On zero-sum free subsets of length 7

Pingzhi Yuan*

School of Mathematics, South China Normal University Guangzhou 510631, P.R.China mcsypz@mail.sysu.edu.cn

Xiangneng Zeng

Department of Mathematics, Sun Yat-Sen University Guangzhou 510275, P.R.China

Submitted: Nov 2, 2009; Accepted: Jul 26, 2010; Published: Aug 9, 2010 Mathematics Subject Classifications: primary 11B75; secondary 11B50

Abstract

Let G be a finite additively written abelian group, and let X be a subset of 7 elements in G. We show that if X contains no nonempty subset with sum zero, then the number of the elements which can be expressed as the sum over a nonempty subsequence of X is at least 24.

1 Introduction

Let G be an additive abelian group and $X \subseteq G$ a subset of G. We denote by f(G, X) = f(X) the number of nonzero group elements which can be expressed as a sum of a nonempty subset of X. For a positive integer $k \in \mathbb{N}$, let f(k) denote the minimum of all f(G, X), where the minimum is taken over all finite abelian groups G and all zero-sum free subsets $X \subset G$ with |X| = k. The invariant f(k) was first studied by R. B. Eggleton and P. Erdős in 1972 [1]. For every $k \in \mathbb{N}$ they obtained a subset X in a cyclic group G with |X| = k such that

$$f(k) \leqslant f(G, X) = \left\lfloor \frac{1}{2}k^2 \right\rfloor + 1.$$
(1)

And J. E. Olson [2] proved that

$$f(k) \ge \frac{1}{9}k^2.$$

Moreover, Eggleton and Erdős determined f(k) for all $k \leq 5$, and they stated the following conjecture (which holds true for $k \leq 5$):

^{*}Supported by NSF of China (No. 10971072) and by the Guangdong Provincial Natural Science Foundation (No. 8151027501000114).

Conjecture 1.1. For every $k \in \mathbb{N}$ there is a cyclic group G and a zero-sum free subset $X \subset G$ with |X| = k such that f(k) = f(G, X).

Recently, Weidong Gao et al. [3] proved that f(6) = 19 and G.Bhowmik et al. [5] showed that $f(G, X) \ge 24$ (the lower bound is sharp), where G is a cyclic group, |X| = 7. Together with the conjecture above, we have that f(7) = 24. The main aim of the present paper is to show the following theorem.

Theorem 1.1. f(7) = 24.

In Section 2, we fix the notation. Sections 3 and 4 are devoted to the tools and lemmas needed in the proof of Theorem 1.1. In Section 5, we prove Theorem 1.1 with the help of a C++ program.

Throughout this paper, let G denote an additive finite abelian group.

2 Notation

We follow the conventions of [6] and [3] for notation concerning sequences over an abelian group.

We denote by \mathbb{N} the set of positive integers, and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. For real numbers $a, b \in \mathbb{R}$ we set $[a, b] = \{x \in \mathbb{Z} | a \leq x \leq b\}$.

Let $\mathcal{F}(G)$ denote the multiplicative, free abelian monoid with basis G. The elements of $\mathcal{F}(G)$ are called *sequences* over G. An element $X \in \mathcal{F}(G)$ will be written in the form

$$X = g_1 \cdot \ldots \cdot g_l = \prod_{g \in G} g^{v_g(X)}$$

where $v_q(X) \in \mathbb{N}_0$ is the *multiplicity* of g in X. For a sequence X above we have:

$$\begin{split} |X| &= l = \sum_{g \in G} v_g(X) \in \mathbb{N}_0 \quad \text{the length of } X, \\ \sigma(X) &= \sum_{i=1}^l g_i = \sum_{g \in G} v_g(X)g \in G \quad \text{the sum of } X, \\ \sum(X) &= \{\sum_{i \in I} g_i | \emptyset \neq I \subset [1, l]\} \quad \text{the set of subsums of } X \end{split}$$

We say that X is

- zero-sum free if $0 \notin \sum(X)$,
- a zero-sum sequence if $\sigma(X) = 0$,
- squarefree if $v_g(X) \leq 1$ for all $g \in G$, moreover, a squarefree sequence can be considered as a subset of G.

For a zero-sum free sequence X over G, we have:

$$f(G, X) = f(X) = |\sum_{X} (X)|,$$

 $f(G,k) = \min\{f(X) | X \in \mathcal{F}(G) \text{ zero-sum free, squarefree and } |X| = k\}$

and set $f(G,k) = \infty$ when there are no sequences in G of the above form.

 $f(k) = \min\{f(G, k) | G \text{ run over all finite abelian groups}\}$

- Let D(G) denote the Davenport's constant of G and r(G) the rank of G.
- Let ol(G) denote the maximal length of a sequence X over G which is zero-sum free and squarefree. The invariant ol(G) is called the *Olson constant* of G.

3 Preliminaries

Lemma 3.1. 1. If $k \in \mathbb{N}$ and $X = X_1 \cdot \ldots \cdot X_k \in \mathcal{F}(G)$ is a zero-sum free sequence, then

$$f(X) \ge f(X_1) + \dots + f(X_k)$$

2. If $X \subset G$ is zero-sum free, |X| = k and $k \in \mathbb{N}$, then

$$f(X) \begin{cases} = 1, & if \ k = 1 \\ = 3, & if \ k = 2 \\ \ge 5, & if \ k = 3 \\ \ge 6, & if \ k = 3 \ and \ 2g \neq 0 \ for \ all \ g \in X \\ \ge 2k, & if \ k \ge 4. \end{cases}$$

Proof. 1. See [6] Theorem 5.3.1. 2. See [6] Corollary 5.3.4.

Lemma 3.2. ([3]) f(5) = 13, f(6) = 19.

Lemma 3.3. ([5]) $f(G,7) \ge 24$, where G is a cyclic group. Furthermore, let $G = C_{25}$ and $X = \{5, 10, 1, 6, 11, 16, 21\}$, then f(X) = 24.

Lemma 3.4. Let $X \subset G$ be a zero-sum free subset of G and |X| = 7. If X contains an element of order 2, then $f(X) \ge 25$.

Proof. See [3] Theorem 3.2.

4 Some bounds on subset S

The lemmas in this section follows mainly from A. Pixton [7].

Lemma 4.1. ([7] Lemma 4.3) Let G be a finite abelian group and let $X \subseteq G \setminus \{0\}$ be a generating set for G. Suppose S is a nonempty proper subset of G, then

$$\sum_{x \in X} |(S+x) \backslash S| \ge |X|$$

Lemma 4.2. ([7] Lemma 4.4) Let G be a finite abelian group and let $X \subseteq G \setminus \{0\}$ be a generating set for G. Suppose $f : G \to \mathbb{Z}$ is a function on G. Then

$$\sum_{x \in X \atop g \in G} \max\{f(g+x) - f(g), 0\} \ge (\max(f) - \min(f)) |X|.$$

The proofs of the following two Lemmas are essential from A. Pixton ([7] Theorem 4.5). For the convenience of the reader, we present the proof here.

Lemma 4.3. Let G be a finite abelian group and let $X \subseteq G \setminus \{0\}$ be a generating set for G. Suppose $S \subseteq G$ satisfies $|(S + x) \setminus S| \leq m$, for $m \in \mathbb{N}$ and all $x \in X$, and for $Y \subset X$ and $H = \langle Y \rangle \not\subseteq G$, define a function $f : G/H \to \mathbb{Z}$ by $f(a) = |(a + H) \cap S|$ for $a \in G/H$. Then

$$max(f) - min(f) \leq m.$$

Proof. First, without loss of generality, we may replace Y by a minimal subset of Y that still generates H, and we still denote it by Y. Then we may replace X by a minimal subset X_0 of X that satisfies $Y \subset X_0 \subset X$ and $\langle X_0 \rangle = G$. For the convenience, we still label it by X. Also, if $|H| \leq m$, the result is trivial. Since

$$\begin{split} |(S+x)\backslash S| &= |(S-x)\backslash S| \\ &= \sum_{a\in G/H} |((S-x)\backslash S)\cap (a+H)| \\ &= \sum_{a\in G/H} |(S-x)\cap (a+H)| - |(S-x)\cap S\cap (a+H)| \\ &= \sum_{a\in G/H} |S\cap (a+x+H)| - |(S-x)\cap S\cap (a+H)| \\ &\geqslant \sum_{a\in G/H} \max\{f(a+x) - f(a), 0\} \end{split}$$

It follows that

$$m|X \setminus Y| \geq \sum_{x \in X \setminus Y} |(S+x) \setminus S|$$

$$\geq \sum_{x \in X \setminus Y} \sum_{a \in G/H} \max\{f(a+x) - f(a), 0\}$$

$$\geq (\max(f) - \min(f))|X \setminus Y|$$
(2)

The electronic journal of combinatorics 17 (2010), #R104

by Lemma 4.2. Since $H \not\subseteq G$, $|X \setminus Y| > 0$, then the result follows immediately from (2).

Lemma 4.4. Let G be a finite abelian group, $X \subseteq G \setminus \{0\}$ a generating set for G, $Y \subset X$ and $H = \langle Y \rangle \not\subseteq G$. Suppose |H| > m and |G/H| > m, where $m \in \mathbb{N}$, and suppose $S \subseteq G$ satisfies $|(S+x) \setminus S| \leq m$ for all $x \in X$. Then

$$\min\{|S|, |G \setminus S|\} \leqslant m^2.$$

Proof. Define a function $f: G/H \to \mathbb{Z}$ by $f(a) = |(a+H) \cap S|$ for $a \in G/H$. We have

$$\max(f) - \min(f) \leqslant m$$

by Lemma 4.3. Then by replacing S by G/S if necessary, we can assume that $f(a) \neq |H|$ for any $a \in G/H$. The reason is that

$$|(G \backslash S + x) \backslash (G \backslash S)| = |(S + x) \backslash S|$$

Thus we can apply Lemma 4.1 to obtain that

$$\begin{split} m|Y| & \geqslant \sum_{x \in Y} |(S+x) \setminus S| \\ &= \sum_{a \in G/H} \sum_{x \in Y} |(S \cap (a+H) + x) \setminus (S \cap (a+H))| \\ &\geqslant |\operatorname{supp}(f)||Y| \end{split}$$

where $\operatorname{supp}(f) = \{a \in G/H | f(a) \neq 0\}$ is the support of f. Since |G/H| > m, this implies that f(a) = 0 for some a, and thus $f(a) \leq m$ for all $a \in G/H$. Then $|S| = \sum_{a \in G/H} f(a) \leq \max(f)|\operatorname{supp}(f)| \leq m^2$, as desired.

Lemma 4.5. ([7] Theorem 5.3) Let G be a finite abelian group of rank greater than 2 and let $X \subset G \setminus \{0\}$ be a generating set for G consisting only of elements of order greater than 2. Suppose $S \subset G$ satisfies $|(S + x) \setminus S| \leq 3$ for all $x \in X$. Then $min\{|S|, |G \setminus S|\} \leq 5$.

Lemma 4.6. Let G be a finite abelian group of rank greater than 2, and $X \subseteq G$ a zero-sum free generating set consisting of only elements of order greater than 2, and let $S = \sum(X)$. Suppose that $|X| \ge 5$ and $|G| \ge 29$, then $|S| \ge 24$, or $|S| \ge 4|X| - 3$, or there is some $x \in X$ satisfies $\langle X \setminus \{x\} \rangle = G$ and $|S| - |\sum(X \setminus \{x\})| \ge 4$.

Proof. If there is an element $x \in X$ such that $\langle X \setminus \{x\} \rangle \neq G$, then

$$S = \sum (X \setminus \{x\}) \uplus \{x\} \uplus \sum (X \setminus \{x\}) + x$$

is a disjoint union. It follows that $|S| = 2|\sum (X \setminus \{x\})| + 1 \ge 2 \times 2(|X| - 1) + 1 = 4|X| - 3$ by Lemma 3.1. Hence we may assume that $\langle X \setminus \{x\} \rangle = G$ for all $x \in X$.

Now if $|S| - |\sum (X \setminus \{x\})| \leq 3$ for all $x \in X$, since $\sum (X \setminus \{x\}) \subset (S - x) \cap S$, then we have

$$\begin{aligned} |(S-x)\backslash S| &= |S-x| - |(S-x) \cap S| \\ &\leqslant |S| - |\sum (X\backslash \{x\})| \\ &\leqslant 3. \end{aligned}$$

It follows from Lemma 4.5 that $\min\{|S|, |G \setminus S|\} \leq 5$. Notice that $|S| \ge 2|X| \ge 10$, then $|G \setminus S| \le 5$ and $|S| \ge |G| - 5 \ge 24$, as desired.

5 Other lemmas before the proof

In this section, we present some Lemmas that will be used in the proof of the main result.

Lemma 5.1. Let $X \subseteq G$ be a zero-sum free generating set of G, |X| = 4, and X has no element of order 2. If $r(G) \ge 3$ and $G \not\cong C_2 \oplus C_2 \oplus C_4$, then $f(X) \ge 12$.

Proof. Let $X = x_1 \cdot x_2 \cdot x_3 \cdot x_4$. If there are distinct indices $i, j, k \in [1, 4]$ such that $x_i = x_j + x_k$, without loss of generality, we may assume that $x_1 = x_2 + x_3$. Since $r(G) \ge 3$, then $x_4 \notin \langle x_1, x_2, x_3 \rangle$, and so

$$\sum(X) = \sum(x_1 x_2 x_3) \biguplus \{x_4\} \biguplus (x_4 + \sum(x_1 x_2 x_3))$$

is a disjoint union. It follows from Lemma 3.1 that $f(X) \ge 2f(x_1x_2x_3) + 1 \ge 13$.

Now we consider the case that $x_i \neq x_j + x_k$ for all distinct indices $i, j, k \in [1, 4]$. If there is no index $i \in [1, 4]$ such that $x_i = \sum_{j \neq i} x_j$, then $x_1, x_2, x_3, x_4, x_1 + x_2, x_1 + x_3, x_1 + x_4, x_1 + x_2 + x_3, x_1 + x_2 + x_4, x_1 + x_3 + x_4, x_2 + x_3 + x_4, x_1 + x_2 + x_3 + x_4$ are pairwise distinct, so $f(X) \ge 12$.

Otherwise, we can assume $x_1 = x_2 + x_3 + x_4$.

If $x_{\tau(1)} + x_{\tau(2)} = x_{\tau(3)} + x_{\tau(4)}$, where τ is an element of the symmetric group on [1, 4], then the two equations imply that there is some x_i of order 2, a contradiction.

If there is an index $i \in [1,4]$ such that $x_i \neq \sum_{j\neq i} x_j$, say, $x_4 \neq x_1 + x_2 + x_3$, then $x_1, x_2, x_3, x_4, x_1 + x_2 + x_3, x_1 + x_2, x_1 + x_3, x_1 + x_4, x_2 + x_3, x_2 + x_4, x_3 + x_4, x_1 + x_2 + x_3 + x_4$ are pairwise distinct, so $f(X) \ge 12$.

If $x_i = \sum_{j \neq i} x_j$ for all indices $i \in [1, 4]$, then the 4 equations imply $4x_4 = 0$, $x_1 = x_4 + g_1$, $x_2 = x_4 + g_2$ and $x_3 = -x_4 + g_1 + g_2$, where g_1, g_2 is of order 2. It follows that $G = \langle X \rangle \cong C_2 \oplus C_2 \oplus C_4$, again a contradiction. We are done.

Lemma 5.2. Let C_n be a cyclic group of order $n, S \subset C_n$ a subset of G. Suppose that d is a generator of C_n and $x \in C_n$ is an element of order greater than 2. Then we have:

1. $|(S+x)\backslash S| = |(S-x)\backslash S|$.

2. If S is an arithmetic progression of difference d, then

$$|(S+x)\backslash S| = \min\{|S|, n-|S|, k, n-k\},\$$

The electronic journal of combinatorics $\mathbf{17}$ (2010), $\#\mathrm{R104}$

where $k \in [1, n-1]$ is the integer with x = kd.

3. If $S = S_1 \uplus S_2$ is a disjoint union, where S_1, S_2 are arithmetic progressions of difference d and S is not an arithmetic progressions of difference d. Suppose that $2 \leq |S| \leq n-2$, then $|(S+x) \setminus S| \geq 1$.

4. Let S be as in 3, and moreover $5 \leq |S| \leq n-5$ and n = 2r, r is a positive integer, then $|(S+x)\setminus S| \geq 2$. Furthermore the equality holds only when x is one of the following cases:

(a): $x = \pm d$.

(b): $x = \pm 2d$. In the case, $S = \{g, g+d, \dots, g+(t-1)d, g+td\} \uplus \{g+(t+2)d\}$ or $S = \{g\} \uplus \{g+2d, g+3d, \dots, g+(t-1)d, g+td\}, g \in G \text{ and } t \in [3, n-5].$

(c): $x = \pm (r-1) d$. In the case, $||S_1| - |S_2|| \leq 2$.

5. If $S = S_1 \cup S_2 \cup S_3$ is a disjoint union of 3 arithmetic progressions of difference d, $x = \pm 3d$, and $8 \leq |S| \leq n-7$, then $|(S+x)\setminus S| \geq 2$.

Proof. **1.** It is obvious.

2. Obviously.

3. For a counterexample, we may assume that $S_1 = \{g_1, g_1 + d, \dots, g_1 + t_1d\}$, $S_2 = \{g_2, g_2 + d, \dots, g_2 + t_2d\}$ and $|(S+x)\setminus S| = 0$. The proof is divided into the following two cases:

Case 3.1: If $g_1 + x \in S_1$, then there is an integer $k \in [0, t_1 - 1]$ such that $g_1 + kd + x = g_1 + t_1d$, however $g_1 + (k+1)d \in S_1$ and $g_1 + (k+1)d + x \notin S$ yield a contradiction. The proof of the case $g_2 + x \in S_2$ is similar.

Case 3.2: If $g_1 + x \in S_2$ and $g_2 + x \in S_1$, then $S_1 + x \subseteq S_2$ and $S_2 + x \subseteq S_1$. Hence $|S_1| = |S_1 + x| \leq |S_2|$ and similarly $|S_2| \leq |S_1|$. It follows that $|S_1| = |S_2|$, $g_1 + x = g_2$ and $g_2 + x = g_1$, and hence $g_1 = g_2 + x = g_1 + x + x$ and 2x = 0, again a contradiction. We are done.

4. Without loss of generality, we may assume $|S_1| \ge |S_2|$. Let $r = \frac{n}{2}$, $S_1 = \{g_1, g_1 + d, \ldots, g_1 + t_1d\}$, $S_2 = \{g_2, g_2 + d, \ldots, g_2 + t_2d\}$, $U_1 = \{g_1 + (t_1 + 1)d, g_1 + (t_1 + 2)d, \ldots, g_2 - d\}$ and $U_2 = \{g_2 + (t_2 + 1)d, g_2 + (t_2 + 2)d, \ldots, g_1 - d\}$. If $x = \pm d$ then $|(S + x) \setminus S| = 2$. Since $|(S + x) \setminus S| = |(S - x) \setminus S|$, n = 2r and x is an element of order greater than 2, then without loss of generality, we may assume that x = kd, $k \in [2, r - 1]$.

Case 4.1: $k \in [3, r-2]$.

Subcase 4.1.1: If $|S_1| \ge k$, then $|U_1| + |U_2| = n - |S| \ge 5$ implies that $|U_1| \ge 3$ or $|U_2| \ge 3$. If $|U_2| \ge 3$, then $U_0 = \{g_1 - 3d, g_1 - 2d, g_1 - d\} \subset U_2$ and $U_0 + x \subset S_1$, so $|(S+x)\setminus S| = |(S-x)\setminus S| = |(S-x)\cap U_1| + |(S-x)\cap U_2| \ge |U_0| = 3$. The proof of the case $|U_1| \ge 3$ is similar.

Subcase 4.1.2: If $|S_1| < k$, let $H_1 = \{g_1, g_1 + kd, g_1 + 2kd\}$, $H_2 = H_1 + d$ and $H_3 = H_1 + 2d$. Obviously, each of the 3 disjoint subsets of C_n has 3 elements. Now we first prove that $H_i \not\subset S$, i = 1, 2, 3. If $g_1 + (i - 1 + k)d \in S$, then $g_1 + (i - 1 + k)d \in S_2$ since $|S_1| < k$, and so $g_1 + (i - 1 + 2k)d \notin S_2$. Notice that $g_1 + (i - 1 + 2k)d \notin S_1$, otherwise, we would have $g_1 + (i - 1 + 2k)d = g_1 + md$ for some integer $m, m \in [0, |S_1| - 1]$, and so $2k + 2 \ge n = 2r$, which is impossible. It follows that $g_1 + (i - 1 + 2k)d \notin S$. Since $g_1 + (i - 1)d \in S_1, i = 1, 2, 3$, so each of $H_i \not\subset S$, i = 1, 2, 3 contributes at least one element to $(S + x) \setminus S$. Hence $|(S + x) \setminus S| \ge 3$.

Case 4.2: k = 2. Since $|S_1| \ge |S_2|$ and $|S| \ge 5$, we have $|S_1| \ge 3$. Note that $|U_1| + |U_2| = n - |S| \ge 5$, so $|U_1| \ge 3$ or $|U_2| \ge 3$.

Subcase 4.2.1: If $|U_2| \ge 3$, then $(S_1-x)\setminus S = \{g_1-2d, g_1-d\}$, and so $|(S_1-x)\setminus S| = 2$. If $S_2 - x \notin S$ then $|(S+x)\setminus S| = |(S_1-x)\setminus S| + |(S_2-x)\setminus S| \ge 3$. So we may assume $S_2 - x \subset S$. If $|S_2| \ge 2$, then $g_2 + d \in S_2$ and $g_2 + d - 2d \notin S$, a contradiction. Hence $S_2 = \{g_2\}$, and $g_2 - 2d \notin S_2$ implies that $g_2 - 2d \in S_1$. Since S is not an arithmetic progression of difference d, S must have the form of case (b).

Subcase 4.2.2: If $|U_1| \ge 3$, it is similar to the Subcase 4.2.1.

Case 4.3: k = r - 1.

Subcase 4.3.1: $|S_1| \ge k$. By a similar argument as in Subcase 4.1.1 we have that $|(S+x)\setminus S| \ge 3$

Subcase 4.3.2: $|S_1| < k$. Obviously, both $H_1 = \{g_1, g_1 + x, g_1 + 2x\}$ and $H_2 = H_1 + d$ have 3 elements. By the same argument as in Subcase 4.1.2, we derive $H_i \not\subset S$, i = 1, 2 and $|(S+x)\setminus S| \ge 2$. To get the equality, we must have $\{g_1+2d, g_1+3d, \ldots, g_1+t_1d\} + x \subset S_2$, then $|S_1| \ge |S_2| \ge |S_1| - 2$. It is just the case (c), which completes the proof of this case.

5. Let $S_1 = \{g_1, g_1 + d, \dots, g_1 + t_1d\}, S_2 = \{g_2, g_2 + d, \dots, g_2 + t_2d\}, S_3 = \{g_3, g_3 + d, \dots, g_3 + t_3d\}$ and let $U_1 = \{g_1 + t_1d + d, g_1 + t_1d + 2d, \dots, g_2 - d\}, U_2 = \{g_2 + t_2d + d, g_2 + t_2d + 2d, \dots, g_3 - d\}, U_3 = \{g_3 + t_3d + d, g_3 + t_3d + 2d, \dots, g_1 - d\}$. Without loss of generality, we may assume that S_1 has the maximal length. Since $8 \leq |S| \leq n - 7$, then $|S_1| \geq 3$. If $|U_1| \geq 2$ or $|U_3| \geq 2$, then it is easy to verify that $|(S_1 + 3d) \setminus S| \geq 2$ or $|(S_1 - 3d) \setminus S| \geq 2$, so both of them imply the result. Now we assume that $|U_1| = |U_3| = 1$, then $|U_2| \geq 5$, and so $|(S_2 + 3d) \setminus S| \geq 1$ and $|(S_1 + 3d) \setminus S| \geq 1$, the result follows. This completes the proof of Lemma 5.2.

Now, we give some remarks about Lemma 5.2:

- 1. The equality of part 1 holds for all abelian groups G and any element $x \in G$.
- 2. In part 2 of the Lemma, if $2 \leq |S| \leq n-2$, then $|(S+x)\backslash S| = 1$ if and only if $x = \pm d$.
- 3. In part 4 of the Lemma, case (b) and case (c) do not hold simultaneously.

6 Proof of the Theorem 1.1

Proof. Let $X \subset G$ be a zero-sum free subset with |X| = 7, and let $S = \sum(X)$. Without loss of generality, we may assume $G = \langle X \rangle$ and $|S| \leq 23$ for the contrary. By Lemmas 3.3 and 3.4, we may assume $r(G) \geq 2$ and all elements of X have order greater than 2. By Lemmas 3.1 and 3.2, $f(X) \geq f(X \setminus \{x\}) + f(x) \geq 19 + 1 = 20$ where $x \in X$, then we have $|G| \geq f(X) + 1 \geq 21$. If there is an element $x \in X$ such that $|(S - x) \setminus S| \geq 5$, since $\sum(X \setminus \{x\}) \subset (S - x) \cap S$, we have that $|S| \geq f(X \setminus \{x\}) + |(S - x) \setminus S| \geq f(X \setminus \{x\}) + 5 \geq 24$ by Lemma 3.2. Hence we may assume that $|(S - x) \setminus S| \leq 4$ for all $x \in X$. So, to sum up, we may assume that $20 \leq |S| \leq 23$, $|G| \geq 21$, $\langle X \rangle = G$, $r(G) \geq 2$ and ord(x) > 2, $|(S - x) \setminus S| \leq 4$ for all $x \in X$. The proof is divided to the following six cases. Case 1: $r(G) \ge 3$ and $|G| \ge 29$.

Since $|S| \leq 23$, by Lemma 4.6, there is an element $x_1 \in X$ such that $\langle X \setminus \{x_1\} \rangle = G$ and $|\sum (X \setminus \{x_1\})| \leq |S| - 4 \leq 19$. Now we apply Lemma 4.6 repeatedly, we will obtain $x_2 \in X \setminus \{x_1\}, x_3 \in X \setminus \{x_1, x_2\}$ such that $\langle X \setminus \{x_1, x_2\} \rangle = G$, $\langle X \setminus \{x_1, x_2, x_3\} \rangle = G$ and $f(X \setminus \{x_1, x_2\}) \leq f(X \setminus \{x_1\}) - 4 \leq 15$, $f(X \setminus \{x_1, x_2, x_3\}) \leq f(X \setminus \{x_1, x_2\}) - 4 \leq 11$. But we have that $|\sum (X \setminus \{x_1, x_2, x_3\})| \geq 12$ by Lemma 5.1, a contradiction.

Case 2: $G \cong C_n \oplus C_{nr}, n \ge 5$ and $|G| \ge 40$

Subcase 2.1: There is an element $x_0 \in X$ such that $\operatorname{ord}(x_0) \ge 5$. Let $H = \langle x_0 \rangle$, then $|H| \ge 5$ and $|G/H| \ge 5$. Since $|(S - x) \setminus S| \le 4$ for all $x \in X$, it follows from Lemma 4.4 that $\min\{|S|, |G \setminus S|\} \le 4^2$. Notice that $|S| \ge 20$, then $|G \setminus S| \le 16$ and $|S| \ge |G| - 16 \ge 24$, a contradiction.

Subcase 2.2: If ord(x) < 5 for all $x \in X$, then $ord(x) \in \{3, 4\}$ for all $x \in X$.

We can choose 2 elements $x_0, x_1 \in X$ such that $\operatorname{ord}(x_0) = 3$ and $\operatorname{ord}(x_1) = 4$. The choice is possible since otherwise we would have $\operatorname{ord}(x) = 3$ for all $x \in X$ or $\operatorname{ord}(x) = 4$ for all $x \in X$. Note that r(G) = 2, so $G \cong C_3 \oplus C_3$, $G \cong C_4 \oplus C_4$ or $G \cong C_2 \oplus C_4$, which contradicts $|G| \ge 40$. Let $H = \langle x_0, x_1 \rangle$, then a similar discussion as in Subcase 2.1 will lead to a contradiction again.

Case 3: $G \cong C_4 \oplus C_{4r}$ and $|G| \ge 40$.

Subcase 3.1: There is an element $x_0 \in X$ such that $5 \leq \operatorname{ord}(x_0) < 4r$. Let $H = \langle x_0 \rangle$, then the remaining discussion is similar to Subcase 2.1.

Subcase 3.2: $ord(x) \in \{3, 4, 4r\}$ for all $x \in X$.

We first prove the following 2 claims.

Claim 1: There is an element $x_0 \in X$ such that $\operatorname{ord}(x_0) = 4r$.

Proof of Claim 1: Since $f(6) \ge 19 > |C_4 \oplus C_4|$, then there is at most 5 elements of order 4 in X. Notice that there is at most 1 element of order 3 in X and |X| = 7, then Claim 1 follows.

Claim 2: Let $H = \langle x_0 \rangle$, $x_0 \in X$ and $\operatorname{ord}(x_0) = 4r$, then $H \cap X = \{x_0\}$.

Proof of Claim 2: Let $a_i + H$, $a_i \in G/H$, i = 0, 1, 2, 3 denote the 4 cosets of H in G. Let $S_i = (H + a_i) \cap S$ and define a function $f : G/H \to N$ by $f(a_i) = |S_i|$, then $\max(f) - \min(f) \leq 4$ by Lemma 4.3.

Notice that $20 \leq |S| \leq 23$, so $2 \leq f(a_i) \leq |H| - 2$ for all $i \in [0,3]$, and hence $|(S_i - x_0) \setminus S_i| \geq 1$ for all $i \in [0,3]$. Since $|(S - x_0) \setminus S| \leq 4$, it follows that each S_i is an arithmetic progression of difference x_0 . If there is another $x_1 \in X \cap H$, say, $x_1 = kx_0, 2 \leq k \leq 4r - 2$, since $S_i, i \in [0,3]$ are arithmetic progressions of difference x_0 and $2 \leq |S_i| \leq |H| - 2$, then $|(S_i - x_1) \setminus S_i| \geq 1$ and $|(S - x_1) \setminus S| \leq 4$ imply $|(S_i - x_1) \setminus S_i| = 1$ and each $S_i, i \in [0,3]$ is an arithmetic progression of difference x_1 . Hence $x_1 = \pm x_0$ by Lemma 5.2, a contradiction. So Claim 2 holds.

Since each element of order 3 is contained in a cyclic subgroup of order 4r, by Claim 2, we have $\operatorname{ord}(x) \neq 3$ for any $x \in X$. Let $X = Y \cup Z$, where Y consists of elements of order 4 and Z consists of elements of order 4r, then $|Y| \leq 5$ by the proof of Claim 1. Let $b \in X$ be an element with $\operatorname{ord}(b) = 4r$, choose $a \in G$ such that $G = \langle a \rangle \oplus \langle b \rangle$ and $\operatorname{ord}(a) = 4$. Let $G_0 = \langle a, rb \rangle$. Obviously, $Y \subset G_0$ and $Z \cap G_0 = \emptyset$.

Subcase 3.2.1: If 2|r, then there are only 4 cyclic subgroups of order 4r: $\langle b \rangle$,

 $\langle a+b\rangle$, $\langle -a+b\rangle$ and $\langle 2a+b\rangle$. By Claim 2, a subgroup of order 4r contributes at most 1 element of order 4r to X, so $|Z| \leq 4$. It is easy to see that every element of order 4r is of the form ka + tb, gcd(t, r) = 1.

If |Y| = 5, then $S \supset \sum(Y) \uplus \{b\} \uplus (b + \sum(Y))$ is a disjoint union and $|S| \ge 2|\sum(Y)| + 1 \ge 2 \times 13 + 1 = 27$ by Lemma 3.2.

If |Y| = 4, we let $Z = \{k_1a + t_1b, k_2a + t_2b, k_3a + t_3b\}$, $gcd(t_1t_2t_3, r) = 1$. If $|\sum(t_1, t_2, t_3) \pmod{r} \setminus \{0\}| \ge 2$, say, $l_1, l_2 \in \sum(t_1, t_2, t_3) \pmod{2r}$, $0 \not\equiv l_1, l_2 \pmod{r}$, $l_1 \not\equiv l_2 \pmod{r}$, then $S \supseteq \sum(Y) \uplus (m_1a + l_1b + \sum(Y)) \uplus (m_2a + l_2b + \sum(Y))$ and hence $|S| \ge 3|\sum(Y)| \ge 3 \times 8 = 24$ by Lemma 3.1. If $|\sum(t_1, t_2, t_3) \pmod{r} \setminus \{0\}| < 2$, then $t_1 \equiv t_2 \equiv t_3 \pmod{r}$ and r = 2 since $gcd(t_1t_2t_3, r) = 1$ and 2|r, which contradicts $|G| \ge 40$.

If |Y| = 3, we let $Z = \{k_1a + t_1b, \ldots, k_4a + t_4b\}$, $gcd(t_1t_2t_3t_4, r) = 1$. If $|\sum(t_1, t_2, t_3, t_4) \pmod{r} \setminus \{0\}| \ge 3$, then similarly, we have $|S| \ge 4|\sum(Y)| \ge 4 \times 6 = 24$ by Lemma 3.1. If $|\sum(t_1, t_2, t_3, t_4) \pmod{r} \setminus \{0\}| \le 2$, then a similar discussion as in the case |Y| = 4 shows that r = 2 since $gcd(t_1t_2t_3t_4, r) = 1$ and 2|r, which also contradicts $|G| \ge 40$.

Subcase 3.2.2: If $2 \not |r$, then there are precisely 6 cyclic subgroups of order 4r: $\langle b \rangle$, $\langle a + b \rangle$, $\langle a + 2b \rangle$, $\langle -a + b \rangle$, $\langle a + 4b \rangle$ and $\langle 2a + b \rangle$. Notice that any element of order 4 is contained in one of the 6 subgroups. By the Pigeonhole Principle, there is some subgroup H which contributes at least 2 elements to X. By Claim 2, this subgroup H contributes only elements of order 4. However, 2 elements of order 4 in H leads to a contradiction since H has precisely two elements of order four: rx, -rx, where x is a generator of H.

Case 4: $G \cong C_3 \oplus C_{3r}$ and $|G| \ge 40$.

Subcase 4.1: There is an element $x_0 \in X$ such that $5 \leq \operatorname{ord}(x_0) < 3r$, or two elements $x_1, x_2 \in X$ with $\operatorname{ord}(x_i) \in \{3, 4\}, i = 1, 2$. Let $H = \langle x_0 \rangle$ or $\langle x_1, x_2 \rangle$, $G_1 = G/H$. Then both H and G/H have at least 5 elements. The remaining discussion is similar to Subcase 2.1.

Claim 3: Let $H = \langle x_0 \rangle$, $x_0 \in X$ and $\operatorname{ord}(x_0) = 3r$, then $H \cap X = \{x_0\}$.

Proof of Claim 3: Let $H + a_i$, $a_i \in G/H$, i = 0, 1, 2 denote the 3 cosets of H in G. Let $S_i = (H + a_i) \cap S$ and define a function $f : G/H \to N$ by $f(a_i) = |S_i|$, then $\max(f) - \min(f) \leq 4$ by Lemma 4.3.

Notice that $20 \leq |S| \leq 23$, so $4 \leq f(a_i) \leq |H| - 3$ for any $i \in [0, 2]$. Since $|(S_i - x_0) \setminus S_i| \geq 1$ and $|(S - x_0) \setminus S| \leq 4$, without loss of generality, we may assume that S_0 and S_1 are arithmetic progressions of difference x_0 . If there is another $x_1 \in X \cap H$, then by Lemma 5.2 $|(S_0 + x_1) \setminus S_0| \geq 2$, $|(S_1 + x_1) \setminus S_1| \geq 2$ and $|(S_2 + x_1) \setminus S_2| \geq 1$ imply that $|(S + x_1) \setminus S| \geq 5$, a contradiction, so the claim holds.

Since all the elements of order 4 are included in the cyclic subgroup of order 3r, by Claim 3 above, we have $\operatorname{ord}(x) \neq 4$ for any $x \in X$. Let $X = Y \cup Z$, where Y consists of elements of order 3 and Z consists of elements of order 3r, then $|Y| \leq 1$ by Subcase 4.1. Choose $a, b \in G$ such that $G = \langle a \rangle \oplus \langle b \rangle$, and $\operatorname{ord}(b) = 3r$.

If 3|r, then there are only 3 cyclic subgroups of order 3r: $\langle b \rangle$, $\langle a + b \rangle$ and $\langle -a + b \rangle$. If $3 \ /r$, then there are precisely 5 cyclic subgroups of order 3r: $\langle b \rangle$, $\langle a + b \rangle$, $\langle -a + b \rangle$, $\langle a - 3b \rangle$ and $\langle a + 3b \rangle$. By Claim 4, every subgroup of order 3r will contribute at most 1 element of order 3r to X, so $|Z| \leq 5$. It follows that $|Y| + |Z| \leq 6$, a contradiction. Case 5: $G \cong C_2 \oplus C_{2r}$ and $|G| \ge 40$.

Subcase 5.1: There is an element $x_0 \in X$ such that $5 \leq \operatorname{ord}(x_0) < r$. Let $H = \langle x_0 \rangle$, then the discussion is similar to Subcase 2.1.

Subcase 5.2: For any $x \in X$, $ord(x) \in \{3, 4, r, 2r\}$.

Choose $a, b \in G$ such that $G = \langle a \rangle \oplus \langle b \rangle$, ord(a) = 2 and ord(b) = 2r. Let $X = X_3 \cup X_4 \cup X_r \cup X_{2r}$, where $X_i, i \in \{3, 4, r, 2r\}$ consists of elements of order *i*. Let $G_0 = \langle a, 2b \rangle \not\subseteq G$, it is easy to verify that $x \in G_0$ for any $x \in G$ with $ord(x) \in \{3, r\}$. There are at most 2 cyclic subgroups of order 4 in $G: \langle \frac{r}{2}b \rangle$ and $\langle a + \frac{r}{2}b \rangle$, each contributes at most 1 element of order 4 to X, so $|X_4| \leq 2$. If $|X_4| = 2$, let $H = \langle x_4 \rangle$, then a similar discussion as in Subcase 2.1 leads to a contradiction. Now again we need 3 claims.

Claim 4: $X_{2r} \neq \emptyset$

Proof of Claim 4: Suppose that $X_{2r} = \emptyset$. If there is an element $x_4 \in X_4$ such that $x_4 \notin G_0$, then $S \supset \sum (X_3 \cup X_r) \uplus \{x_4\} \uplus (x_4 + \sum (X_3 \cup X_r))$ is a disjoint union and hence $|S| \ge 2|\sum (X_3 \cup X_r)| + 1 \ge 2 \times 13 + 1 = 27$, a contradiction. It follows that either $X_4 = \emptyset$ or $X_4 \subset G_0$, which implies $G = \langle X \rangle \subset G_0 \not\subseteq G$, a contradiction again. So the Claim 4 holds.

Claim 5: Let $x_{2r} \in X_{2r}$ and $H = \langle x_{2r} \rangle$, if there is another $y \in H \cap X$, then $y = \pm 2x_{2r}$ or $y = \pm (r-1)x_{2r}$. Furthermore, $|H \cap X| \leq 2$.

Proof of Claim 5: Let $H + a_i$, $a_i \in G/H$, i = 0, 1 denote the 2 cosets of H in G. Let $S_i = (H + a_i) \cap S$ and define a function $f : G/H \to N$ by $f(a_i) = |S_i|$, then $\max(f) - \min(f) \leq 4$ by Lemma 4.3

Notice that $20 \leq |S| \leq 23$, so $8 \leq f(a_i) \leq |H| - 7$ for any $i \in [0, 1]$. Since $|(S_i - x_{2r}) \setminus S_i| \geq 1$ and $|(S - x_{2r}) \setminus S| \leq 4$, then we have that S_i , i = 0, 1 is the union of at most 3 arithmetic progressions of difference x_{2r} .

If there is some S_i which is an arithmetic progression of difference x_{2r} , without loss of generality, we may assume that is S_0 . If $y \neq \pm 2x_{2r}$, since $y \neq \pm x_{2r}$, we have $y = \pm 3x_{2r}$ or $y \in \langle x_{2r} \rangle \setminus \{\pm x_{2r}, \pm 2x_{2r}, \pm 3x_{3r}\}$. If $y = \pm 3x_{2r}$, then $|(S_0+y) \setminus S| = 3$ and $|(S_1+y) \setminus S| \ge 2$ by Lemma 5.2.5. If $y = \pm 4x_{2r}$, then $|(S_0+y) \setminus S| = 4$ and $|(S_1+y) \setminus S| \ge 1$. Otherwise, $|(S_0+y) \setminus S| \ge 5$. It follows that $|(S+y) \setminus S| \ge 5$, a contradiction.

If there is no S_i which is an arithmetic progression, then we have that S_i , i = 0, 1 both are the unions of 2 arithmetic progressions of difference x_{2r} . Since $y \neq \pm x_{2r}$, we have $|(S_i + y) \setminus S_i| \ge 3$, or $y = \pm 2x_{2r}$, or $y = \pm (r - 1)x_{2r}$ by Lemma 5.2.4, and the claim holds.

By the hypothesis, we have that $\pm 2x_{2r}$ has order r and $\pm (r-1)x_{2r}$ has order 2r if 2|r and order r if $2 \not | r$.

Claim 6: Let $x_r \in X_r$ and $K = \langle x_r \rangle$, then $X_r \cap K = \{x_r\}$.

Proof of Claim 6: By a similar argument as in the proof of Claim 2, we obtain Claim 6.

Since all elements of order 3 are contained in cyclic subgroups of order 2r, by Claim 5 and $r \neq 3$, we have $X_3 = \emptyset$.

Subcase 5.2.1: If $2 \not| r$, then there are precisely 3 cyclic subgroups of order 2r: $\langle b \rangle, \langle a + b \rangle$ and $\langle a + 2b \rangle$. In this subcase, $X_4 = \emptyset$. Claim 5 and the discussion after imply that each subgroup of order 2r contributes at most 1 element of order 2r, so $|X_{2r}| \leq 3$ and $|X_r| = |X| - |X_{2r}| \geq 4$. Notice that $X_r \subset G_0$ and $\langle a + 2b \rangle \subset G_0$, then

 $|X_{2r} \setminus G_0| \leq 2$. If $|X_{2r} \setminus G_0| = 0$, then $X \subset G_0$, a contradiction. Therefore we can choose $x_{2r} \in X_{2r} \setminus G_0$. Now $S \supset \sum (G_0 \cap X) \oplus \{x_{2r}\} \oplus (x_{2r} + \sum (G_0 \cap X))$ and $|G_0 \cap X| \ge 5$ imply that $|S| \ge 2 \times 13 + 1 = 27$, a contradiction.

Subcase 5.2.2: If 2|r, then there are only 2 cyclic subgroups of order 2r: $H_1 = <$ $b > \text{and } H_2 = \langle a + b \rangle$. Let H be a cyclic subgroup of order 2r, if $X_{2r} \cap H \neq \emptyset$, then $|X \cap H| \leq 2$ by Claim 5; if $X_{2r} \cap H = \emptyset$, then $|X_r \cap H| \leq 1$ by Claim 6, and so $|X \cap H| \leq 2$ since $|X_4 \cap H| \leq 1$. It follows that H contributes at most 2 elements to X.

If 4 /r, then all the elements of order 4 are contained in the subset $H_1 \cup H_2$. Note that G has precisely 3 cyclic subgroups of order $r: \langle 2b \rangle \subset \langle b \rangle, \langle a+2b \rangle$ and $\langle a+4b \rangle$. A cyclic subgroups of order r contributes at most 1 element to X by Claim 6. It follows that $|X| \leq 2 \times 2 + 1 + 1 = 6 < 7$, a contradiction.

If 4|r, let $r_0 = r/2$. Then G has precisely 2 cyclic subgroups of order 4: $\langle r_0 b \rangle \subset \langle b \rangle$ and $\langle a + r_0 b \rangle$, and 2 cyclic subgroups of order $r: \langle 2b \rangle \subset \langle b \rangle$ and $\langle a + 2b \rangle$. A cyclic subgroups of order 4 or r contributes at most 1 element to X by Claim 6. It follows that $|X| \leq 2 \times 2 + 1 + 1 = 6 < 7$, a contradiction again.

Case 6: *G* with small order.

Since $|G| \ge 21$ and $r(G) \ge 2$, the left cases of G are of the following forms: $C_3 \oplus C_3 \oplus C_3$. $C_2 \oplus C_2 \oplus C_6, C_6 \oplus C_6, C_5 \oplus C_5, C_4 \oplus C_8, C_3 \oplus C_9, C_3 \oplus C_{12}, C_2 \oplus C_{12}, C_2 \oplus C_{14}, C_2 \oplus C_{16}$ and $C_2 \oplus C_{18}$.

To begin with, since $D(C_3 \oplus C_3 \oplus C_3) = 7$, we have $f(C_3 \oplus C_3 \oplus C_3, 7) = 26$.

The remaining cases are computed with a C++ program. With the help of a computer, we obtain the following values:

Result

Running Time(sec) $ol(C_2 \oplus C_2 \oplus C_6) = 6$ 7.6 $f(C_6 \oplus C_6, 7) = 29$ 98 $ol(C_5 \oplus C_5) = 6$ 1.0 $f(C_4 \oplus C_8, 7) = 27$ 26 $ol(C_3 \oplus C_9) = 6$ 3.9 $f(C_3 \oplus C_{12}, 7) = 27$ 190 $ol(C_2 \oplus C_{12}) = 6$ 1.2 $f(C_2 \oplus C_{14}, 7) = 25$ 8.7 $f(C_2 \oplus C_{16}, 7) = 25$ 51 $f(C_2 \oplus C_{18}, 7) = 25$ 285

This completes the proof.

References

- [1] R.B. Eggleton and P. Erdős, Two combinatorial problems in group theory, Acta Arith. 21(1972), 111-116.
- [2] J.E. Olson, Sums of sets of group elements, Acta Arith. 28 (1975), 147-156.

- [3] W. Gao, Y. Li, J. Peng and F. Sun, Subsums of a zero-sum free subset of an abelian group, The Electronic Journal of Combinatorics, 15(2008), #R116.
- [4] W. Gao, Y. Li, J. Peng and F. Sun, On subsequences sums of a zero-sum free sequence II, The Electronic Journal of Combinatorics, 15(2008), #R117.
- [5] G. Bhowmik, I. Halupczok, and J.-C. Schlage-Puchta, Zero-sum free sequences with small sum-set, eprint arXiv:0804.0313.
- [6] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, Vol. 278, Chapman & Hall/CRC, 2006.
- [7] A. Pixton, Sequences with small subsums sets, J. Number Theory 129(2009), 806-817.