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Abstract

The Abel identity is (x + y)n =
n
∑

i=0

(

n
i

)

x(x − iz)i−1(y + iz)n−i, where x, y and z

are real numbers. In this paper we deduce several polynomials expansions, referred
to as Abel-type identities, by using Foata’s method, and also show some of their
applications.

1 Introduction

It is well-known that the binomial identity is (x + y)n =
n
∑

i=0

(

n

i

)

xiyn−i. In 1826, Abel

deduced an identity which is

(x + y)n =
n

∑

i=0

(

n

i

)

x(x − iz)i−1(y + iz)n−i, (1)

where x, y and z are real numbers. Then the identity is called Abel identity. When we
set z = 0 in Eq.(1), it becomes the binomial identity. There are many applications of the
Abel identity [1]. And many authors offered different proofs of this identity, including the
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elegant combinatorial methods by Foata [2], the algebraic method by Lucas [1] and the
coding sign method by Francon [1]. In 1996, S.B.Ekhad and J.E.Majewicz presented a
computer-generated proof of it [3].

Another well-known version of the classical Abel identity [4] is

(x + y + nz)(x + y)n−1 =

n
∑

i=0

(

n

i

)

x · (x − iz)i−1(y + nz)(y + iz)n−i−1,

while a generalization of Abel identity expanding a product of multivariate linear forms
is Hurwitz identity [1] which is

(x + y)(x + y + z1 + z2 + · · ·+ zn)n−1 =
∑

{x(x + ε1z1 + ε2z2 + · · ·
+εnzn)ε1+ε2+···+εn−1y(y + ε1z1 + ε2z2 + · · ·+ εnzn)ε1+ε2+···+εn−1},

where the sum is over all 2n possibilities with ε1, ε2, · · · , εn choosing 0 or 1 and εi = 1−εi,

(i = 1, 2, · · · , n).
All the identities above are dealt with a single summation. In this paper we present

three polynomial identities, which are called the Abel-type identities involving double
summations. We show the identities here first and then give their proofs in the third
Section.

Theorem 1.1 (The Abel-type identities) Assume that 00 = 1. For any real numbers x,
y, z and u, the following identities hold.

(1) (x + y)mun =
n
∑

i=0

m
∑

j=0

(

n

i

)(

m

j

)

x(x − iz)j−1(y + iz)m−j(−jz)i(u + jz)n−i.

(2)
(x + y + nz)(−mz)n(x + y)m−1

=
n
∑

i=0

m
∑

j=0

(

n

i

)(

m

j

)

x(x − iz)j−1(y + nz)(y + iz)m−j−1(−jz)i(−mz + jz)n−i.

(3)
[(x + y)u− nmz2](x + y)m−1un−1 =

n
∑

i=0

m
∑

j=0

{
(

n

i

)(

m

j

)

(x + y + nz)

×(x + y + nz − iz)j−1(−nz + iz)m−j(u + mz)(−jz)i(u + jz)n−i−1}.

In this paper, firstly, we introduce the coding method, due to Foata (§1.18 of [1]).
Next by using this method, we give the proof of Theorem 1.1. At last some applications
of Theorem 1.1 are presented, i.e., the identities (2) and (3) helping for enumerating the
spanning forests of complete bipartite graph.

2 Preliminaries

In this section, we will introduce some terminologies which can be found in [1].
Suppose [n] denote a set with n elements, i.e., [n] = {1, 2, · · · , n}. [n][n] is a set

containing all mappings from [n] to [n].
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Given a subset E of [n][n], we define the (commutative) coding polynomial of E as
T E = T E(t1, t2, . . . ) =

∑

f∈E

t(f). If f maps αi elements to i (i = 1, 2, · · · , n), t(f) =

tα1
1 tα2

2 · · · tαn

n . Then the coefficient of tα1
1 tα2

2 · · · in T E(t1, t2, · · · ) is the number of f ∈ E

such that f maps αi elements to i (i = 1, 2, · · · , n). Evidently, T E(1, 1, · · · ) = |E|, i.e.,
the number of elements of the set E.

Take E ⊆ [3][3] for example, where E = {f1, f2, f3, f4} with f1(i) = 1, for i = 1, 2, 3;
f2(1) = 2, f2(2) = 2, f2(3) = 1; f3(1) = 2, f3(2) = 3, f3(3) = 1; and f4(1) = 2,
f4(2) = 1, f4(3) = 2. We have t(f1) = t31, t(f2) = t(f4) = t1t

2
2 and t(f3) = t1t2t3. And thus

T E = t31 + 2t1t
2
2 + t1t2t3, and T E(1, 1, 1) = 4 = |E|.

We present the following results about T E here for they can help to prove Theorem
1.1.

Result 1 Set E = [n][n]. Then T E = (t1 + t2 + · · · + tn)n.

Result 2 If E is the set containing all functions fixed at 1, 2, · · · , k, T E = t1t2 · · · tk(t1+
t2 + · · ·+ tn)n−k.

Result 3 If E is the set which contains all acyclic functions rooted or fixed at
1, 2, · · · , k, then T E = t1t2 . . . tk(t1 + t2 + · · ·+ tk)(t1 + t2 + · · ·+ tn)n−k−1.

Thus, we have (1) |[n][n]| = nn; (2) the number of functions fixed at k given elements
is nn−k; (3) the number of forests rooted at k given vertices is k · nn−k−1.

Some properties of T E can be deduced.

Property 2.1 If E can be separated into different types E1, E2, · · · , written as E =
E1 + E2 + · · · , then T E = T E1 + T E2 + · · · .

Property 2.2 For any f ∈ E, if there exist fi ∈ Ei(i = 1, 2, · · · ) such that f = f1f2 · · · ,

i.e. E = E1E2 · · · , then T E = T E1T E2 · · · .

3 Proof of Theorem 1.1

We consider the enumeration of function sets as follows:
(I) The number of elements of the function set E1 ⊆ [n+m+4][n+m+4] which contains

all functions fixed at n + 1, n + 2, n + m + 3 and n + m + 4 such that f maps [n] to
[n + m + 4] − [n + 2] while [n + m + 2] − [n + 2] to [n + 2] for any f ∈ E1.

(II) The number of elements of the function set E2 ⊆ [n+m+2][n+m+2] which contains
all acyclic functions fixed or rooted at n + 1 and n + 2 such that f maps [n] to [n + m +
2] − [n + 2] while [n + m + 2] − [n + 2] to [n + 2] for any f ∈ E2.

(III) The number of elements of the function set E3 ⊆ [n+m+4][n+m+4] which contains
all acyclic functions fixed or rooted at n + 1, n + 2, n + m + 3 and n + m + 4 such that f

maps [n] to [n + m + 4] − [n + 2] while [n + m + 2] − [n + 2] to [n + 2] for any f ∈ E3.
Now we will obtain the coding polynomials T Ei

, where Ei (i = 1, 2, 3) are defined as
above.

(I) From Result 2 and Property 2.2, the following result holds

TE1 = tn+1tn+2(tn+3 + tn+4 + · · · + tn+m+4)
ntn+m+3tn+m+4(t1 + t2 + · · · + tn+2)

m. (2)
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Let X ⊆ [n], Y ⊆ [n + m + 2] − [n + 2], |X| = i and |Y | = j. Set X̄ = [n] − X,

Ȳ = ([n + m + 2] − [n + 2]) − Y . Consequently, 0 6 i 6 n, 0 6 j 6 m, |X̄| = n − i and
|Ȳ | = m− j. Set A1 = X ∪ {n + 1, n + 2} ∪ Y and A2 = X̄ ∪ {n + m + 3, n + m + 4} ∪ Ȳ .

Let E
(1)
1 (X, Y ) ⊆ AA1

1 be a set containing all acyclic functions rooted at n + 1 and n + 2,

and E
(2)
1 (X, Y ) ⊆ AA2

2 be a set containing all functions rooted at n+m+3 and n+m+4.

Thus E1(X, Y ) = E
(1)
1 (X, Y )E

(2)
1 (X, Y ), and combining Result 2, Result 3 and Property

2.2, we have

TE1(X,Y ) = T
E

(1)
1 (X,Y )

T
E

(2)
1 (X,Y )

= tn+1tn+2(
∑

q∈Y

tq)
|X|(tn+1 + tn+2)(tn+1 + tn+2 +

∑

p∈X

tp)
|Y |−1

×(tn+m+3 + tn+m+4 +
∑

q∈Ȳ

tq)
|X̄|tn+m+3tn+m+4(

∑

p∈X̄

tp)
|Ȳ |

(3)

From Eq.(2) and Eq.(3), we have

(tn+3 + tn+4 + · · · + tn+m+4)
n(t1 + t2 + · · ·+ tn+2)

m.

=
∑

X,Y

{(
∑

q∈Y

tq)
|X|(tn+1 + tn+2)(tn+1 + tn+2 +

∑

p∈X

tp)
|Y |−1

×(tn+m+3 + tn+m+4 +
∑

q∈Ȳ

tq)
n−|X|(

∑

p∈X̄

tp)
m−|Y |},

(4)

where the sum is over all subsets X ⊆ [n] and Y ⊆ [n + m + 2] − [n + 2].
(II) We have

TE2 = tn+1tn+2(tn+3 + tn+4 + · · ·+ tn+m+2)
n(t1 + t2)(t1 + t2 + · · · + tn+2)

m−1. (5)

Choose X, Y , X̄ and Ȳ the same as in case (I). Set A1 = X ∪ {n + 1} ∪ Y and A2 =

X̄ ∪ {n + 2} ∪ Ȳ . Let E
(1)
2 (X, Y ) ⊆ AA1

1 be a set containing all acyclic functions rooted

at n + 1, and E
(2)
2 (X, Y ) ⊆ AA2

2 be a set containing all acyclic functions rooted at n + 2.

Thus E2(X, Y ) = E
(1)
2 (X, Y )E

(2)
2 (X, Y ) and

TE2(X,Y ) = T
E

(1)
2 (X,Y )

T
E

(2)
2 (X,Y )

= tn+1(
∑

q∈Y

tq)
|X|tn+1(tn+1 +

∑

p∈X

tp)
|Y |−1tn+2(

∑

q∈Ȳ

tq)
|X̄|tn+2(tn+2 +

∑

p∈X̄

tp)
|Ȳ |−1. (6)

Combining Eq.(5) and Eq.(6), we obtain the following identity.

(t1 + t2)(tn+3 + tn+4 + · · ·+ tn+m+2)
n(t1 + t2 + · · · + tn+2)

m−1

=
∑

X,Y

(
∑

q∈Y

tq)
|X|tn+1(tn+1 +

∑

p∈X

tp)
|Y |−1(

∑

q∈Ȳ

tq)
n−|X|tn+2(tn+2 +

∑

p∈X̄

tp)
m−|Y |−1, (7)

where the sum is over all subsets X ⊆ [n] and Y ⊆ [n + m + 2] − [n + 2].
(III) Define a point v ∈ [n+m+4] to be isolated provided that there exists no elements

mapping onto it except itself. By the definition of E3, the possible isolated points may
be and only may be the root points n + 1, n + 2, n + m + 3 and n + m + 4. Suppose
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E
(1)
3 , E

(2)
3 , E

(3)
3 ⊆ E3, where E

(1)
3 contains all acyclic functions whose possible isolated-

point sets are {n+1}, {n+2}, {n+1, n+m+3}, {n+2, n+m+3}, {n+1, n+m+4},
{n+2, n+m+4}, {n+m+3, n+m+4}, {n+1, n+m+3, n+m+4}, {n+2, n+m+3, n+m+4}

and ∅; E
(2)
3 contains all acyclic functions whose possible isolated-point sets are {n+m+3},

{n+m+4}, {n+1, n+m+3}, {n+2, n+m+3}, {n+1, n+m+4}, {n+2, n+m+4},

{n + 1, n + 2}, {n + 1, n + 2, n + m + 3}, {n + 1, n + 2, n + m + 4} and ∅; while E
(3)
3

contains all acyclic functions whose possible isolated-point sets are {n + 1, n + m + 3},
{n +1, n + m +4}, {n +2, n +m + 3}, {n+ 2, n+ m + 4} and ∅. Note that both n and m

are positive. It is impossible that {n + 1, n + 2, n + m + 3, n + m + 4} is an isolated-point

set of E3. Therefore E3 = E
(1)
3 + E

(2)
3 − E

(3)
3 . And thus T E3 = T

E
(1)
3

+ T
E

(2)
3

− T
E

(3)
3

.

However, by Result 2, Result 3 and Property 2.2, we have

T
E

(1)
3

= tn+m+3tn+m+4(tn+1 + tn+2)(t1 + t2 + · · · + tn+2)
m−1tn+1tn+2

×(tn+3 + tn+4 + · · ·+ tn+m+4)
n,

T
E

(2)
3

= tn+1tn+2(tn+m+3 + tn+m+4)(tn+3 + tn+4 + · · · + tn+m+4)
n−1

×tn+m+3tn+m+4(t1 + t2 + · · ·+ tn+2)
m

and
T

E
(3)
3

= tn+1tn+2(tn+m+3 + tn+m+4)(t1 + t2 + · · ·+ tn+2)
m−1tn+m+3

×tn+m+4(tn+1 + tn+2)(tn+3 + tn+4 + · · ·+ tn+m+4)
n−1.

On the other hand, we choose X, Y , X̄ and Ȳ the same as in the case (I). Set

A1 = X∪{n+1, n+2}∪Y and A2 = X̄∪{n+m+3, n+m+4}∪Ȳ . Let E
(1)
3 (X, Y ) ⊆ AA1

1

be a set containing all acyclic functions rooted at n + 1 and n + 2, and E
(2)
3 (X, Y ) ⊆ AA2

2

be a set containing all acyclic functions rooted at n + m + 3 and n + m + 4. Thus
E3(X, Y ) = E

(1)
3 (X, Y )E

(2)
3 (X, Y ) and then it yields that

TE3(X,Y ) = T
E

(1)
3 (X,Y )

T
E

(2)
3 (X,Y )

= tn+1tn+2(
∑

q∈Y

tq)
|X|(tn+1 + tn+2)(tn+1 + tn+2 +

∑

p∈X

tp)
|Y |−1tn+m+3

×tn+m+4(
∑

p∈X̄

tp)
|Ȳ |(tn+m+3 + tn+m+4)(tn+m+3 + tn+m+4 +

∑

q∈Ȳ

tq)
|X̄|−1,

where X ⊆ [n], |X| = i, X̄ = [n] − X, Y ⊆ [n + m + 2] − [n + 2], |Y | = j and
Ȳ = [n + m + 2] − [n + 2] − Y.

Thus we obtain the following equation.

(t1 + · · · + tn+2)
m−1(tn+3 + · · · + tn+m+2)

n−1[(tn+1 + tn+2)(tn+3 + . . .

+tn+m+4) + (tn+m+3 + tn+m+4)(t1 + · · · + tn+2)]

=
n
∑

i=0

m
∑

j=0

(

n

i

)(

m

j

)

{(tn+1 + tn+2)(tn+1 + tn+2 +
∑

p∈X

tp)
j−1(

∑

p∈X̄

tp)
m−j

×(tn+m+3 + tn+m+4)(
∑

q∈Y

tq)
i(tn+m+3 + tn+m+4 +

∑

q∈Ȳ

tq)
n−i−1}.

(8)
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Set tn+1 = x, tn+2 = y + nz, t1 = t2 = · · · = tn = −z, tn+m+3 = u, tn+m+4 = mz,

and tn+3 = tn+4 = · · · = tn+m+2 = −z in Eqs.(7), (8) and (4), respectively. We obtain
identities (2), (3) of Theorem 1.1 and

(x + y)mun =
n
∑

i=0

m
∑

j=0

{
(

n

i

)(

m

j

)

(x + y + nz)

×(x + y + nz − iz)j−1(−nz + iz)m−j(−jz)i(u + jz)n−i},
(9)

respectively. And then by replacing x with x + y + nz, and y with −nz in Eq.(9), the
identity (1) of Theorem 1.1 is obtained. Thus Theorem 1.1 is proved.

Suppose k and l be positive integers. Replace n by n − k and let z = −1, x = s

and y = n − s in identities (1) and (2), and then replace n and m by n − k and m − l,
respectively, and let z = −1, x + y = n and u = m in identities (1) and (3) of Theorem
1.1. We obtain three interesting identities as follows:

Theorem 3.1

mn−knm−l =

n−k
∑

i=0

m−l
∑

j=0

(

n − k

i

)(

m − l

j

)

s(s + i)j−1(n − s − i)m−l−jji(m − j)n−k−i, (10)

k · mn−knm−1

=
n−k
∑

i=0

m
∑

j=0

(

n−k

i

)(

m

j

)

s(s + i)j−1(k − s)(n − s − i)m−j−1ji(m − j)n−k−i (11)

and
(km + ln − kl) · mn−k−1nm−l−1

=
n−k
∑

i=0

m−l
∑

j=0

(

n−k

i

)(

m−l

j

)

kl(k + i)j−1(n − k − i)m−jji(m − j)n−k−i−1,
(12)

where 00 = 1 and 1 6 s 6 k in Eq.(10) or 1 6 s 6 k − 1 in Eq.(11) is an integer.

4 Applications

Let Km,n be a labeled complete bipartite graph with vertex set V (Km,n) = A∪B, |A| = m,

|B| = n. A forest of l + k labeled rooted trees as spanning subgraphs of Km,n with l roots
in A and k roots in B is denoted by [m, l; n, k]−forests (l 6 m, k 6 n) while the number
of [m, l; n, k]-forests is denoted by f(m, l; n, k).

In [5], Y. Jin and C. Liu obtained the following results.
Theorem A For m > 0, n > 1 and k > 1,

f(m, 0; n, k) = k

(

n

k

)

mn−knm−1 =

(

n − 1

k − 1

)

mn−knm,

where f(0, 0; 1, 1) is defined to be 1.
Theorem B For 1 6 l 6 m and 1 6 k 6 n,

f(m, l; n, k) =

(

m

l

)(

n

k

)

nm−l−1mn−k−1(km + ln − kl).
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Let [m, l; n, k]∗ − forest denote [m, l; n, k]-forest with l fixed roots in A and k fixed
roots in B. Similarly, f ∗(m, l; n, k) denotes the number of [m, l; n, k]∗-forests.

It is easy to know that f(m, l; n, k) =
(

m

l

)(

n

k

)

f ∗(m, l; n, k). Combining Theorem A and
B, we have f ∗(m, 0; n, k) = kmn−knm−1 and f ∗(m, l; n, k) = nm−l−1mn−l−1(km+ ln−kl).

For the applications of Theorem 3.1, Eqs.(11) and (12) can be used to prove the
enumerations of [m, 0; n, k]∗−forests and [m, l; n, k]∗−forests, respectively .

In fact, we have the following recurrences

f ∗(m, 0; n, k) =

n−k
∑

i=0

m
∑

j=0

(

n − k

i

)(

m

j

)

f ∗(j, 0; i + 1, s)f ∗(m − j, 0; n − i − 1, k − s).

f ∗(m, l; n, k) =
n−k
∑

i=0

m−l
∑

j=0

(

n−k

i

)(

m−l

j

)

f ∗(j, 0; k + i, k)f ∗(m − j, l; n − k − i, 0)

=
n−k
∑

i=0

m−l
∑

j=0

(

n−k

i

)(

m−l

j

)

f ∗(j, 0; k + i, k)f ∗(n − k − i, 0; m − j, l).

From these two recurrences and applying Theorem 3.1, we can prove Theorem A and
Theorem B by induction, respectively and thus give another proofs for them.

Note: If we set ti = 1 in Case (II) and (III) as above, we see that:
In Case (II), it enumerates [m, 0; n + 2, 2]∗−forests;
In Case (III), it enumerates [m + 2, 2; n + 2, 2]∗−forests.
Even so, we can use the results of Case (II) and (III) to enumerate [m, 0; n, k]∗−forests

and [m, l; n, k]∗−forests, respectively. That’s what the Foata’s coding method does.
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