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Abstract

Let G be a finite additively written abelian group, and let X be a subset of 7
elements in G. We show that if X contains no nonempty subset with sum zero, then
the number of the elements which can be expressed as the sum over a nonempty
subsequence of X is at least 24.

1 Introduction

Let G be an additive abelian group and X ⊆ G a subset of G. We denote by f(G, X) =
f(X) the number of nonzero group elements which can be expressed as a sum of a
nonempty subset of X. For a positive integer k ∈ N, let f(k) denote the minimum of all
f(G, X), where the minimum is taken over all finite abelian groups G and all zero-sum
free subsets X ⊂ G with |X| = k. The invariant f(k) was first studied by R. B. Eggleton
and P. Erdős in 1972 [1]. For every k ∈ N they obtained a subset X in a cyclic group G
with |X| = k such that

f(k) 6 f(G, X) =

⌊

1

2
k2

⌋

+ 1. (1)

And J. E. Olson [2] proved that

f(k) >
1

9
k2.

Moreover, Eggleton and Erdős determined f(k) for all k 6 5, and they stated the following
conjecture (which holds true for k 6 5):
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Conjecture 1.1. For every k ∈ N there is a cyclic group G and a zero-sum free subset

X ⊂ G with |X| = k such that f(k) = f(G, X).

Recently, Weidong Gao et al. [3] proved that f(6) = 19 and G.Bhowmik et al. [5]
showed that f(G, X) > 24 (the lower bound is sharp), where G is a cyclic group, |X| = 7.
Together with the conjecture above, we have that f(7) = 24. The main aim of the present
paper is to show the following theorem.

Theorem 1.1. f(7) = 24.

In Section 2, we fix the notation. Sections 3 and 4 are devoted to the tools and lemmas
needed in the proof of Theorem 1.1. In Section 5, we prove Theorem 1.1 with the help of
a C++ program.

Throughout this paper, let G denote an additive finite abelian group.

2 Notation

We follow the conventions of [6] and [3] for notation concerning sequences over an abelian
group.

We denote by N the set of positive integers, and N0 = N ∪ {0}. For real numbers
a, b ∈ R we set [a, b] = {x ∈ Z|a 6 x 6 b}.

Let F(G) denote the multiplicative, free abelian monoid with basis G. The elements
of F(G) are called sequences over G. An element X ∈ F(G) will be written in the form

X = g1 · . . . · gl =
∏

g∈G

gvg(X)

where vg(X) ∈ N0 is the multiplicity of g in X. For a sequence X above we have:

|X| = l =
∑

g∈G

vg(X) ∈ N0 the length of X,

σ(X) =
l

∑

i=1

gi =
∑

g∈G

vg(X)g ∈ G the sum of X,

∑

(X) = {
∑

i∈I

gi|∅ 6= I ⊂ [1, l]} the set of subsums of X.

We say that X is

• zero-sum free if 0 /∈
∑

(X),

• a zero-sum sequence if σ(X) = 0,

• squarefree if vg(X) 6 1 for all g ∈ G, moreover, a squarefree sequence can be

considered as a subset of G.
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For a zero-sum free sequence X over G, we have:

f(G, X) = f(X) = |
∑

(X)|,

f(G, k) = min{f(X)|X ∈ F(G) zero-sum free, squarefree and |X| = k}

and set f(G, k) = ∞ when there are no sequences in G of the above form.

f(k) = min{f(G, k)|G run over all finite abelian groups}

• Let D(G) denote the Davenport’s constant of G and r(G) the rank of G.

• Let ol(G) denote the maximal length of a sequence X over G which is zero-sum free
and squarefree. The invariant ol(G) is called the Olson constant of G.

3 Preliminaries

Lemma 3.1. 1. If k ∈ N and X = X1 · . . . ·Xk ∈ F(G) is a zero-sum free sequence, then

f(X) > f(X1) + · · ·+ f(Xk).

2. If X ⊂ G is zero-sum free, |X| = k and k ∈ N, then

f(X)























= 1, if k= 1
= 3, if k= 2
> 5, if k= 3
> 6, if k= 3 and 2g 6= 0 for all g ∈ X
> 2k, if k> 4.

Proof. 1. See [6] Theorem 5.3.1.
2. See [6] Corollary 5.3.4.

Lemma 3.2. ([3]) f(5) = 13, f(6) = 19.

Lemma 3.3. ([5]) f(G, 7) > 24, where G is a cyclic group. Furthermore, let G = C25

and X = {5, 10, 1, 6, 11, 16, 21}, then f(X) = 24.

Lemma 3.4. Let X ⊂ G be a zero-sum free subset of G and |X| = 7. If X contains an

element of order 2, then f(X) > 25.

Proof. See [3] Theorem 3.2.
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4 Some bounds on subset S

The lemmas in this section follows mainly from A. Pixton [7].

Lemma 4.1. ([7] Lemma 4.3) Let G be a finite abelian group and let X ⊆ G\{0} be a

generating set for G. Suppose S is a nonempty proper subset of G, then
∑

x∈X

|(S + x)\S| > |X|.

Lemma 4.2. ([7] Lemma 4.4) Let G be a finite abelian group and let X ⊆ G\{0} be a

generating set for G. Suppose f : G → Z is a function on G. Then
∑

x∈X
g∈G

max {f(g + x) − f(g), 0} > (max(f) − min(f)) |X|.

The proofs of the following two Lemmas are essential from A. Pixton ([7] Theorem
4.5). For the convenience of the reader, we present the proof here.

Lemma 4.3. Let G be a finite abelian group and let X ⊆ G\{0} be a generating set for G.

Suppose S ⊆ G satisfies |(S + x)\S| 6 m, for m ∈ N and all x ∈ X, and for Y ⊂ X and

H =< Y > 6⊆ G, define a function f : G/H → Z by f(a) = |(a + H) ∩ S| for a ∈ G/H.

Then

max(f) − min(f) 6 m.

Proof. First, without loss of generality, we may replace Y by a minimal subset of Y that
still generates H , and we still denote it by Y . Then we may replace X by a minimal
subset X0 of X that satisfies Y ⊂ X0 ⊂ X and 〈X0〉 = G. For the convenience, we still
label it by X. Also, if |H| 6 m, the result is trivial. Since

|(S + x)\S| = |(S − x)\S|

=
∑

a∈G/H

|((S − x)\S) ∩ (a + H)|

=
∑

a∈G/H

|(S − x) ∩ (a + H)| − |(S − x) ∩ S ∩ (a + H)|

=
∑

a∈G/H

|S ∩ (a + x + H)| − |(S − x) ∩ S ∩ (a + H)|

>
∑

a∈G/H

max{f(a + x) − f(a), 0}

It follows that

m|X\Y | >
∑

x∈X\Y

|(S + x)\S|

>
∑

x∈X\Y

∑

a∈G/H

max{f(a + x) − f(a), 0}

> (max(f) − min(f))|X\Y | (2)
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by Lemma 4.2. Since H 6⊆ G, |X\Y | > 0, then the result follows immediately from
(2).

Lemma 4.4. Let G be a finite abelian group, X ⊆ G\{0} a generating set for G, Y ⊂ X
and H =< Y > 6⊆ G. Suppose |H| > m and |G/H| > m, where m ∈ N, and suppose

S ⊆ G satisfies |(S + x)\S| 6 m for all x ∈ X. Then

min{|S|, |G\S|} 6 m2.

Proof. Define a function f : G/H → Z by f(a) = |(a + H) ∩ S| for a ∈ G/H .We have

max(f) − min(f) 6 m

by Lemma 4.3. Then by replacing S by G/S if necessary, we can assume that f(a) 6= |H|
for any a ∈ G/H . The reason is that

|(G\S + x)\(G\S)| = |(S + x)\S|

Thus we can apply Lemma 4.1 to obtain that

m|Y | >
∑

x∈Y

|(S + x)\S|

=
∑

a∈G/H

∑

x∈Y

|(S ∩ (a + H) + x)\(S ∩ (a + H))|

> |supp(f)||Y |

where supp(f) = {a ∈ G/H |f(a) 6= 0} is the support of f . Since |G/H| > m, this implies
that f(a) = 0 for some a, and thus f(a) 6 m for all a ∈ G/H . Then |S| =

∑

a∈G/H f(a) 6

max(f)|supp(f)| 6 m2, as desired.

Lemma 4.5. ([7] Theorem 5.3) Let G be a finite abelian group of rank greater than 2 and

let X ⊂ G\{0} be a generating set for G consisting only of elements of order greater than

2. Suppose S ⊂ G satisfies |(S + x)\S| 6 3 for all x ∈ X. Then min{|S|, |G\S|} 6 5.

Lemma 4.6. Let G be a finite abelian group of rank greater than 2, and X ⊆ G a zero-sum

free generating set consisting of only elements of order greater than 2, and let S =
∑

(X).
Suppose that |X| > 5 and |G| > 29, then |S| > 24, or |S| > 4|X| − 3, or there is some

x ∈ X satisfies 〈X\{x}〉 = G and |S| − |
∑

(X\{x})| > 4.

Proof. If there is an element x ∈ X such that 〈X\{x}〉 6= G, then

S =
∑

(X\{x}) ⊎ {x} ⊎
∑

(X\{x}) + x

is a disjoint union. It follows that |S| = 2|
∑

(X\{x})|+1 > 2×2(|X|−1)+1 = 4|X|−3
by Lemma 3.1. Hence we may assume that 〈X\{x}〉 = G for all x ∈ X.
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Now if |S| − |
∑

(X\{x})| 6 3 for all x ∈ X, since
∑

(X\{x}) ⊂ (S − x) ∩ S, then we
have

|(S − x)\S| = |S − x| − |(S − x) ∩ S|

6 |S| − |
∑

(X\{x})|

6 3.

It follows from Lemma 4.5 that min{|S|, |G\S|} 6 5. Notice that |S| > 2|X| > 10, then
|G\S| 6 5 and |S| > |G| − 5 > 24, as desired.

5 Other lemmas before the proof

In this section, we present some Lemmas that will be used in the proof of the main result.

Lemma 5.1. Let X ⊆ G be a zero-sum free generating set of G, |X| = 4, and X has no

element of order 2. If r(G) > 3 and G 6∼= C2 ⊕ C2 ⊕ C4, then f(X) > 12.

Proof. Let X = x1 · x2 · x3 · x4. If there are distinct indices i, j, k ⊂ [1, 4] such that
xi = xj + xk, without loss of generality, we may assume that x1 = x2 + x3. Since
r(G) > 3, then x4 /∈ 〈x1, x2, x3〉, and so

∑

(X) =
∑

(x1x2x3)
⊎

{x4}
⊎

(x4 +
∑

(x1x2x3))

is a disjoint union. It follows from Lemma 3.1 that f(X) > 2f(x1x2x3) + 1 > 13.
Now we consider the case that xi 6= xj + xk for all distinct indices i, j, k ∈ [1, 4]. If

there is no index i ∈ [1, 4] such that xi =
∑

j 6=i xj , then x1, x2, x3, x4, x1 +x2, x1 +x3, x1 +
x4, x1 + x2 + x3, x1 + x2 + x4, x1 + x3 + x4, x2 + x3 + x4, x1 + x2 + x3 + x4 are pairwise
distinct, so f(X) > 12.

Otherwise, we can assume x1 = x2 + x3 + x4.
If xτ(1) + xτ(2) = xτ(3) + xτ(4), where τ is an element of the symmetric group on [1, 4],

then the two equations imply that there is some xi of order 2, a contradiction.
If there is an index i ∈ [1, 4] such that xi 6=

∑

j 6=i xj , say, x4 6= x1 + x2 + x3, then
x1, x2, x3, x4, x1 +x2 +x3, x1 +x2, x1 +x3, x1 +x4, x2 +x3, x2 +x4, x3 +x4, x1 +x2 +x3 +x4

are pairwise distinct, so f(X) > 12.
If xi =

∑

j 6=i xj for all indices i ∈ [1, 4], then the 4 equations imply 4x4 = 0, x1 =
x4 + g1, x2 = x4 + g2 and x3 = −x4 + g1 + g2, where g1, g2 is of order 2. It follows that
G = 〈X〉 ∼= C2 ⊕ C2 ⊕ C4, again a contradiction. We are done.

Lemma 5.2. Let Cn be a cyclic group of order n, S ⊂ Cn a subset of G. Suppose that d
is a generator of Cn and x ∈ Cn is an element of order greater than 2. Then we have:

1. |(S + x)\S| = |(S − x)\S|.
2. If S is an arithmetic progression of difference d, then

|(S + x)\S| = min{|S|, n − |S|, k, n − k},
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where k ∈ [1, n − 1] is the integer with x = kd.
3. If S = S1 ⊎ S2 is a disjoint union, where S1, S2 are arithmetic progressions of

difference d and S is not an arithmetic progressions of difference d. Suppose that 2 6

|S| 6 n − 2, then |(S + x)\S| > 1.
4. Let S be as in 3, and moreover 5 6 |S| 6 n − 5 and n = 2r, r is a positive integer,

then |(S + x)\S| > 2. Furthermore the equality holds only when x is one of the following

cases:

(a): x = ±d.
(b): x = ±2d. In the case, S = {g, g + d, . . . , g + (t− 1)d, g + td} ⊎ {g + (t + 2)d} or

S = {g} ⊎ {g + 2d, g + 3d, . . . , g + (t − 1)d, g + td}, g ∈ G and t ∈ [3, n − 5].
(c): x = ± (r − 1) d. In the case, ||S1| − |S2|| 6 2.
5. If S = S1 ∪ S2 ∪ S3 is a disjoint union of 3 arithmetic progressions of difference d,

x = ±3d, and 8 6 |S| 6 n − 7, then |(S + x)\S| > 2.

Proof. 1. It is obvious.
2. Obviously.
3. For a counterexample, we may assume that S1 = {g1, g1 + d, . . . , g1 + t1d}, S2 =

{g2, g2 + d, . . . , g2 + t2d} and |(S + x)\S| = 0. The proof is divided into the following two
cases:

Case 3.1: If g1 +x ∈ S1, then there is an integer k ∈ [0, t1−1] such that g1 +kd+x =
g1 + t1d, however g1 + (k + 1)d ∈ S1 and g1 + (k + 1)d + x /∈ S yield a contradiction. The
proof of the case g2 + x ∈ S2 is similar.

Case 3.2: If g1 + x ∈ S2 and g2 + x ∈ S1, then S1 + x ⊆ S2 and S2 + x ⊆ S1. Hence
|S1| = |S1 + x| 6 |S2| and similarly |S2| 6 |S1|. It follows that |S1| = |S2|, g1 + x = g2

and g2 + x = g1, and hence g1 = g2 + x = g1 + x + x and 2x = 0, again a contradiction.
We are done.

4. Without loss of generality, we may assume |S1| > |S2|. Let r = n
2
, S1 = {g1, g1 +

d, . . . , g1+t1d}, S2 = {g2, g2+d, . . . , g2+t2d}, U1 = {g1+(t1+1)d, g1+(t1+2)d, . . . , g2−d}
and U2 = {g2 + (t2 + 1)d, g2 + (t2 + 2)d, . . . , g1 − d}. If x = ±d then |(S + x)\S| = 2.
Since |(S + x)\S| = |(S −x)\S|, n = 2r and x is an element of order greater than 2, then
without loss of generality, we may assume that x = kd, k ∈ [2, r − 1].

Case 4.1: k ∈ [3, r − 2].
Subcase 4.1.1: If |S1| > k, then |U1| + |U2| = n − |S| > 5 implies that |U1| > 3

or |U2| > 3. If |U2| > 3, then U0 = {g1 − 3d, g1 − 2d, g1 − d} ⊂ U2 and U0 + x ⊂ S1, so
|(S + x)\S| = |(S − x)\S| = |(S − x) ∩ U1| + |(S − x) ∩ U2| > |U0| = 3. The proof of the
case |U1| > 3 is similar.

Subcase 4.1.2: If |S1| < k, let H1 = {g1, g1 + kd, g1 + 2kd}, H2 = H1 + d and
H3 = H1 + 2d. Obviously, each of the 3 disjoint subsets of Cn has 3 elements. Now we
first prove that Hi 6⊂ S, i = 1, 2, 3. If g1+(i−1+k)d ∈ S, then g1+(i−1+k)d ∈ S2 since
|S1| < k, and so g1 + (i − 1 + 2k)d 6∈ S2. Notice that g1 + (i − 1 + 2k)d 6∈ S1, otherwise,
we would have g1 + (i − 1 + 2k)d == g1 + md for some integer m, m ∈ [0, |S1| − 1], and
so 2k + 2 > n = 2r, which is impossible. It follows that g1 + (i − 1 + 2k)d 6∈ S. Since
g1 +(i−1)d ∈ S1, i = 1, 2, 3, so each of Hi 6⊂ S, i = 1, 2, 3 contributes at least one element
to (S + x)\S. Hence |(S + x)\S| > 3.
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Case 4.2: k = 2. Since |S1| > |S2| and |S| > 5, we have|S1| > 3. Note that
|U1| + |U2| = n − |S| > 5, so |U1| > 3 or |U2| > 3.

Subcase 4.2.1: If |U2| > 3, then (S1−x)\S = {g1−2d, g1−d}, and so |(S1−x)\S| =
2. If S2 − x 6⊂ S then |(S + x)\S| = |(S1 − x)\S| + |(S2 − x)\S| > 3. So we may assume
S2 − x ⊂ S. If |S2| > 2, then g2 + d ∈ S2 and g2 + d − 2d /∈ S, a contradiction. Hence
S2 = {g2}, and g2 − 2d /∈ S2 implies that g2 − 2d ∈ S1. Since S is not an arithmetic
progression of difference d, S must have the form of case (b).

Subcase 4.2.2: If |U1| > 3, it is similar to the Subcase 4.2.1.
Case 4.3: k = r − 1.

Subcase 4.3.1: |S1| > k. By a similar argument as in Subcase 4.1.1 we have that
|(S + x)\S| > 3

Subcase 4.3.2: |S1| < k. Obviously, both H1 = {g1, g1+x, g1+2x} and H2 = H1+d
have 3 elements. By the same argument as in Subcase 4.1.2, we derive Hi 6⊂ S, i = 1, 2 and
|(S+x)\S| > 2. To get the equality, we must have {g1+2d, g1+3d, . . . , g1+t1d}+x ⊂ S2,
then |S1| > |S2| > |S1| − 2. It is just the case (c), which completes the proof of this case.

5. Let S1 = {g1, g1 + d, . . . , g1 + t1d}, S2 = {g2, g2 + d, . . . , g2 + t2d}, S3 = {g3, g3 +
d, . . . , g3 + t3d} and let U1 = {g1 + t1d + d, g1 + t1d + 2d, . . . , g2 − d}, U2 = {g2 + t2d +
d, g2 + t2d + 2d, . . . , g3 − d}, U3 = {g3 + t3d + d, g3 + t3d + 2d, . . . , g1 − d}. Without loss
of generality, we may assume that S1 has the maximal length. Since 8 6 |S| 6 n − 7,
then |S1| > 3. If |U1| > 2 or |U3| > 2, then it is easy to verify that |(S1 + 3d)\S| > 2 or
|(S1−3d)\S| > 2, so both of them imply the result. Now we assume that |U1| = |U3| = 1,
then |U2| > 5, and so |(S2 + 3d)\S| > 1 and |(S1 + 3d)\S| > 1, the result follows. This
completes the proof of Lemma 5.2.

Now, we give some remarks about Lemma 5.2:

1. The equality of part 1 holds for all abelian groups G and any element x ∈ G.

2. In part 2 of the Lemma, if 2 6 |S| 6 n − 2, then |(S + x)\S| = 1 if and only if
x = ±d.

3. In part 4 of the Lemma, case (b) and case (c) do not hold simultaneously.

6 Proof of the Theorem 1.1

Proof. Let X ⊂ G be a zero-sum free subset with |X| = 7, and let S =
∑

(X). Without
loss of generality, we may assume G = 〈X〉 and |S| 6 23 for the contrary. By Lemmas
3.3 and 3.4, we may assume r(G) > 2 and all elements of X have order greater than 2.
By Lemmas 3.1 and 3.2, f(X) > f(X\{x}) + f(x) > 19 + 1 = 20 where x ∈ X, then we
have |G| > f(X) + 1 > 21. If there is an element x ∈ X such that |(S − x)\S| > 5, since
∑

(X\{x}) ⊂ (S−x)∩S, we have that |S| > f(X\{x})+|(S−x)\S| > f(X\{x})+5 > 24
by Lemma 3.2. Hence we may assume that |(S − x)\S| 6 4 for all x ∈ X. So, to
sum up, we may assume that 20 6 |S| 6 23, |G| > 21, < X >= G, r(G) > 2 and
ord(x) > 2, |(S −x)\S| 6 4 for all x ∈ X. The proof is divided to the following six cases.
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Case 1: r(G) > 3 and |G| > 29.
Since |S| 6 23, by Lemma 4.6, there is an element x1 ∈ X such that 〈X\{x1}〉 = G

and |
∑

(X\{x1})| 6 |S| − 4 6 19. Now we apply Lemma 4.6 repeatedly, we will obtain
x2 ∈ X\{x1}, x3 ∈ X\{x1, x2} such that 〈X\{x1, x2}〉 = G, 〈X\{x1, x2, x3}〉 = G and
f(X\{x1, x2}) 6 f(X\{x1}) − 4 6 15, f(X\{x1, x2, x3}) 6 f(X\{x1, x2}) − 4 6 11. But
we have that |

∑

(X\{x1, x2, x3})| > 12 by Lemma 5.1, a contradiction.
Case 2: G ∼= Cn ⊕ Cnr, n > 5 and |G| > 40

Subcase 2.1: There is an element x0 ∈ X such that ord(x0) > 5. Let H = 〈x0〉,
then |H| > 5 and |G/H| > 5. Since |(S − x)\S| 6 4 for all x ∈ X, it follows from
Lemma 4.4 that min{|S|, |G\S|} 6 42. Notice that |S| > 20, then |G\S| 6 16 and
|S| > |G| − 16 > 24, a contradiction.

Subcase 2.2: If ord(x) < 5 for all x ∈ X, then ord(x) ∈ {3, 4} for all x ∈ X.
We can choose 2 elements x0, x1 ∈ X such that ord(x0) = 3 and ord(x1) = 4. The

choice is possible since otherwise we would have ord(x) = 3 for all x ∈ X or ord(x) = 4
for all x ∈ X. Note that r(G) = 2, so G ∼= C3 ⊕C3, G ∼= C4 ⊕C4 or G ∼= C2 ⊕C4, which
contradicts |G| > 40. Let H = 〈x0, x1〉, then a similar discussion as in Subcase 2.1 will
lead to a contradiction again.

Case 3: G ∼= C4 ⊕ C4r and |G| > 40.
Subcase 3.1: There is an element x0 ∈ X such that 5 6 ord(x0) < 4r. Let

H = 〈x0〉, then the remaining discussion is similar to Subcase 2.1.
Subcase 3.2: ord(x) ∈ {3, 4, 4r} for all x ∈ X.

We first prove the following 2 claims.
Claim 1: There is an element x0 ∈ X such that ord(x0) = 4r.
Proof of Claim 1: Since f(6) > 19 > |C4 ⊕ C4|, then there is at most 5 elements of

order 4 in X. Notice that there is at most 1 element of order 3 in X and |X| = 7, then
Claim 1 follows.

Claim 2: Let H = 〈x0〉, x0 ∈ X and ord(x0) = 4r, then H ∩ X = {x0}.
Proof of Claim 2: Let ai + H, ai ∈ G/H, i = 0, 1, 2, 3 denote the 4 cosets of H in

G. Let Si = (H + ai) ∩ S and define a function f : G/H → N by f(ai) = |Si|, then
max(f) − min(f) 6 4 by Lemma 4.3.

Notice that 20 6 |S| 6 23, so 2 6 f(ai) 6 |H| − 2 for all i ∈ [0, 3], and hence
|(Si − x0)\Si| > 1 for all i ∈ [0, 3]. Since |(S − x0)\S| 6 4, it follows that each Si is
an arithmetic progression of difference x0. If there is another x1 ∈ X ∩ H , say, x1 =
kx0, 2 6 k 6 4r − 2, since Si, i ∈ [0, 3] are arithmetic progressions of difference x0 and
2 6 |Si| 6 |H| − 2, then |(Si − x1)\Si| > 1 and |(S − x1)\S| 6 4 imply |(Si − x1)\Si| = 1
and each Si, i ∈ [0, 3] is an arithmetic progression of difference x1. Hence x1 = ±x0 by
Lemma 5.2, a contradiction. So Claim 2 holds.

Since each element of order 3 is contained in a cyclic subgroup of order 4r, by Claim
2, we have ord(x) 6= 3 for any x ∈ X. Let X = Y ∪ Z, where Y consists of elements
of order 4 and Z consists of elements of order 4r, then |Y | 6 5 by the proof of Claim 1.
Let b ∈ X be an element with ord(b) = 4r, choose a ∈ G such that G = 〈a〉 ⊕ 〈b〉 and
ord(a) = 4. Let G0 = 〈a, rb〉. Obviously, Y ⊂ G0 and Z ∩ G0 = ∅.

Subcase 3.2.1: If 2|r, then there are only 4 cyclic subgroups of order 4r: 〈b〉,
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〈a + b〉, 〈−a + b〉 and 〈2a + b〉. By Claim 2, a subgroup of order 4r contributes at most
1 element of order 4r to X, so |Z| 6 4. It is easy to see that every element of order 4r is
of the form ka + tb, gcd(t, r) = 1.

If |Y | = 5, then S ⊃
∑

(Y )⊎{b}⊎(b+
∑

(Y )) is a disjoint union and |S| > 2|
∑

(Y )|+
1 > 2 × 13 + 1 = 27 by Lemma 3.2.

If |Y | = 4, we let Z = {k1a+t1b, k2a+t2b, k3a+t3b}, gcd(t1t2t3, r) = 1. If |
∑

(t1, t2, t3)
(mod r)\{0}| > 2, say, l1, l2 ∈

∑

(t1, t2, t3) (mod 2r), 0 6≡ l1, l2 (mod r), l1 6≡ l2
(mod r), then S ⊇

∑

(Y ) ⊎ (m1a + l1b +
∑

(Y )) ⊎ (m2a + l2b +
∑

(Y )) and hence
|S| > 3|

∑

(Y )| > 3 × 8 = 24 by Lemma 3.1. If |
∑

(t1, t2, t3) (mod r)\{0}| < 2,
then t1 ≡ t2 ≡ t3 (mod r) and r = 2 since gcd(t1t2t3, r) = 1 and 2|r, which contradicts
|G| > 40.

If |Y | = 3, we let Z = {k1a+ t1b, . . . , k4a+ t4b}, gcd(t1t2t3t4, r) = 1. If |
∑

(t1, t2, t3, t4)
(mod r)\{0}| > 3, then similarly, we have |S| > 4|

∑

(Y )| > 4 × 6 = 24 by Lemma 3.1.
If |

∑

(t1, t2, t3, t4) (mod r)\{0}| 6 2, then a similar discussion as in the case |Y | = 4
shows that r = 2 since gcd(t1t2t3t4, r) = 1 and 2|r, which also contradicts |G| > 40.

Subcase 3.2.2: If 2 6 |r, then there are precisely 6 cyclic subgroups of order 4r:
〈b〉, 〈a+ b〉, 〈a+2b〉, 〈−a+ b〉, 〈a+4b〉 and 〈2a+ b〉. Notice that any element of order 4 is
contained in one of the 6 subgroups. By the Pigeonhole Principle, there is some subgroup
H which contributes at least 2 elements to X. By Claim 2, this subgroup H contributes
only elements of order 4. However, 2 elements of order 4 in H leads to a contradiction
since H has precisely two elements of order four: rx,−rx, where x is a generator of H .

Case 4: G ∼= C3 ⊕ C3r and |G| > 40.
Subcase 4.1: There is an element x0 ∈ X such that 5 6 ord(x0) < 3r, or

two elements x1, x2 ∈ X with ord(xi) ∈ {3, 4}, i = 1, 2. Let H = 〈x0〉 or < x1, x2 >,
G1 = G/H . Then both H and G/H have at least 5 elements. The remaining discussion
is similar to Subcase 2.1.

Claim 3: Let H = 〈x0〉, x0 ∈ X and ord(x0) = 3r, then H ∩ X = {x0}.
Proof of Claim 3: Let H + ai, ai ∈ G/H, i = 0, 1, 2 denote the 3 cosets of H in

G. Let Si = (H + ai) ∩ S and define a function f : G/H → N by f(ai) = |Si|, then
max(f) − min(f) 6 4 by Lemma 4.3.

Notice that 20 6 |S| 6 23, so 4 6 f(ai) 6 |H| − 3 for any i ∈ [0, 2]. Since |(Si −
x0)\Si| > 1 and |(S − x0)\S| 6 4, without loss of generality, we may assume that S0 and
S1 are arithmetic progressions of difference x0. If there is another x1 ∈ X ∩ H , then by
Lemma 5.2 |(S0 + x1)\S0| > 2, |(S1 + x1)\S1| > 2 and |(S2 + x1)\S2| > 1 imply that
|(S + x1)\S| > 5, a contradiction, so the claim holds.

Since all the elements of order 4 are included in the cyclic subgroup of order 3r, by
Claim 3 above, we have ord(x) 6= 4 for any x ∈ X. Let X = Y ∪ Z, where Y consists of
elements of order 3 and Z consists of elements of order 3r, then |Y | 6 1 by Subcase 4.1.
Choose a, b ∈ G such that G = 〈a〉 ⊕ 〈b〉, and ord(b) = 3r.

If 3|r, then there are only 3 cyclic subgroups of order 3r: 〈b〉, 〈a + b〉 and 〈−a + b〉.
If 3 6 |r, then there are precisely 5 cyclic subgroups of order 3r: 〈b〉, 〈a + b〉, 〈−a + b〉,
〈a − 3b〉 and 〈a + 3b〉. By Claim 4, every subgroup of order 3r will contribute at most 1
element of order 3r to X, so |Z| 6 5. It follows that |Y | + |Z| 6 6, a contradiction.
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Case 5: G ∼= C2 ⊕ C2r and |G| > 40.
Subcase 5.1: There is an element x0 ∈ X such that 5 6 ord(x0) < r. Let

H = 〈x0〉, then the discussion is similar to Subcase 2.1.
Subcase 5.2: For any x ∈ X, ord(x) ∈ {3, 4, r, 2r}.

Choose a, b ∈ G such that G = 〈a〉 ⊕ 〈b〉, ord(a) = 2 and ord(b) = 2r. Let X =
X3 ∪ X4 ∪ Xr ∪ X2r, where Xi, i ∈ {3, 4, r, 2r} consists of elements of order i. Let
G0 =< a, 2b > 6⊆ G, it is easy to verify that x ∈ G0 for any x ∈ G with ord(x) ∈ {3, r}.
There are at most 2 cyclic subgroups of order 4 in G:

〈

r
2
b
〉

and
〈

a + r
2
b
〉

, each contributes
at most 1 element of order 4 to X, so |X4| 6 2. If |X4| = 2, let H =< x4 >, then a similar
discussion as in Subcase 2.1 leads to a contradiction. Now again we need 3 claims.

Claim 4: X2r 6= ∅
Proof of Claim 4: Suppose that X2r = ∅. If there is an element x4 ∈ X4 such that

x4 /∈ G0, then S ⊃
∑

(X3 ∪Xr)⊎ {x4} ⊎ (x4 +
∑

(X3 ∪Xr)) is a disjoint union and hence
|S| > 2|

∑

(X3 ∪Xr)|+1 > 2×13+1 = 27, a contradiction. It follows that either X4 = ∅
or X4 ⊂ G0, which implies G =< X >⊂ G0 6⊆ G, a contradiction again. So the Claim 4
holds.

Claim 5: Let x2r ∈ X2r and H =< x2r >, if there is another y ∈ H ∩ X, then
y = ±2x2r or y = ±(r − 1)x2r. Furthermore, |H ∩ X| 6 2.

Proof of Claim 5: Let H + ai, ai ∈ G/H, i = 0, 1 denote the 2 cosets of H in
G. Let Si = (H + ai) ∩ S and define a function f : G/H → N by f(ai) = |Si|, then
max(f) − min(f) 6 4 by Lemma 4.3

Notice that 20 6 |S| 6 23, so 8 6 f(ai) 6 |H| − 7 for any i ∈ [0, 1]. Since |(Si −
x2r)\Si| > 1 and |(S − x2r)\S| 6 4, then we have that Si, i = 0, 1 is the union of at most
3 arithmetic progressions of difference x2r.

If there is some Si which is an arithmetic progression of difference x2r, without loss of
generality, we may assume that is S0. If y 6= ±2x2r, since y 6= ±x2r, we have y = ±3x2r or
y ∈< x2r > \{±x2r,±2x2r,±3x3r}. If y = ±3x2r, then |(S0+y)\S| = 3 and |(S1+y)\S| >

2 by Lemma 5.2.5. . If y = ±4x2r, then |(S0 +y)\S| = 4 and |(S1 +y)\S| > 1. Otherwise,
|(S0 + y)\S| > 5. It follows that |(S + y)\S| > 5, a contradiction.

If there is no Si which is an arithmetic progression, then we have that Si, i = 0, 1 both
are the unions of 2 arithmetic progressions of difference x2r. Since y 6= ±x2r, we have
|(Si + y)\Si| > 3, or y = ±2x2r, or y = ±(r− 1)x2r by Lemma 5.2.4, and the claim holds.

By the hypothesis, we have that ±2x2r has order r and ±(r− 1)x2r has order 2r if 2|r
and order r if 2 6 |r.

Claim 6: Let xr ∈ Xr and K =< xr >, then Xr ∩ K = {xr}.
Proof of Claim 6: By a similar argument as in the proof of Claim 2, we obtain

Claim 6.
Since all elements of order 3 are contained in cyclic subgroups of order 2r, by Claim

5 and r 6= 3, we have X3 = ∅.
Subcase 5.2.1: If 2 6 |r, then there are precisely 3 cyclic subgroups of order 2r:

< b >, < a + b > and < a + 2b >. In this subcase, X4 = ∅. Claim 5 and the discussion
after imply that each subgroup of order 2r contributes at most 1 element of order 2r, so
|X2r| 6 3 and |Xr| = |X| − |X2r| > 4. Notice that Xr ⊂ G0 and < a + 2b >⊂ G0, then
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|X2r\G0| 6 2. If |X2r\G0| = 0, then X ⊂ G0, a contradiction. Therefore we can choose
x2r ∈ X2r\G0. Now S ⊃

∑

(G0∩X)⊕{x2r}⊕ (x2r +
∑

(G0∩X)) and |G0∩X| > 5 imply
that |S| > 2 × 13 + 1 = 27, a contradiction.

Subcase 5.2.2: If 2|r, then there are only 2 cyclic subgroups of order 2r: H1 =<
b > and H2 = 〈a + b〉. Let H be a cyclic subgroup of order 2r, if X2r ∩ H 6= ∅, then
|X∩H| 6 2 by Claim 5; if X2r∩H = ∅, then |Xr∩H| 6 1 by Claim 6, and so |X∩H| 6 2
since |X4 ∩ H| 6 1. It follows that H contributes at most 2 elements to X.

If 4 6 |r, then all the elements of order 4 are contained in the subset H1∪H2. Note that
G has precisely 3 cyclic subgroups of order r: < 2b >⊂< b >, < a+2b > and < a+4b >.
A cyclic subgroups of order r contributes at most 1 element to X by Claim 6. It follows
that |X| 6 2 × 2 + 1 + 1 = 6 < 7, a contradiction.

If 4|r, let r0 = r/2. Then G has precisely 2 cyclic subgroups of order 4: < r0b >⊂< b >
and < a + r0b >, and 2 cyclic subgroups of order r: < 2b >⊂< b > and < a + 2b >. A
cyclic subgroups of order 4 or r contributes at most 1 element to X by Claim 6. It follows
that |X| 6 2 × 2 + 1 + 1 = 6 < 7, a contradiction again.

Case 6: G with small order.
Since |G| > 21 and r(G) > 2, the left cases of G are of the following forms: C3⊕C3⊕C3,

C2 ⊕C2 ⊕C6, C6 ⊕C6, C5 ⊕C5, C4 ⊕C8, C3 ⊕C9, C3 ⊕C12, C2 ⊕C12, C2 ⊕C14, C2 ⊕C16

and C2 ⊕ C18.
To begin with, since D(C3 ⊕ C3 ⊕ C3) = 7, we have f(C3 ⊕ C3 ⊕ C3, 7) = 26.
The remaining cases are computed with a C++ program. With the help of a computer,

we obtain the following values:

Result Running Time(sec)
ol(C2 ⊕ C2 ⊕ C6) = 6 7.6
f(C6 ⊕ C6, 7) = 29 98
ol(C5 ⊕ C5) = 6 1.0
f(C4 ⊕ C8, 7) = 27 26
ol(C3 ⊕ C9) = 6 3.9
f(C3 ⊕ C12, 7) = 27 190
ol(C2 ⊕ C12) = 6 1.2
f(C2 ⊕ C14, 7) = 25 8.7
f(C2 ⊕ C16, 7) = 25 51
f(C2 ⊕ C18, 7) = 25 285

This completes the proof.
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