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Abstract

In this note we give a computer assisted proof showing that the unique (5, 3)-
Ramsey graph is the unique K5-free graph of order 13 giving Fv(3, 4; 5) 6 13, then
we prove that 17 6 Fv(2, 2, 2, 4; 5) 6 Fv(4, 4; 5) 6 23. This improves the previous
best bounds 16 6 Fv(4, 4; 5) 6 25 provided by Nenov and Kolev.

1 Introduction

In this note, we shall only consider graphs without multiple edges or loops. If G is
a graph, then the set of vertices of G is denoted by V (G), the set of edges of G by
E(G), the cardinality of V (G) by |V (G)|, and the complementary graph of G by G. The
subgraph of G induced by S ⊆ V (G) is denoted by G[S]. A cycle of order n is denoted
by Cn. Given a positive integer n, Zn = {0, 1, 2, · · · , n − 1}, and S ⊆ {1, 2, · · · , ⌊n/2⌋},
let G be a graph with the vertex set V (G) = Zn and the edge set E(G) = {(x, y) :
min{|x − y|, n − |x − y|} ∈ S}, then G is called a cyclic graph of order n, denoted by
Gn(S). G is an (s, t)-graph if G contains neither clique of order s nor independent set
of order t. We denote by R(s, t) the set of all (s, t)-graphs. An (s, t)-graph of order n
is called an (s, t; n)-graph. We denote by R(s, t; n) the set of all (s, t; n)-graphs. The
Ramsey number R(s, t) is defined to be the minimum number n for which R(s, t; n) is
not empty. In [3], it was proved that R(4, 3) = 9 and R(5, 3) = 14 which are useful in the
following.

For a graph G and positive integers a1, a2, · · · , ar, we write G → (a1, a2, · · · , vr)
v if

every r-coloring of the vertices must result in a monochromatic ai-clique of color i for
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some i ∈ {1, 2, · · · , r}. Let

Fv(a1, a2, · · · , ar; k) = {G : G → (a1, a2, · · · , ar)
v and Kk 6⊆ G}.

The graphs in Fv(a1, a2, · · · , ar; k) are called (a1, a2, · · ·, ar;k)v graphs. An (a1, a2,
· · · , ar; k)v graph of order n is called an (a1, a2, · · · , ar; k; n)v graph.

The vertex Folkman number is defined as

Fv(a1, a2, · · · , ar; k) = min{|V (G)| : G ∈ Fv(a1, a2, · · · , ar; k)}.

In 1970, Folkman [2] proved that for positive integers k and a1, a2, · · ·, ar, Fv(a1, a2,
· · ·, ar; k) exists if and only if k > max{a1, · · ·, ar}. Recently Dudek and Rödl gave a
new proof with a relatively small upper bound (see [1]). Until now, even with the help
of computer, very little is known about the exact values of vertex Folkman numbers. It
is easy to see that Fv(2, 2; 3) = 5. In 1981, Nenov [10] obtained the upper bound for
the number Fv(3, 3; 4) = 14, while the lower bound for this number was obtained using a
computer in the paper [15]; in 2001, Nenov [13] proved that Fv(3, 4; 5) = 13. It might be
not easy to determine the exact value of Fv(4, 4; 5). In 2006, Kolev and Nenov [7] proved
that Fv(4, 4; 5) 6 26. Later in 2007, Kolev [5] pushed down this bound to 25. In [12],
Nenov proved that Fv(4, 4; 5) > 16.

In this note, we will improve the upper and lower bounds for Fv(4, 4; 5). With the help
of computer, we obtain that there is exactly one graph in the set of (2, 2, 4; 5; 13)v graphs.
Then we prove that Fv(4, 4; 5) > Fv(2, 3, 4; 5) > Fv(2, 2, 2, 4; 5) > 17. In addition, we find
a (4, 4; 5; 23)v graph to show that F (4, 4; 5) 6 23.

2 The lower bound

For a graph G, a complete graph K and vertex set S ⊆ V (G), we say that S is (G, +v, K)
maximal if and only if K * G[S] and K ⊆ G[S ∪ {v}], for every vertex v ∈ V (G) − S;
we say that G is (+e, K) maximal if and only if K * G and K ⊆ G + e, for every edge
e ∈ E(G).

Let us define two special graphs. The first one is the cyclic graph G13(S) with S =
{1, 4, 5, 6}, which is denoted by F1 and was constructed by Greenwood and Gleason in [3]
for proving R(3, 5) > 14. It was proved that every 13-vertex (5, 3)-graph is isomorphic
to the graph F1 (see [4]).

The second one is denoted by F2, which is defined as follows. V (F2) = {1, 2 , · · · , 10},
for 1 6 x, y 6 9, if min{|x − y|, 9 − |x − y|} = 1, then (x, y) /∈ E(F2), otherwise (x, y) ∈
E(F2); the edges (3, 10), (6, 10), (9, 10) ∈ E(F2). We can see that F2[{1, 2, · · · , 9}] ∼= C9.

Graphs F1 and F2 are shown in Figures 1 and 2 .
Our computational approach is based on the following lemmas and observations.

Lemma 1. For r > 2 and positive integers a1, a2, · · · , ar, if G → (a1, a2, · · · , ar)
v, u is a

vertex of G and dG(u) <
r∑

i=1

ai − r, then G − {u} → (a1, a2, · · · , ar)
v.
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Figure 1: F1 Figure 2: F2

Proof. Suppose to the contrary that G − {u} 9 (a1, a2, · · · , ar)
v, then there exists a r-

coloring of the vertices of G−{u} such that G−{u} contains no Kai
for each i with color

i. Since dG(u) <
r∑

i=1

ai − r, we have there exists some j such that there are x vertices with

color j in the neighborhood of u and x < aj − 1. Then we color the vertex u with color j
and we have G contains no Kaj

. Thus, G 9 (a1, a2, · · · , ar)
v, a contradiction.

Observation 1. If G ∈ Fv(2, 2, 4; 5) and G /∈ R(5, 3), then G contains an independent
set of order 3.

Proof. Since G ∈ Fv(2, 2, 4; 5), then we have G contains no K5. Since G /∈ R(5, 3), then
we have G contains an independent set of order 3.

Observation 2. If G ∈ Fv(2, 2, 4; 5) and G /∈ R(5, 3), G is (+e, K5) maximal, and H is
obtained from G by removing an independent set of order 3, then

(1) H contains no K5,

(2) H → (2, 4)v,

(3) 3 6 δ(H) 6 ∆(H) 6 7, and δ(H) = 3 if and only if H ∼= F2.

Proof. (1) Since H is a subgraph of G and G contains no K5, so H contains no K5.
(2) Let I be an independent set of order 3 in G, suppose to the contrary that H 9

(2, 4)v, then there exists a 2-coloring, say color 2 and color 3, of the vertices of H such
that H neither contain K2 with color 2 nor K4 with color 3. We color the independent
set I with color 1. Thus, G 9 (2, 2, 4)v, a contradiction.

(3) It is not difficult to see δ(G) > 5. In fact, let v be any vertex in V (G), from
Fv(2, 2, 4; 5) = 13 (see [11]) we know the subgraph of G induced by V (G) − {v}, denoted
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by J , can not satisfy J → (2, 2, 4)v. But G → (2, 2, 4)v, so there must be two 1-cliques
and a 3-clique without common vertex in the neighborhood of v in G. Therefore the
degree of v in G is at least 5, so δ(G) > 5. Therefore δ(H) > 2.

Now, let us give δ(H) a lower bound.
If 2 6 δ(H) 6 3, and the degree of u in H is δ(H), since H → (2, 4)v and by Lemma

1 we have H − {u} → (2, 4)v and H − {u} is K5-free graph of order 9. In [8], it was used
that C9 is the unique (2, 4; 5; 9)v graph (the result that is used in the text is a special case
of a more general theorem). So H − {u} is isomorphic to C9. We suppose the vertex set
of H −{u} is Z9, where i and j are not adjacent if and only if min{|i− j|, 9−|i− j|} = 1.
Before continue to work, we have the following claims.

Claim 1. δ(H) 6= 2.

Proof. If δ(H) = 2, let v1 and v2 be the neighbors of u in H , v3 be a non-neighbor of v1

in H − {u} which is different from v2. Then we can add the edge (u, v3) to graph G to
get a new K5-free graph, which contradicts with that G is (+e, K5) maximal.

Claim 2. δ(H) = 3 if and only if H ∼= F2.

Proof. If δ(H) = 3, since G is (+e, K5) maximal and H − {u} ∼= C9, it is not difficult to
see H ∼= F2 with some simple computation.

Now, we continue to show that ∆(H) 6 7. In fact, let v be any vertex in V (H), since
H is K5-free we know the subgraph of H induced by the neighbors of v in H is K4-free.
So since H → (2, 4)v, we know there must be 2-clique in the subgraph of H induced by
the non-neighbors of v in H . So the degree of v in H is at most 7. Therefore we have
∆(H) 6 7.
From above, we have part (3) holds.

Observation 1 and Observation 2 guarantee that the following algorithm generates all
(+e, K5) maximal graphs in the set of (2, 2, 4; 5; 13)v graphs which contain independent
set of order 3. In Algorithm 1, Step 4 is used to speed up the processing, which reduces
the graphs from C with the cardinality 368 to D with the cardinality 114. So the number
of graphs in Step 5 need to be processed is reduced.

Algorithm 1

Step 1. Generate the set A of all nonisomorphic graphs of order 10 such that for each
graph H ∈ A the degree of each vertex of H ranges from 4 to 7, then set A =
A ∪ {F2}.

Step 2. Obtain the set B from A by removing the graphs containing K5.

Step 3. Obtain the set C such that C = {H ∈ B : H → (2, 4)v}.
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Step 4. Initial a new set D = ∅. Then for each graph H ∈ C, find the family M =
{S ⊆ V (H) : S is (H, +v, K4) maximal }. Let m = |M| and M = {S1, S2, · · · , Sm},
construct a graph F by adding m vertices v1, v2, · · · , vm such that NF (vi) = Si for
1 6 i 6 m, if F → (2, 2, 4; 5)v, add H to the set D.

Step 5. Initial a new set E = ∅. Then for every graph H ∈ D, find the family M = {S ⊆
V (H) : S is (H, +v, K4) maximal }, for every triple S1, S2, S3 ∈ M, construct a
graph F by adding three vertices v1, v2, v3 to H such that NF (vi) = Si for i = 1, 2, 3,
if F → (2, 2, 4; 5)v, add F to the set E .

By Algorithm 1, we generate 754465, 640548, 368, 114 elements in A, B, C and D
respectively, and do not produce any graph in E . For any (2, 2, 4; 5; 13)v graph G, where
G is (+e, K5) maximal, G must be isomorphic to F1 as the proper subgraphs of F1 are
not maximal. With the help of computer, we can have Lemma 2.

Lemma 2. There are only two nonisomorphic subgraphs of F1 obtained by deleting one
edge from F1. None of them is a (2, 2; 4)v graph.

We know any (3, 4, 5; 13)v graph is also a (2, 2, 4, 5; 13)v graph. So by Lemma 2, we
have

Theorem 1. F1 is both the unique (2, 2, 4; 5; 13)v graph and the unique (3, 4; 5; 13)v graph.

Theorem 2. Fv(2, 2, 2, 4; 5) > 17.

Proof. Suppose Fv(2, 2, 2, 4; 5) 6 16. Let G0 be a K5-free graph of order 16 such that
G0 → (2, 2, 2, 4)v. We can see there must be 3-independent set in G0. Let V0 = {v1, v2, v3}
be a 3-independent set in G0. Then the subgraph of G0 induced by V (G0) − V0, say G′,
must satisfy G′ → (2, 2, 4)v, and from Theorem 1 above we know G′ must be isomorphic
to F1. Since R(5, 3) = 14, the subgraph of G0 induced by V (G0) − {v2, v3} is of order 14
and must contain a 3-independent set since it is K5-free. Let such a 3-independent set be
V1. We know the subgraph of G0 induced by V (G0) − V0 is isomorphic to F1, so v1 must
be in V1. Suppose V1 = {v1, v4, v5}, we know the subgraph of G0 induced by V (G0) − V1,
say G′′, must satisfy G′′ → (2, 2, 4)v, and then from Theorem 1 we know G′′ must be
isomorphic to F1. For any vi ∈ V0, the subgraph of G0 induced by the neighbors of vi,
say Gi, is a subgraph of G′. Since G′ is a (5, 3)-graph and Gi is induced by the neighbors
of vi in G′, we have Gi must be a (4, 3)-graph. So the degree of both v2 and v3 in G′′ is
no more than 8 because R(3, 4) = 9. But both v2 and v3 is in G′′ which is isomorphic to
F1, so the degree of v2 and v3 in G0 can not be less than 8. So dG0

(v2) = dG0
(v3) = 8,

similarly we can get dG0
(v4) = dG0

(v5) = 8. Since G′ is isomorphic to F1, we have G′ is
8-regular. So we have dG′(v4) = dG′(v5) = 8. Therefore {v2, v3, v4, v5} is an independent
set in G0. The subgraph of G0 induced by V (G0) − {v2, v3, v4, v5} is of order 12, which
is denoted by H . From Fv(2, 2, 4; 5) = 13 we know H 9 (2, 2, 4)v, which contradicts
with {v2, v3, v4, v5} is an independent set in G0 and G0 → (2, 2, 2, 4)v. Therefore we have
Fv(2, 2, 2, 4; 5) > 17.
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1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

2 1 0 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 1 0

3 1 1 0 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0 1 0 1 0 1

4 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0

5 1 1 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 0 0 1

6 1 1 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0

7 1 0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1 1 0 1 1 0 0

8 1 1 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1

9 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1

10 1 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 1 0 1 1 1

11 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1 1

12 1 1 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 0

13 1 0 1 1 0 0 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1

14 1 1 0 0 1 0 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1

15 1 0 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 1

16 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0 1 1 0

17 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 0 0 1

18 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1

19 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1 0

20 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1

21 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 1

22 0 1 0 1 0 0 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1

23 0 0 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0

Figure 3: Adjacency matrix of a (4, 4; 5; 23)v graph

In [14], it was proved that

Lemma 3. [14] Let G → (a1, a2, · · · , ar)
v and let for some i, ai > 2. Then G →

(a1, · · · , ai−1, 2, ai − 1, ai+1, · · · , ar)
v

By Lemma 3, Fv(4, 4; 5) > Fv(2, 3, 4; 5) > Fv(2, 2, 2, 4; 5), by Theorem 2, we have

Theorem 3. Fv(4, 4; 5) > 17.

3 The upper bound

We investigate some vertex transitive graphs, which can be found on the website [16].
With the help of computer, we find a (4, 4; 5; 23)v graph, which is the 154th graph in the
file “trans23.g6.gz” and is shown in Figure 3. Thus, we have Fv(4, 4; 5) 6 23.

Some subgraphs obtained from this graph by deleting some edges are in Fv(4, 4; 5; 23)
too, but the graphs obtained by deleting one vertex are not in Fv(4, 4; 5; 23) .
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4 Remark

The powerful programs shortg and geng, which were developed by Mckay [9], are used as
an important tool in this work. We use shortg for fast isomorph rejection and geng for
generating all nonisomorphic graphs of order 10 with minimum degree 4 and maximum
degree 7 as follows: geng -d4D7 10 file10d4D7.g6
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