}{x_{1} x_{j}} D_{n}(\mathbf{x}, \mathbf{a}) \\
& =\left[\frac{a_{1}+a_{j}-1}{1+a-a_{1}-a_{j}}-\frac{a_{1}}{a-a_{1}}-\frac{a_{j}-1}{1+a-a_{j}}\right] \frac{a_{j}}{a} C_{n}(\mathbf{a}) \\
& \quad-\left[\frac{a_{1}+a_{j}}{1+a-a_{1}-a_{j}}-\frac{a_{1}}{1+a-a_{1}}-\frac{a_{j}}{1+a-a_{j}}\right] C_{n}(\mathbf{a}) \quad \text { by [9, Theorem 1.4] } \\
& =-\left[\frac{a_{1} a_{j}}{\left(1+a-a_{1}\right)\left(1+a-a_{1}-a_{j}\right)}+\frac{a_{1} a_{j}}{a\left(a-a_{1}\right)}\right] C_{n}(\mathbf{a}) \tag{2.9}
\end{align*}
$$

and

$$
\begin{align*}
& \underset{\mathbf{x}}{\mathrm{CT}} \frac{x_{2}}{x_{1}}\left(V_{2}-1\right) \prod_{j=1}^{n} V_{j}^{-a_{j}}=\underset{\mathbf{x}}{\mathrm{CT}} \frac{x_{2}}{x_{1}} D_{n}\left(\mathbf{x},\left(a_{1}, a_{2}-1, a_{3}, \ldots, a_{n}\right)\right)-\underset{\mathbf{x}}{\mathrm{CT}} \frac{x_{2}}{x_{1}} D_{n}(\mathbf{x}, \mathbf{a}) \\
&=\left[-\frac{a_{1}}{a-a_{1}} \cdot \frac{a_{2}}{a}+\frac{a_{1}}{1+a-a_{1}}\right] C_{n}(\mathbf{a}) \\
& \text { by }[9, \text { Theorem 1.1] } \tag{2.10}\\
&=\left[\frac{a_{1}}{1+a-a_{1}}-\frac{a_{1} a_{2}}{a\left(a-a_{1}\right)}\right] C_{n}(\mathbf{a}) .
\end{align*}
$$

Combining (2.8), (2.9) and (2.10), we obtain the following recurrence

$$
\begin{align*}
& F\left(a_{1}\right)-F\left(a_{1}-1\right) \\
= & {\left[\frac{a_{1}}{1+a-a_{1}}-\frac{a_{1} a_{2}}{a\left(a-a_{1}\right)}-\sum_{j=3}^{n}\left(\frac{a_{1} a_{j}}{\left(1+a-a_{1}\right)\left(1+a-a_{1}-a_{j}\right)}+\frac{a_{1} a_{j}}{a\left(a-a_{1}\right)}\right)\right] C_{n}(\mathbf{a}) } \\
= & {\left[\frac{a_{1}}{1+a-a_{1}}-\frac{a_{1} a_{2}}{a\left(a-a_{1}\right)}-\frac{a_{1}\left(a-a_{1}-a_{2}\right)}{a\left(a-a_{1}\right)}-\sum_{j=3}^{n} \frac{a_{1} a_{j}}{\left(1+a-a_{1}\right)\left(1+a-a_{1}-a_{j}\right)}\right] C_{n}(\mathbf{a}) } \\
= & {\left[\frac{a_{1}\left(a_{1}-1\right)}{a\left(1+a-a_{1}\right)}-\sum_{j=3}^{n} \frac{a_{1} a_{j}}{\left(1+a-a_{1}\right)\left(1+a-a_{1}-a_{j}\right)}\right] C_{n}(\mathbf{a}) . } \tag{2.11}
\end{align*}
$$

Further noting that $F(0)=0$, which can be easily verified, (2.11) finally gives

$$
\left.\begin{array}{rl}
F\left(a_{1}\right)= & {\left[\sum_{k=1}^{a_{1}} \frac{k(k-1)\left(a-a_{1}+k\right)!}{\left(1+a-a_{1}\right)\left(a-a_{1}+k\right) k!}-\sum_{k=1}^{a_{1}} \sum_{j=3}^{n} \frac{k a_{j}\left(a-a_{1}+k\right)!}{\left(1+a-a_{1}\right)\left(1+a-a_{1}-a_{j}\right) k!}\right] \frac{1}{a_{2}!\cdots a_{n}!}} \\
= & {\left[\sum_{k=2}^{a_{1}} \frac{\left(a-a_{1}+k-1\right)!}{\left(1+a-a_{1}\right)(k-2)!}-\sum_{k=1}^{a_{1}} \sum_{j=3}^{n} \frac{k a_{j}\left(a-a_{1}+k\right)!}{\left(1+a-a_{1}\right)\left(1+a-a_{1}-a_{j}\right) k!}\right] \frac{1}{a_{2}!\cdots a_{n}!}} \\
= & {\left[\frac{a_{1}\left(a_{1}-1\right)}{\left(1+a-a_{1}\right)\left(2+a-a_{1}\right)} \cdot \frac{a!}{a_{1}!} \quad \text { by }(2.1) \text { for the case } n=a_{1} \text { and } m=a-a_{1} .\right.} \\
= & \left.-\sum_{j=3}^{n} \sum_{k=1}^{a_{1}} \frac{k a_{j}\left(a-a_{1}+k\right)!}{\left(1+a-a_{1}\right)\left(1+a-a_{1}-a_{j}\right) k!}\right] \frac{1}{a_{2}!\cdots a_{n}!} \\
& -\sum_{j=3}^{\left.n-a-a_{1}\right)\left(2+a-a_{1}\right)} \cdot \frac{a!}{a_{1}!} \\
= & \left.\frac{a_{1}}{\left(1+a-a_{1}\right)\left(2+a-a_{1}\right)\left(1+a-a_{1}-a_{j}\right)} \cdot \frac{(1+a)!}{a_{1}!}\right] \frac{1}{a_{2}!\cdots a_{n}!} \quad \text { by }\left(2+a^{(1)}\right)
\end{array}\left(a_{1}-1\right)-\sum_{i=3}^{n} \frac{a_{i}(1+a)}{\left(1+a^{(1)}-a_{i}\right)}\right] C_{n}(\mathbf{a}) . \quad .
$$

This completes the proof.

Acknowledgments. We would like to thank Guoce Xin for valuable suggestions. We are also grateful to the referees for helpful comments. This work was supported by the National Natural Science Foundation of China (Projects 10926054 and 10901045), the Natural Science Foundation of Hebei Province (Project A2010000828), and Hebei University of Science and Technology (Project QD200956).

References

[1] G.E. Andrews, Problems and prospects for basic hypergeometric functions, in Theory and Application of Special Functions, ed. R. Askey, Academic Press, New York, 1975, pp. 191-224.
[2] F.J. Dyson, Statistical theory of the energy levels of complex systems I, J. Math. Phys. 3 (1962), 140-156.
[3] I.M. Gessel and G. Xin, A short proof of the Zeilberger-Bressoud q-Dyson theorem, Proc. Amer. Math. Soc. 134 (2006), 2179-2187.
[4] I.J. Good, Short proof of a conjecture by Dyson, J. Math. Phys. 11 (1970), 1884.
[5] J. Gunson, Proof of a conjecture by Dyson in the statistical theory of energy levels, J. Math. Phys. 3 (1962), 752-753.
[6] K.W.J. Kadell, Aomoto's machine and the Dyson constant term identity, Methods Appl. Anal. 5 (1998), 335-350.
[7] L. Lv, G. Xin and Y. Zhou, Two coefficients of the Dyson product, Electron. J. Combin. 15(1) (2008), R36, 11 pp .
[8] L. Lv, G. Xin and Y. Zhou, A family of q-Dyson style constant term identities, J. Combin. Theory Ser. A 116 (2009), 12-29.
[9] A.V. Sills, Disturbing the Dyson conjecture, in a generally GOOD way, J. Combin. Theory Ser. A 113 (2006), 1368-1380.
[10] A.V. Sills and D. Zeilberger, Disturbing the Dyson conjecture (in a Good way), Experiment. Math. 15 (2006), 187-191.
[11] K.G. Wilson, Proof of a conjecture by Dyson, J. Math. Phys. 3 (1962), 1040-1043.
[12] G. Xin, The ring of Malcev-Neumann series and the residue theorem, Ph.D. Thesis, University of Brandeis, May 2004.
[13] D. Zeilberger, A combinatorial proof of Dyson's conjecture, Discrete Math. 41 (1982), 317-321.
[14] D. Zeilberger and D. M. Bressoud, A proof of Andrews' q-Dyson conjecture, Discrete Math. 54 (1985), 201-224.

