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Abstract

We consider the context of a three-person game in which each player selects strings
over{0, 1} and observe a series of fair coin tosses. The winner of the game is the player
whose selected string appears first. Recently, Chen et al. [4] showed that if the string length
is greater and equal to three, two players can collude to attain an advantage by choosing
the pair of strings11 . . . 10 and00 . . . 01. We call these two strings “complement strings”,
since each bit of one string is the complement bit of the corresponding bit of the other
string. In this note, we further study the property of complement strings for three-person
games. We prove that if the string length is greater than five and two players choose any
pair of complement strings (except for the pair11 . . . 10 and00 . . . 01), then the third player
can always attain an advantage by choosing a particular string.
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1 Introduction and Preliminaries

Consider a game in which players select strings over{0, 1} and observe a series of fair coin
tosses, i.e., a stringσ = s1s2 . . . where eachsi is chosen independently and randomly from
{0, 1}. The winner of the game is the player whose selected string appears first. This problem
has been formulated as a game or studied as a classical probabilistic problem by Chen [1], Chen
and Lin [2], Chen and Zame [3], Chen et al. [4], Guibas and Odlyzko [6], Li [7], Gerber and Li
[5], and Mori [8]. In [3], Chen and Zame proved that for two-person games, public knowledge
of the opponent’s string leads to an advantage. In [4], Chen et al. established the results for
three-person games. In particular, they showed that if the string length is greater and equal to
three, two players can collude to attain an advantage by choosing the pair of strings11 . . . 10
and00 . . . 01. We call these two strings “complement strings”, since eachbit of one string is the
complement bit of the corresponding bit of the other string.

In this note, we further study the property of complement strings for three-person games. We
prove that if the string length is greater than five and two players choose any pair of complement
strings (except for the pair11 . . . 10 and00 . . . 01), then the third player can always attain an
advantage by choosing a particular string. Before we proceed, we first introduce the following
notations and some useful results obtained in [4].

Let {0, 1}n be the set of all finite strings of lengthn over{0, 1}. A stringσ ∈ {0, 1}n can be
written asσ = s1s2 . . . sn, with each bitsi ∈ {0, 1}. Given two stringsσ, τ , their concatenation
is denoted byστ . The length of stringσ is denoted by|σ|; for example,|σ| = n if σ ∈ {0, 1}n.
The empty stringǫ is the unique string of length zero. Given a stringσ, its prefixesπ(σ) are all
stringsπ such thatσ = πτ for some stringτ ; its suffixesλ(σ) are all stringsλ such thatσ = τλ
for some stringτ .

Let {Xi} be a sequence of random variables having values in{0, 1}. Define the probability
spaceΩ which is such that theXi are i.i.d. withP (Xi = sj) = pj for all i andj. The space
Ω can be identified with the space of semi-infinite strings over{0, 1} by σ = s1s2 . . . with
si = Xi(ω). The definition of the prefix operationπ(ω) is extended to apply to semi-infinite
ω ∈ Ω under this identification. For each stringσ ∈ {0, 1}n, let Tσ be the waiting time for the
first occurrence ofσ in a randomly chosenω ∈ Ω, i.e.,

Tσ(ω) = min{|τ | : τ ∈ π(ω) andσ ∈ λ(τ)},

or Tσ(ω) = ∞ if σ never appears inω.
For stringsσ = s1s2 . . . sn, defineP (σ) =

∏n
i=1 P (Xi = si), i.e., the probability that a

randomly chosenω ∈ Ω begins withσ. For stringsσ, τ ∈ {0, 1}n, define the operation

σ ◦ τ =
∑

ρ∈λ(σ)
T

π(τ)
ρ6=ǫ

P (ρ)−1.

For example, ifσ = 1111, τ = 1101, andP (Xi = 0) = P (Xi = 1) = 1/2, thenλ(σ)
⋂

π(τ) =
{1, 11} andσ ◦ τ = 2 + 22 = 6. The complement stringof σ = s1s2 . . . sn is defined as
σ̄ = s̄1s̄2 . . . s̄n, wheres̄i = 1 − si is the complement bit ofsi. For example,σ1 = 00 . . . 01 is
clearly the complement string ofσ2 = 11 . . . 10.
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We cite Lemma 5 in [4] as Lemma 1 in this note, since it is essential for proving our main
theorem. For comparison purposes, we also cite Theorem 3 in [4] as Theorem 1 in this note.

Lemma 1 Let σ1, σ2, . . . , σk bek distinct strings in{0, 1}n. We have the following system of
k + 1 linear equations, wherepi = P (Tσi

= Nk) for i = 1, . . . , k,










0 1 · · · 1
1
... (σi ◦ σi − σj ◦ σi)i+1,j+1

1





















E(Nk)
p1
...
pk











=











1
σ1 ◦ σ1

...
σk ◦ σk











Note that for the remaining of this note, we assume thatP (Xi = 0) = P (Xi = 1) = 1/2
andσ2 is always treated as the complement string ofσ1. This means thatσ1 ◦ σ1 = σ2 ◦ σ2, and
σ1 ◦ σ2 = σ2 ◦ σ1. To simplify the notations, we denoteσ1 ◦ σ1 andσ2 ◦ σ2 by 2n + α, σ1 ◦ σ2

andσ2 ◦ σ1 by β, σ3 ◦ σ1 by γ, σ3 ◦ σ2 by δ, σ1 ◦ σ3 by a, σ2 ◦ σ3 by b, andσ3 ◦ σ3 by 2n + c,
respectively. Thus, we have the following facts.

Fact 1 By the preceding definitions, we have0 6 α < 2n and0 6 β < 2n.

Proof. The result is straightforward from Lemma 1, so the proof is omitted.

Fact 2 By the preceding definitions, we haveγ 6= δ. Further, ifγ > δ,

(2n + α − β)p1 − (2n + α − β)p2 + (γ − δ)p3 = 0

and
(β − a)p1 + (2n + α − b)p2 − (2n + c − δ)p3 = 0;

while if γ < δ,
(2n + α − β)p1 − (2n + α − β)p2 − (δ − γ)p3 = 0

and
(2n + α − a)p1 + (β − b)p2 − (2n + c − γ)p3 = 0.

Proof. Due to the property of symmetry, here we assume thats1 = 0. The result can be directly
obtained from Lemma 1.

For notational convenience, a repeating string such asσσ . . . σ is written as[σ]∗.

Theorem 1 For n > 3, let σ1, σ2, andσ3 be three distinct strings in{0, 1}n, whereσ1 = [0]∗1,
σ2 = [1]∗0, andσ3 is arbitrary. Letpi = P (Tσi

= N3) be the probability thatσi appears first
among the three. Thenp3 < max(p1, p2).
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2 Main Results

Lemma 2 Letσ1 = s1s2 . . . sn andσ2 = s̄1s̄2 . . . s̄n satisfyσ1, σ2 ∈ {0, 1}n \ {[0]∗1, [1]∗0}. If
s1 = s2 andn > 5, then there exists a stringσ3 ∈ {0, 1}n\{σ1, σ2} such thatp3 > max(p1, p2).

Proof. We consider the following four cases.
Case 1: s1 = s2 = . . . = sn−1 = sn = 0.

In this case, letσ3 = 1[0]∗. By Fact 2, we then have(2n+1−2)p1−(2n+1−2)p2+(2n−2)p3 =
0 and(2n+1 − 4)p2 − 2np3 = 0. Therefore,0 < p1 < p2 < p3 sincen > 6.
Case 2: s1 = s2 = sn−1 = sn = 0 andσ1 6= [0]∗.

In this case, letσ3 = [01]∗00 if n is even; otherwise letσ3 = [10]∗100. Thus, we havea = 0
or 2,b = 0 or 2,a + b = 2, c = 0 or 2,γ = 6, andδ = 0. Sinceγ > δ, by Fact 2, we then have
(2n + α− β)p1 − (2n + α− β)p2 + 6p3 = 0 and(β − a)p1 + (2n + α− b)p2 − (2n + c)p3 = 0.
The last equation can be written as(β − a)p1 + (2n + α− 2 + a)p2 − (2n + c)p3 = 0, and thus
(2n + c)(p2 − p3) + βp1 + α(p2 − p1) + (α− 2− c)p2 = 0. Therefore,0 < p1 < p2 < p3 since
α > 6, 0 6 β < 2n (by Fact 1),a 6 2, b 6 2, andc 6 2.
Case 3: s1 = s2 = 0 andsn−1 = sn = 1.

In this case, letσ3 = [01]∗00 if n is even; otherwise letσ3 = [10]∗100. Thus, we have
a = 0 or 2, b = 0 or 2, c = 0 or 2, a + b = 2, γ = 6, andδ = 0. By Fact 2, we then have
(2n + α− β)p1 − (2n + α− β)p2 + 6p3 = 0 and(β − a)p1 + (2n + α− b)p2 − (2n + c)p3 = 0.
Hencep1 > p2 − 0.2p3 sincen > 6, α > 0, andβ < 2n−1. Further, sinceβ > 6 anda = 0 or
2 (i.e.,β > a), we then have(2n + α + β − a − b)p2 − (2n + c + 0.2(β − a))p3 < 0. Since
a + b = 2 andc 6 2, we conclude that(2n + α + β − a− b) > (2n + c + 0.2(β − a)), and thus
0 < p1 < p2 < p3.
Case 4: s1 = s2 = sn = 0, sn−1 = 1 or s1 = s2 = sn−1 = 0, sn = 1, andσ1 6= [0]∗1.

In this case, letσ3 = [0]∗1. Thus, we havea = 0 or 2, b = 0 or 2, c = 0, a + b = 2, γ > 8,
andδ = 2. By Fact 2, we then have(2n + α − β)p1 − (2n + α − β)p2 + (γ − 2)p3 = 0 and
(β − a)p1 +(2n +α− b)p2 − (2n − 2)p3 = 0. The last equation can be written as(2n − 2)(p2 −
p3) + (α + 2− b)p2 + (β − a)p1 = 0, and thus(2n − 2)(p2 − p3) + αp2 + βp1 + a(p2 − p1) = 0
since2− b = a. Therefore,0 < p1 < p2 < p3 sinceγ > 8, α > 0, and0 6 β < 2n (by Fact 1).

The proof of Lemma 2 is complete by summarizing the results from Case 1 - Case 4.

Lemma 3 Let σ1 = s1s2 . . . sn andσ2 = s̄1s̄2 . . . s̄n satisfyσ1, σ2 ∈ {0, 1}n \ {[0]∗1, [1]∗0}.
If s1 6= s2 = s3 and n > 5, then there exists a stringσ3 ∈ {0, 1}n \ {σ1, σ2} such that
p3 > max(p1, p2).

Proof. We consider the following three cases.
Case 1: s1 = sn−1 = sn = 0, s2 = s3 = 1 or s1 = 0, s2 = s3 = sn−2 = sn−1 = sn = 1.

In this case, letσ3 = [01]∗1 if n is odd; otherwise letσ3 = [01]∗0011. Thus,a = 0 or
2, b = 0 or 2, a + b = 2, c = 0, γ = 8, andδ = 2 or 34. If δ = 2, then by Fact 2, we have
(2n+α−β)p1−(2n+α−β)p2+6p3 = 0 and(β−a)p1+(2n+α−b)p2−(2n−2)p3 = 0. Note
that the first equation directly impliesp1 < p2, while the second equation implies(2n −2)(p2 −
p3) + αp2 + βp1 + a(p2 − p1) = 0 sinceb = 2 − a. Therefore,0 < p1 < p2 < p3 sinceα > 0,
β > 0, anda > 0. If δ = 34, then by Fact 2, we have(2n+α−β)p1−(2n+α−β)p2−26p3 = 0
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and similarly(2n−8)(p1−p3)+(6+α)p1+b(p1−p2)+βp2 = 0. Therefore,0 < p2 < p1 < p3

sinceα > 0, β > 0, andb > 0.
Case 2: s1 = sn−1 = 0, sn = 1 or s1 = sn = 0, sn−1 = 1.

In this case, letσ3 = [0]∗1. Thus,a = 0 or 2, b = 0 or 2, a + b = 2, c = 0, γ = 4,
and δ = 2. By Fact 2, we then have(2n + α − β)p1 − (2n + α − β)p2 + 2p3 = 0 and
(2n − 2)(p2 − p3) + (α + 2− b)p2 + (β − a)p1 = 0. Therefore,0 < p1 < p2 < p3 sinceα > 2,
β > 2, a 6 2, andb 6 2.
Case 3: s1 = sn−2 = 0 ands2 = s3 = sn−1 = sn = 1.

In this case, letσ3 = [0]∗1. Thus,a = 0, b = 6, c = 0, α > 8, β > 0, γ = 4, andδ = 2. By
Fact 2, we then have(2n + α − β)p1 − (2n + α − β)p2 + 2p3 = 0 andβp1 + (2n + α− 6)p2 −
(2n − 2)p3 = 0. Therefore,0 < p1 < p2 < p3 sinceα > 8 andβ > 0.

The proof of Lemma 3 is complete by summarizing the results from Case 1 - Case 3.

Lemma 4 Letσ1 = s1s2 . . . sn andσ2 = s̄1s̄2 . . . s̄n satisfyσ1, σ2 ∈ {0, 1}n \ {[0]∗1, [1]∗0}. If
s1 = s3 = 0, s2 = s4 = 1, andn > 6, then there exists a stringσ3 ∈ {0, 1}n \ {σ1, σ2} such
thatp3 > max(p1, p2).

Proof. We consider the following four cases.
Case 1: s1 = s3 = sn−2 = sn−1 = sn = 0, s2 = s4 = 1.

In this case, letσ3 = 10[01]∗ if n is even; otherwise letσ3 = 10011[01]∗. Thus,a = 0,
b = 2, c = 2, α > 2, β > 0, γ > 4, δ > 8, andγ 6= δ. If γ > δ, then by Fact 2, we have
(2n +α−β)p1− (2n +α−β)p2 +(γ−δ)p3 = 0 andβp1 +(2n +α−2)p2− (2n +2−δ)p3 = 0.
Therefore,0 < p1 < p2 < p3 sinceα > 2, β > 0, andδ > 8. If γ < δ, then by Fact 2, we have
(2n+α−β)p1−(2n+α−β)p2−(δ−γ)p3 = 0 and(2n+α)p1+(β−2)p2−(2n+2−γ)p3 = 0.
Therefore,0 < p2 < p1 < p3 sinceα > 2, β > 0, andγ > 4.
Case 2: s1 = s3 = sn−1 = sn = 0 ands2 = s4 = sn−2 = 1.

In this case, letσ3 = [0]∗101. Thus,a = 6, b = 0, c = 0, α > 2, β > 0, γ = 20,
andδ = 10. By Fact 2, we then have(2n + α − β)p1 − (2n + α − β)p2 + 10p3 = 0 and
(β −6)p1 +(2n +α)p2 − (2n −10)p3 = 0. Note that the first equation directly impliesp1 < p2.
The second equation impliesp3 =

(

β−6
2n−10

)

p1 +
(

2n+α
2n−10

)

p2, thusp3 >
(

−6
2n−10

)

p1 +
(

2n+α
2n−10

)

p2

sinceβ > 0. Sincep1 < p2 andα > 2, we then havep3 >
(

2n−4
2n−10

)

p2, and thus0 < p1 < p2 <
p3.
Case 3: s1 = s3 = sn−1 = 0, s2 = s4 = sn = 1 or s1 = s3 = sn = 0, s2 = s4 = sn−1 = 1.

In this case, letσ3 = [0]∗1. Thus,a = 0 or 2, b = 0 or 2,a + b = 2, c = 0, α > 2, β > 2,
γ = 4, andδ = 2. By Fact 2, we then have(2n + α − β)p1 − (2n + α − β)p2 + 2p3 = 0 and
(β−a)p1 +(2n +α− b)p2 − (2n −2)p3 = 0. Therefore,0 < p1 < p2 < p3 sinceα > 2, β > 2,
a 6 2, andb 6 2.
Case 4: s1 = s3 = 0 ands2 = s4 = sn−1 = sn = 1.

In this case, letσ3 = 0[01]∗ if n is odd; otherwise letσ3 = 00[10]∗. Thus,a = 0, b = 6,
c = 0 or 2, α > 0, β > 2, γ > 10, δ > 10, andγ 6= δ. If γ > δ, then by Fact 2, we have
(2n +α−β)p1− (2n +α−β)p2 +(γ−δ)p3 = 0 andβp1 +(2n +α−6)p2− (2n +c−δ)p3 = 0.
Therefore,0 < p1 < p2 < p3 sinceα > 0, β > 2, c 6 2, andδ > 10. If γ < δ, then by Fact
2, we have(2n + α − β)p1 − (2n + α − β)p2 − (δ − γ)p3 = 0 and(2n + α)p1 + (β − 6)p2 −
(2n + c − γ)p3 = 0. Therefore,0 < p2 < p1 < p3 sinceα > 0, β > 2, c 6 2, andγ > 10.
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The proof of Lemma 4 is complete by summarizing the results from Case 1 - Case 4.

Lemma 5 Let σ1 = s1s2 . . . sn andσ2 = s̄1s̄2 . . . s̄n satisfyσ1, σ2 ∈ {0, 1}n \ {[0]∗1, [1]∗0}.
If s1 = s3 = s4 6= s2 andn > 6, then there exists a stringσ3 ∈ {0, 1}n \ {σ1, σ2} such that
p3 > max(p1, p2).

Proof. We consider the following four cases.
Case 1: s1 = s3 = s4 = sn−2 = sn−1 = sn = 0, s2 = 1.

In this case, letσ3 = 0111010 whenn = 7. Thus, by Fact 2, it is easy to see that0 <
p1 < p2 < p3. Whenn > 8, let σ3 = 01[10]∗ if n is even; otherwise letσ3 = 01101[10]∗.
Thus,a = 2, b = 0, c = 2, α > 2, β > 0, γ = 10, andδ = 4. By Fact 2, we then have
(2n+α−β)p1−(2n+α−β)p2+6p3 = 0 and(β−2)p1+(2n+α)p2−(2n−2)p3 = 0. Note that the
first equation directly impliesp1 < p2. The second equation impliesp3 =

(

β−2
2n−2

)

p1+
(

2n+α
2n−2

)

p2,
thusp3 >

(

−2
2n−2

)

p1 +
(

2n+α
2n−2

)

p2 sinceβ > 0. Sincep1 < p2 andα > 2, we then have
p3 >

(

2n

2n−2

)

p2, and thus0 < p1 < p2 < p3.
Case 2: s1 = s3 = s4 = 0, s2 = sn−2 = sn−1 = sn = 1.

In this case, letσ3 = 1[10]∗ if n is odd; otherwise letσ3 = 1100[10]∗. Thus,a = 6, b = 0,
c = 0, α > 0, β > 2, γ = 10, andδ = 4. By Fact 2, we then have(2n + α − β)p1 − (2n +
α − β)p2 + 6p3 = 0 and(β − 6)p1 + (2n + α)p2 − (2n − 4)p3 = 0. Note that the first equation
directly impliesp1 < p2, while the second equation impliesp3 =

(

β−6
2n−4

)

p1 +
(

2n+α
2n−4

)

p2,
thusp3 >

(

−4
2n−4

)

p1 +
(

2n+α
2n−4

)

p2 sinceβ > 2. Sincep1 < p2 andα > 0, we then have
p3 >

(

2n−4
2n−4

)

p2 = p2, and thus0 < p1 < p2 < p3.
Case 3: s1 = s3 = s4 = sn−2 = 0, s2 = sn−1 = sn = 1.

In this case, letσ3 = 110[1]∗010 if n is odd; otherwise letσ3 = 11[10]∗. The proof for this
case is the same as that forCase 2, so it is omitted.
Case 4: s1 = s3 = s4 = sn−1 = 0, s2 = sn = 1 or s1 = s3 = s4 = sn = 0, s2 = sn−1 = 1.

In this case, letσ3 = [0]∗1. Thus,a = 0 or 2, b = 0 or 2, c = 0, α > 2, β > 2, γ = 4,
and δ = 2. By Fact 2, we then have(2n + α − β)p1 − (2n + α − β)p2 + 2p3 = 0 and
(β−a)p1 +(2n +α− b)p2 − (2n −2)p3 = 0. Therefore,0 < p1 < p2 < p3 sinceα > 2, β > 2,
a 6 2, andb 6 2.
Case 5: s1 = s3 = s4 = sn−1 = sn = 0, s2 = sn−2 = 1.

It suffices to consider the following two sub-cases.
Sub-Case 5-1: α+β > 4. In this case, letσ3 = 0[01]∗0 if n is even; otherwise letσ3 = 00[01]∗0.
Thus,a = 6, b = 0, c = 2, α > 2, β > 0, γ = 10, andδ = 4. By Fact 2, we then have
(2n + α − β)p1 − (2n + α − β)p2 + 6p3 = 0 and(β − 6)p1 + (2n + α)p2 − (2n − 2)p3 =
0. Note that the first equation directly impliesp1 < p2, while the second equation implies
(2n − 2)(p2 − p3) + αp2 + 2(p2 − p1) + βp1 − 4p1 = 0. Therefore,0 < p1 < p2 < p3 since
α + β > 4.
Sub-Case 5-2: α = 2 andβ = 0. The fact thatα = 2 implies thatsn−3 = 1, sinces1 = s3 =
s4 = sn−1 = sn = 0 ands2 = sn−2 = 1. It also implies thats1s2 . . . si 6= sn−i+1sn−i+2 . . . sn

for all i = 2, 3, . . . , n − 1. The fact thatβ = 0 implies thats1s2 . . . si 6= s̄n−i+1s̄n−i+2 . . . s̄n

and s̄1s̄2 . . . s̄i 6= sn−i+1sn−i+2 . . . sn for all i = 1, 2, . . . , n. Sincesn−3 = sn−2 = 1 and
s3 = s4 = sn−1 = 0, we then have thatn > 8. To selectσ3 for each possibleσ1, we consider a
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substrings1s2 · · · sn−1 of σ1. Let σ3 = 0s1s2 · · · sn−1, we then have thata = 6, b = 0, c = 2,
α = 2, β = 0, γ = 2n−1 +2, and4 6 δ < 4+2n−5. By Fact 2, we then have(2n +2)p1− (2n +
2)p2+(2n−1+2−δ)p3 = 0 and−6p1+(2n+2)p2−(2n+2−δ)p3 = 0. Note that the first equa-

tion impliesp1 < p2 (since2n−1+2−δ > 0) andp1 = p2−
(

2n−1+2−δ
2n+2

)

p3. Adding these results

to the second equation, we then have−6p2 +6
(

2n−1+2−δ
2n+2

)

p3 +(2n +2)p2−(2n +2−δ)p3 = 0,

thus(2n − 4)p2 =
[

−3
(

2n−1+2−δ
2n−1+1

)

+ 2n + 2 − δ
]

p3 =
[

2n − 1 − δ + 3
(

δ−1
2n−1+1

)]

p3. Since

n > 8 and4 6 δ < 4+2n−5, we have that2n−1−δ+3
(

δ−1
2n−1+1

)

< 2n−4. Thus, we conclude
that0 < p1 < p2 < p3. The proof of Lemma 5 is complete by summarizing the results from
Case 1 - Case 5.

Note that whenn = 6, there are eight strings that are not included in the cases ofLemma 2 -
Lemma 5. Now we show that how to chooseσ3 so thatp3 > max(p1, p2) for each of these eight
strings. Whenσ1 = 010000 andσ2 = 101111, chooseσ3 = 011010; whenσ1 = 010001 and
σ2 = 101110, chooseσ3 = 111100; whenσ1 = 010010 andσ2 = 101101, chooseσ3 = 100000;
whenσ1 = 010011 andσ2 = 101100, chooseσ3 = 111010; whenσ1 = 010100 andσ2 =
101011, chooseσ3 = 001010; whenσ1 = 010101 andσ2 = 101010, chooseσ3 = 000000; when
σ1 = 010110 andσ2 = 101001, chooseσ3 = 111000; whenσ1 = 010111 andσ2 = 101000,
chooseσ3 = 110010. Combining this result with those from Lemma 2 - Lemma 5, we have the
following main theorem:

Theorem 2 For any stringσ1 and its complement stringσ2 in {0, 1}n \ {[0]∗1, [1]∗0}, there
always exists a stringσ3 in {0, 1}n \ {σ1, σ2} such thatp3 > max(p1, p2) whenn > 5.

Remark 1. Note that Theorem 2 does not hold whenn = 4 or 5. For example, ifσ1 = 0011
andσ2 = 1100, thenp3 < max(p1, p2) for any stringσ3 in {0, 1}4 \ {σ1, σ2}. In addition,
if σ1 = 0100 andσ2 = 1011, thenp3 6 max(p1, p2) for any stringσ3 in {0, 1}4 \ {σ1, σ2}.
In summary, numerical results show that for any stringσ1 and its complement stringσ2 in
{0, 1}4 \ {0001, 1110, 0011, 1100, 0100, 1011, 0111, 1000}, there always exists a stringσ3 in
{0, 1}4 \{σ1, σ2} such thatp3 > max(p1, p2). Analogously, numerical results show that for any
stringσ1 and its complement stringσ2 in {0, 1}5 \ {00001, 11110, 01000, 10111}, there always
exists a stringσ3 in {0, 1}5 \ {σ1, σ2} such thatp3 > max(p1, p2).

We next present some other interesting results regarding tothe complement strings. These
results are summarized in the following Theorem 3 and Theorem 4.

Theorem 3 Letσ1, σ2, andσ3 be three distinct strings in{0, 1}n, whereσ1 = [0]∗1, σ2 = [1]∗0,
and σ3 is arbitrary. Whenn > 3, we have that eitherP (Tσ1

< Tσ3
) > P (Tσ3

< Tσ1
) or

P (Tσ2
< Tσ3

) > P (Tσ3
< Tσ2

), i.e., eitherσ1 or σ2 has the better chance of occurring before
σ3.

Proof. The proof is similar to that of Theorem 1 and therefore omitted.
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Theorem 4 Let σ1 = s1s2 . . . sn andσ2 = s̄1s̄2 . . . s̄n satisfyσ1, σ2 ∈ {0, 1}n \ {[0]∗1, [1]∗0}.
Whenn > 5, there always exists a stringσ3 ∈ {0, 1}n \ {σ1, σ2} such thatP (Tσ3

< Tσ1
) >

P (Tσ1
< Tσ3

) andP (Tσ3
< Tσ2

) > P (Tσ2
< Tσ3

), i.e.,σ3 has the same or better chance of
occurring beforeσ1 andσ2.

Proof. The proof can be shown in a similar fashion to that of Theorem2, so it is omitted.

Remark 2. It should be noted that the inequalities in Theorem 4 can notbe replaced by the
strict inequalities. In addition, the stringσ3 chosen in Theorem 4 may not work in Theorem
2. To illustrate, let us consider the pair of complement stringsσ1 = 101001000 andσ2 =
010110111. Let σ3 = 011110101, some algebra shows thatP (Tσ3

< Tσ1
) = 510

1018
> 1

2
and

P (Tσ3
< Tσ2

) = 1
2
, which clearly satisfy the result of Theorem 4. However, in this case we

have thatp3 < 0.331 < max(p1, p2), which contradicts the result of Theorem 2.
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