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Abstract
Recently, Eisenbrand, Pach, Rothvoß, and Sopher studied the function M(m,n),

which is the largest cardinality of a convexly independent subset of the Minkowski
sum of some planar point sets P and Q with |P | = m and |Q| = n. They proved
that M(m,n) = O(m2/3n2/3 +m+n), and asked whether a superlinear lower bound
exists for M(n, n). In this note, we show that their upper bound is the best possible
apart from constant factors.

1 Introduction

Recently, Eisenbrand, Pach, Rothvoß, and Sopher [1] studied the function M(m, n), which
is the largest cardinality of a convexly independent subset of the Minkowski sum of some
planar point sets P and Q with |P | = m and |Q| = n. They proved that M(m, n) =
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Figure 1: An example.

O(m2/3n2/3 + m + n), and asked whether a superlinear lower bound exists for M(n, n).
The quantity M(n, n) gives an upper bound for the largest convexly independent subset
of P ⊕P , and it is related to the convex dimension of graphs, proposed by Halman, Onn,
and Rothblum [3]. Figure 1 shows an example. In this note, we show that the upper
bound presented in [1] is the best possible apart from constant factors.

Theorem 1. For every m, n ∈ N, there exist point sets P, Q ⊂ R2 with |P | = m, |Q| =
n such that the Minkowski sum P ⊕ Q contains a convexly independent subset of size
Ω(m2/3n2/3 + m + n).

2 Definitions

The Minkowski sum of two sets P, Q ⊆ Rd is defined as P ⊕ Q = {p + q | p ∈ P, q ∈ Q}.
A point set P ⊆ Rd is convexly independent if every point in P is an extreme point of the
convex hull of P .

3 Basic idea

Let n and m be integers. Let P be a planar point set that maximizes the number of
point-line incidences between m points and n lines. Erdős [2] showed that for m, n ∈ N,
there exist a set P of m points and a set L of n lines in the plane with Ω(m2/3n2/3+m+n)
point-line incidences. A point-line incidence is a pair of a point p and a line ` such that
p ∈ ` (that is, p lies on `). Szemerédi and Trotter [6] proved that this bound is the
best possible, confirming Erdős’ conjecture (see [4] for the currently known best constant
coefficients).

Sort the lines in L by the increasing order of their slopes (break ties arbitrarily).
Denote by Pi the set of points in P that are incident to the ith line in L. Consider a
polygonal chain C consisting of |L| line segments such that the ith segment si has the
same slope as the ith line of L. Since we sorted the lines in L by their slopes, C is a
(weakly) convex chain. Set the length of each line segment to be at least the diameter of
the point set P . The chain C has n + 1 vertices including two endpoints. Now we can

the electronic journal of combinatorics 17 (2010), #N35 2



P

P and L Q P ⊕Q

q1

q2

q3 q4

q5

q6
s1

s2

s3

s4

s5

s6

Figure 2: Basic idea for our construction.

describe our point set Q = {q1, . . . , qn}. The ith point qi is placed on the plane so that
the points in Pi ⊕ {qi} all lie on si. This concludes the construction of Q. See Figure 2
for an illustration.

The number of points in P ⊕ Q that lie on C is Ω(m2/3n2/3 + m + n) since if p ∈ Pi

then p + qi ∈ si ⊆ C. Thus in the above construction, (P ⊕Q) ∩ C is a subset of P ⊕Q
that contains Ω(m2/3n2/3 + m + n) points in (weakly) convex position.

4 Fine tuning

The point set (P ⊕Q) ∩ C is not necessarily convexly independent for two reasons:

1. Some of the lines in L may be parallel.

2. For each i, the points in (P ⊕Q) ∩ si are collinear.

We next describe how to overcome these issues.
For the first issue, we apply a projective transformation to P and L (see e.g. [5]). A

generic projective transformation maps P to a set of real points, and L to a set of pairwise
nonparallel lines. Since projective transformations preserve incidences, the number of
incidences remains Ω(m2/3n2/3 + m + n). By applying a rotation, if necessary, we may
assume that no line in L is vertical. Therefore, without loss of generality we may assume
that all lines of L have different non-infinite slopes. As before we sort the lines in L in
the increasing order by their slopes.

For the second issue, we apply the following transform to P and L (after the projective
transformation and the rotation above): Each point (x, y) in the plane is mapped to
(x, y+εx2) for a sufficiently small positive real number ε. Then the ith line y = aix+bi is
mapped to the convex parabola y = εx2 +aix+bi. By scaling the whole configuration, we
may assume that the x-coordinates of all points of P are properly between 0 and 1. Then,
the gradient of the ith parabola is ai at x = 0 and ai + 2ε at x = 1. Let ε be so small
that the intervals [ai, ai + 2ε] are all disjoint: Namely, the gradient of the ith parabola at
x = 1 is smaller than the gradient of the (i + 1)st parabola at x = 0 (or more specifically
it is enough to choose ε = min{(ai − ai−1)/3 | i = 2, . . . , n}). Therefore, instead of
constructing a convex chain by line segments, we construct a convex chain C consisting
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of convex parabolic segments: The ith segment is a part of an expanded copy of the ith
parabola (containing the piece between x = 0 and x = 1). From the discussion above,
these parabolic segments together form a strictly convex chain and we can construct the
point set Q in the same way as the previous case. Thus, for these P and Q, the set
(P ⊕ Q) ∩ C is a convexly independent subset in P ⊕ Q of size Ω(m3/2n3/2 + m + n).
Q.E.D.

5 An open problem

Let Mk(n) denote the maximum convexly independent subset of the Minkowski sum⊕k
i=1 Pi of k sets P1, P2, . . . , Pk ⊂ R2, each of size n. Our lower bound in the case m = n,

combined with the upper bound in [1] shows that M2(n) = Θ(n4/3). Determine Mk(n)
for k > 3.
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finding more crossings in sparse graphs. Discrete and Computational Geometry 36:4
(2006) 527–552.

[5] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer Verlag, New York, 1985.
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