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Abstract

This paper gives the limit of the average Lp−star and the average Lp−extreme
discrepancy for [0, 1]d and 0 < p < ∞. This complements earlier results by Heinrich,
Novak, Wasilkowski & Woźniakowski, Hinrichs & Novak and Gnewuch and proves
that the hitherto best known upper bounds are optimal up to constants. We further-
more introduce a new discrepancy DP

N by taking a probabilistic approach towards
the extreme discrepancy DN . We show that it can be interpreted as a centralized

L1−discrepancy D
(1)
N , provide upper and lower bounds and prove a limit theorem.

1 Introduction.

This paper discusses two relatively separate problems in discrepancy theory, one being
well-known and one being introduced. The reason for doing so is that our solution for
the former was actually inspired by our investigating the average case for the latter. The
paper is structured as follows: We introduce the Lp−discrepancies, known results and a
motivation behind a probabilistic approach towards discrepancy in this section, give our
results in the second section and provide proofs in the last part of the paper.

∗The author is supported by the Austrian Science Foundation (FWF), Project S9609, part of the
Austrian National Research Network “Analytic Combinatorics and Probabilistic Number Theory”.
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Lp−discrepancies. In a seminal paper Heinrich, Novak, Wasilkowski and Woźniakowski
[5] used probabilistic methods to estimate the inverse of the star-discrepancy, which is of
great interest for Quasi Monte Carlo methods. Their approach relies on the notion of the
average Lp−star discrepancy. Recall that the Lp−star discrepancy for a finite point set
P ⊂ [0, 1]d is defined as

DN
(p)∗(P) =

(∫

[0,1]d

∣
∣
∣
∣

# {xi ∈ P : xi ∈ [0, x]}
#P − λ([0, x])

∣
∣
∣
∣

p

dx

)1/p

,

where
[0, x] :=

{
y ∈ [0, 1]d : 0 6 y1 6 x1 ∧ . . . 0 6 yd 6 xd

}
,

N = #P and λ is the usual Lebesgue measure. The average Lp-star discrepancy av∗
p(N, d)

is then defined as the expected value of the Lp−norm of the Lp-star discrepancy of N
independently and uniformly distributed random variables over [0, 1]d, i.e.

av∗
p(N, d) =

(∫

[0,1]Nd

DN
(p)∗({t1, t2, . . . , tN})pdt

)1/p

,

where t = (t1, . . . , tN) and ti ∈ [0, 1]d. This averaging measure tells us something about
the behaviour of this discrepancy measure as well as about the behaviour of random points
in the unit cube and, in the words of Heinrich, Novak, Wasilkowski and Woźniakowski
[5], “we believe that such an analysis is of interest per se”. Their original bound holds
for even integers p and states

av∗
p(N, d) 6 32/325/2+d/pp(p + 2)−d/p 1√

N
.

The derivation is rather complicated and depends on Stirling numbers of the first and
second kind. This bound was then improved by Hinrichs and Novak [6] (again for even
p). Their calulation, however, contained an error, which was later corrected by Gnewuch
[4] and the result amounts to

av∗
p(N, d) 6 21/2+d/pp1/2(p + 2)−d/p 1√

N
.

Apparently, if one can consider the star-discrepancy, one can as well consider the
discrepancy, thus giving rise to the Lp-extreme discrepancy. For the definition of the
Lp-extreme discrepancy, we require

Ωd =
{
(x, y) ∈ [0, 1]d ⊗ [0, 1]d : x1 6 y1 ∧ · · · ∧ xd 6 yd

}
,

and µ as the constant multiple of the Lebesgue measure, which turns (Ωd, µ) into a
probability space, i.e.

µ = 2dλ2d,
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where λk is the k−dimensional Lebesgue measure. The Lp−extreme discrepancy for a
point set P ⊂ [0, 1]d is then defined as

D
(p)
N (P) =

(∫

Ωd

∣
∣
∣
∣

# {xi ∈ P : xi ∈ [x, y]}
#P − λ([x, y])

∣
∣
∣
∣

p

dµ

)1/p

and the average Lp−extreme discrepancy avp(N, d) is defined analogous to av∗
p(N, d). The

problem of finding bounds for this expression was tackled by Gnewuch.

Theorem (Gnewuch, [4]). Let p be an even integer. If p > 4d, then

avp(N, d) 6 21/2+3d/pp1/2(p + 2)−d/p(p + 4)−d/p 1√
N

.

If p < 4d, then we have the estimate

avp(N, d) 6 25/431/4−d 1√
N

.

We study the general case [0, 1]d and p > 0 any real number: Our contribution is to
find precise expressions for

lim
N→∞

av∗
p(N, d) and lim

N→∞
avp(N, d).

Our results have four interesting aspects. First of all, they clearly constitute interesting
results concerning Lp−discrepancies and are natural analogues to other well known results
such as the law of iterated logarithm for the extreme discrepancy DN . Secondly, they
do imply all previous results for N large enough—it should be noted, however, that in
applications definite bounds for fixed N are needed. However, our strategy for proving our
limit theorems is quite flexible and we will sketch two possible ways to indeed get definite
upper bounds further below. Thirdly, the precise form of the limits contains certain
integrals, whose special form can be used to explain why in the previous derivation of the
bounds unexpected things have appeared (i.e. Stirling numbers of the first and second
kind). Finally, we can use our results to show that the already known results are effectively
best possible and use a combination of them to show that the average Lp−discrepancies
are stable in a certain way.

Probabilistic discrepancy. Now for something completely different. Assume we are
given a finite set of points {x1, x2, . . . , xN} ⊂ [0, 1]. The discrepancy is given by

DN({x1, x2, . . . , xN}) = sup
06a6b61

∣
∣
∣
∣

# {xi : a 6 xi 6 b}
N

− (b − a)

∣
∣
∣
∣
.

This immediately motivates another very natural measure by not looking for the largest
value but for the average value: the deviation which is assumed by a “typically random”
interval. Any such idea will be intimately tied to what makes an interval “typically
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random”. Taking two random points in [0, 1] and looking at the interval between them is
doomed to fail: the point 0.5 will be an element in half of all cases, whereas the point 0
will never be part of an interval. It is thus only natural to go to the torus and consider
sets of the type

I[a, b] :=

{

(a, b] if 0 6 a 6 b < 1

[0, b] ∪ (a, 1] if 0 6 b < a < 1,

with the usual generalization if we are in higher dimensions.

Definition. Let {x1, x2, . . . , xN} ⊂ [0, 1]d and let X1, X2 be two independently and uni-

formly distributed random variables on [0, 1]. We define

DP

N := E

∣
∣
∣
∣

# {xi : xi ∈ I[X1, X2]}
N

− λ(I[X1, X2])

∣
∣
∣
∣
.

By definition of the extreme discrepancy DN , we always have DP

N 6 DN . Interestingly,
even showing DP

N < DN , which is, judging from the picture, obvious, is not completely
trivial. The question is evident: what is the more precise relation between these two
quantities? This entire concept is, of course, naturally related to toroidal discrepancies
and can be viewed as an L1−analogue of a concept introduced by Lev [8] in 1995. We aim
to present this probabilistic discrepancy as an object worthy of study, to present several
initial results, discuss a possible application and motivate new lines of thought that might
lead to new insight.

2 The results.

2.1 Lp−discrepancies.

Our main result gives the correct asymptotic behavior for the average Lp discrepancies
for any dimension and any p > 0.

Theorem 1 (Limit case, average Lp−star discrepancy.). Let p > 0, d ∈ N. Then

lim
N→∞

av∗
p(N, d)

√
N =

√
2

π
1

2d

Γ

(
1 + p

2

)1/p




∫

[0,1]d

(
d∏

i=1

xi

(

1 −
d∏

i=1

xi

))p/2

dx1 . . . dxd





1/p

=

√
2

π
1

2d

Γ

(
1 + p

2

)1/p
( ∞∑

i=0

(
p/2

i

)

(−1)i

(
1

p
2

+ i + 1

)d
)1/p

.

As beautiful as these expressions might be, they are of little use if we have no idea
how the integral behaves. Luckily, this is not the case and we can give several bounds for
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it, the proofs of which are sketched within the proof of Theorem 1. We have the universal
upper bound





∫

[0,1]d

(
d∏

i=1

xi

(

1 −
d∏

i=1

xi

))p/2

dx1 . . . dxd





1/p

6

(
2

p + 2

)d/p

.

Regarding lower bounds, we have a universal lower bound





∫

[0,1]d

(
d∏

i=1

xi −
d∏

i=1

x2
i

)p/2

dx1 . . . dxd





1/p

>

((
2

p + 2

)d

− (2p/2 − 1)

(
2

p + 4

)d
)1/p

,

where the term (2p/2 − 1) gets very large very quickly, thus making the bound only useful
for small values of p. For p > 2, we have the following better lower bound





∫

[0,1]d

(
d∏

i=1

xi

(

1 −
d∏

i=1

xi

))p/2

dx1 . . . dxd





1/p

>

((
2

p + 2

)d

− p

2

(
2

p + 4

)d
)1/p

.

Our proof of Theorem 1 can be transferred to the technically more demanding but not
fundamentally different case of the average Lp−extreme discrepancy as well. Recall that
we defined

Ωd =
{
(x, y) ∈ [0, 1]d ⊗ [0, 1]d : x1 6 y1 ∧ · · · ∧ xd 6 yd

}

and µ as the normalized Lebesgue measure on Ωd.

Theorem 2 (Limit case, average Lp−extreme discrepancy.). Let p > 0, d ∈ N. Then

lim
N→∞

avp(N, d)
√

N =

√
2

π
1

2d

Γ

(
1 + p

2

)1/p




∫

Ωd

(
d∏

i=1

(yi − xi) −
d∏

i=1

(yi − xi)
2

)p/2

dµ





1/p

.

Note, that the binomial theorem implies

lim
N→∞

avp(N, d)
√

N
√

2

π
1

2d

Γ
(

1+p
2

)1/p
=

( ∞∑

i=0

(
p/2

i

)

(−1)i

(
8

(2 + 2i + p)(4 + 2i + p)

)d
)1/p

.

Furthermore, we have again a universal upper bound





∫

Ωd

(
d∏

i=1

(yi − xi)

(

1 −
d∏

i=1

(yi − xi)

))p/2

dµ





1/p

6

(
8

(p + 2)(p + 4)

)d/p

and a derivation of lower bounds can be done precisely in the same way as above.
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Suggestions for improvement. These two results do not come with convergence
estimates. Our method of proof could be used to obtain such bounds as well, if we were
given (upper) bounds for the p−th central moment of the binomial distribution or, pos-
sibly, by using strong Berry-Esseen type results and suitable decompositions of the unit
cube (i.e. bounds on the volume of the set A from the proof). The second way seems to
lead to a very technical path while the first way seems to be the more manageable one.

A short note on upper bounds. These two results allow us to estimate the quality
of the already known bounds. The reader has probably noticed that if we use our universal
upper bounds, we get almost precisely the same terms as the upper bounds in the results
of Hinrichs and Novak [6] and Gnewuch [4], respectively. Our limit relation enables us
thus to show that the previously known upper bounds are essentially best possible up
to constants. We can even show a little bit more: any convergent sequence is bounded,
the supremum of the sequence divided by the limit can thus serve as a measure of how
well-behaved the sequence is.

Corollary 1 (Stability of the average L2−star discrepancy). Let d ∈ N be arbitrary.

Then
supN∈N

av∗
2(N, d)

√
N

limN→∞ av∗
2(N, d)

√
N

6 2
√

3π1/4 ∼ 4.611 . . . .

The implication of this corollary is the following: The limit case is already extremely
typical, finitely many points behave at most a constant worse. It is clearly that by using
the above results, this corollary can be extended to any other values of p as well. Clearly,
a very similar result can be obtained for the average Lp−extreme discrepancy, where we
would like to emphasize once more how good the previous results are. Let us compare
Gnewuch’s result (for even p and p > 4d) and a corollary of Theorem 2 (obtained by using
the universal upper bound for the integral)

avp(N, d)
√

N 6

[√
2 · 8d/p(p + 2)−d/p(p + 4)−d/p

]

p1/2

lim
N→∞

avp(N, d)
√

N 6

[√
2 · 8d/p(p + 2)−d/p(p + 4)−d/p

]

Γ

(
1 + p

2

)1/p

π
1

2d .

Furthermore,

lim
p→∞

Γ
(

1+p
2

)1/p

√
p

=
1√
2e

,

i.e. the difference is indeed a matter of constants only. The reader will encounter a similar
matching of terms when comparing the result of Hinrichs and Novak with Theorem 1. It
would be certainly of interest to see whether upper bounds of similar quality can be proven
when p /∈ 2N - in such an attempt our result could serve as an orientation as to where the
true answer lies.

the electronic journal of combinatorics 17 (2010), #R106 6



2.2 Probabilistic discrepancy.

As usual, when a new piece of mathematics is defined, there are several different aspects
that can be studied and one could focus on very detailed things. An example of a minor
consideration would be the fact that the probabilistic discrepancy is more stable than the
regular discrepancy in terms of removal of points and

DP

N−1({x1, . . . , xn−1}) 6 DP

N({x1, . . . , xn}) +
1

2N

instead of the usual additive term 1/N for the extreme discrepancy. We are not going to
undertake a detailed study but rather present two main points of interest.

Bounds for the probabilistic discrepancy. A natural question is how the prob-
abilistic discrepancy is related to the extreme discrepancy. In a somewhat surprising
fashion, our main result relies on a curious small fact concerning combinatorial aspects
of Lebesgue integration (“what is the average oscillation of the graph of a bounded func-
tion?”). Recall that the essential supremum with respect to a measure µ is defined as

ess sup |f(x)| = ‖f‖L∞(µ) := inf
{
t > 0 : µ(|f |−1 (t,∞)) = 0

}
.

Theorem 3. Let (Ω, Σ, µ) be a probability space and let f : Ω → R be measurable. Then,
∫

Ω

∫

Ω

|f(x) − f(y)| dxdy 6 ess sup |f(x)|.

Note that the triangle inequality only gives the bound 6 2 ess sup06x61 |f(x)|, i.e.
twice as large as our bound. Moreover, the function f : [0, 1] → [−1, 1] given by f(x) =
2χ[0,0.5] − 1, where χ is the indicator function, shows that the inequality is sharp.

Theorem 4. Let P = {x1, x2, . . . , xN} ⊂ [0, 1]. Then

1

8
DN (P)2

6 DP

N (P) 6 inf
06α61

D∗
N({P + α}).

Let us quickly illustrate this result by looking at the point set

P =

{

0,
1

N
,

2

N
, . . . ,

N − 1

N

}

having extreme discrepancy DN(P) = 1/N . Its probabilistic discrepancy can be easily
calculated to be 1/3N , while our previous theorem tells us that

DP

N (P) 6 inf
06α61

D∗
N({P + α}) = D∗

N

({

P +
1

2N

})

=
1

2N
,

which is not that far off.
We also give the proof of another theorem, weaker than the previous one, because

the proof is very interesting in itself and consists of many single components, whose
improvements would lead the way to a better bound.
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Theorem 5. Let P = {x1, x2, . . . , xN} ⊂ [0, 1]. Then

DN(P) 6 DP

N(P) + 3

√

32DP

N(P).

Limit theorem. The classical result for the star discrepancy is very well known and,
relying on the law of iterated logarithm, tells us that (independent of the dimension)

lim sup
N→∞

√
2ND∗

N√
log log N

= 1 a.s.

Since the entire definition of the probabilistic discrepancy rests on probabilistic principles,
it would not be surprising if a similar result exists for DP

N . We will now compute a similar
answer for the probabilistic discrepancy and show that the perhaps unexpectedly beautiful
result suggests that the probabilistic discrepancy might indeed be worthy of study.

Theorem 6. Let X1, X2, . . . , XN , . . . be a sequence of independent random variables,

which are uniformly distributed on [0, 1]. Then, almost surely,

lim
N→∞

√
NDP

N({X1, . . . , XN}) =

√
π

32
.

Using the abbreviation

{P + α} = {{p + α} : p ∈ P} ,

where {·} denotes the fractional part, it is easily seen (and explained in the proof of
Theorem 4) that

DP

N(P) =

∫ 1

0

D
(1)∗
N ({P + α})da.

The probabilistic discrepancy can hence be somehow thought of as a centralized L1−star
discrepancy. It is noteworthy, that the relationship between L1−star discrepancy and
probabilistic discrepancy seems to mirror the relationship between D∗

N and DN , since
both can be thought of as Lp−norms of associated functions, i.e. we have the relation

DP

N(P) =
∥
∥
∥D

(1)∗
N {P + ·}

∥
∥
∥

L1([0,1])
and DN =

∥
∥
∥D

(∞)∗
N {P + ·}

∥
∥
∥

L∞([0,1])
.

3 The proofs

3.1 The proof of Theorem 1

Proof. Recall that the Lp−star discrepancy D
(p)∗
N over a point set P ⊂ [0, 1]d is defined as

D
(p)∗
N (P) =

(∫

[0,1]d

∣
∣
∣
∣

# {xi ∈ P : xi ∈ [0, x]}
#P − λ([0, x])

∣
∣
∣
∣

p

dx

)1/p

,
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where N denotes again the cardinality of P. The general approach would be now to
consider the probability space (ΩN , µN) consisting of N independently and uniformly
distributed random variables over [0, 1]d and µN as the product Lebesgue measure

µN = λd × λd × . . . λd
︸ ︷︷ ︸

N times

,

to consider

(av∗
p(N, d))p :=

∫

ΩN

(D
(p)∗
N )p(P)dµN

and to try to start proving bounds. We shall take another route by switching the order
of integration and considering

(av∗
p(N, d))p =

∫

ΩN

∫

[0,1]d

∣
∣
∣
∣

# {xi ∈ P : xi ∈ [0, x]}
#P − λ([0, x])

∣
∣
∣
∣

p

dxdµN

=

∫

[0,1]d

∫

ΩN

∣
∣
∣
∣

# {xi ∈ P : xi ∈ [0, x]}
#P − λ([0, x])

∣
∣
∣
∣

p

dµNdx

instead. Fix any ε > 0 arbitrary. We shall restrict ourselves to not integrating over the
entire set [0, 1]d but merely a subset A ⊂ [0, 1]d given by

A :=
{
x ∈ [0, 1]d : ε 6 λ([0, x]) 6 1 − ε

}
.

Since our integrand is nonnegative and at most 1, we especially have

∫

[0,1]d\A

∫

ΩN

∣
∣
∣
∣

# {xi ∈ P : xi ∈ [0, x]}
#P − λ([0, x])

∣
∣
∣
∣

p

dµNdx 6 1 − λd(A).

Let us now keep a x ∈ [0, 1]d \ A fixed and only consider the expression

# {xi ∈ P : xi ∈ [0, x]}
#P − λ([0, x]).

Each single random variable either lands in [0, x] or does not, which is just a Bernoulli trial
with probability λ([0, x]) and thus the entire expression follows a Binomial distribution,
i.e.

# {xi ∈ P : xi ∈ [0, x]} ∼ B(N, λ([0, x])).

The next step is simply the central limit theorem: as n → ∞

B(n, p) = N (np, np(1 − p))

and applying this to the above equation we get, after rescaling,

√
N

√

λ([0, x])(1 − λ([0, x]))

[
# {xi ∈ P : xi ∈ [0, x]}

#P − λ([0, x])

]

∼ N (0, 1).

the electronic journal of combinatorics 17 (2010), #R106 9



Taking the p−th power, we get

( √
N

√

λ([0, x])(1 − λ([0, x]))

)p ∣
∣
∣
∣

# {xi ∈ P : xi ∈ [0, x]}
#P − λ([0, x])

∣
∣
∣
∣

p

∼ |X|p ,

where X is a random variable satisfying X ∼ N (0, 1). This then implies for N → ∞
∫

ΩN

∣
∣
∣
∣

# {xi ∈ P : xi ∈ [0, x]}
#P − λ([0, x])

∣
∣
∣
∣

p

dµN =

(√

λ([0, x])(1 − λ([0, x]))√
N

)p ∫ ∞

−∞
|X|p dN (0, 1)

=

(√

λ([0, x])(1 − λ([0, x]))√
N

)p
2p/2

√
π

Γ

(
1 + p

2

)

.

This is now only a pointwise estimate (x is fixed) and for truly integrating over x over
the entire domain [0, 1]d would require uniform convergence, which is not given: the rule
of thumb is that the binomial distribution is close to the normal distribution only if the
success rate of a single Bernoulli trial (here λ([0, x])) is not close to 0 or 1 - this can
be made precise by using a version of the central limit theorem that comes with error
estimates, i.e. the Berry-Esseen theorem (see, for example, [1]). As it can be easily
checked, the error estimates for a Bernoulli experiment with probability close to 0 or
1 diverge, this means that we have pointwise but not uniform convergence. However,
integrating merely over A works fine (this follows also from the Berry-Esseen theorem)
and so, as N → ∞

2p/2

√
π

Γ

(
1 + p

2

)(
1√
N

)p ∫

A

√

λ([0, x])(1 − λ([0, x]))
p
dx =

∫

A

∫

ΩN

∣
∣
∣
∣

# {xi ∈ P : xi ∈ [0, x]}
#P − λ([0, x])

∣
∣
∣
∣

p

dµNdx.

This, however, is a well-behaved integral and nothing prevents us from letting ε → 0 and
thus A → [0, 1]d in Hausdorff metric and so, as N → ∞,

(avp(N, d))p =

∫

[0,1]d

∫

ΩN

∣
∣
∣
∣

# {xi ∈ P : xi ∈ [0, x]}
#P − λ([0, x])

∣
∣
∣
∣

p

dµNdx

=
2p/2

√
π

Γ

(
1 + p

2

)(
1√
N

)p ∫

[0,1]d

√

λ([0, x])(1 − λ([0, x]))
p
dx.

Summarizing, one could say that the proof consists of switching the order of integration,
using the central limit theorem and paying attention to small problem areas (which then,
after evaluating the first integral, turn out to be no problem at all). Evaluating this last
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integral precisely is probably very hard, however, an upper bound is easily obtained via
0 6 λ([0, x]) 6 1 and

∫

[0,1]d

√

λ([0, x])(1 − λ([0, x]))
p
dx 6

∫

[0,1]d

√

λ([0, x])
p
dx =

∫

[0,1]d

d∏

i=1

x
p/2
i dx1 . . . dxd

=

d∏

i=1

∫ 1

0

x
p/2
i dxi =

(
2

2 + p

)d

.

For the lower bound, we distinguish between two cases: a general p and p > 2. In the
first case, we can use the binomial expansion to get

(λ([0, x])(1 − λ([0, x])))p/2 = λ([0, x])p/2
∞∑

i=0

(
p/2

i

)

(−1)iλ([0, x])i

=

∞∑

i=0

(
p/2

i

)

(−1)iλ([0, x])p/2+i

> λ([0, x])p/2 −
∞∑

i=1

(
p/2

i

)

λ([0, x])p/2+i

> λ([0, x])p/2 −
( ∞∑

i=1

(
p/2

i

))

λ([0, x])p/2+1

= λ([0, x])p/2 − (2p/2 − 1)λ([0, x])p/2+1.

Integration over the whole domain and decomposition via Fubini then gives the result.
For the second case, we study the function (x − x2)p/2 on [0, 1]. Since p > 2, the mean
value theorem implies

(x − x2)p/2
> xp/2 − p

2
xp/2−1x2 = xp/2 − p

2
xp/2+1

and thus
(λ([0, x])(1 − λ([0, x])))p/2

> λ([0, x])p/2 − p

2
λ([0, x])p/2+1,

which, by integrating just as above, then yields the result.

3.2 The proof of Theorem 2

Proof. The proof is completely analogous to the proof of Theorem 1, due to the fact
that the entire structure of the previous proof is based on the fact that the actual space
is irrelevant right up to the end (which makes the entire proof technique very flexible).
Regarding the proof of the upper bound, we proceed as in the previous proof via

∫

Ωd

(
d∏

i=1

(yi − xi)

(

1 −
d∏

i=1

(yi − xi)

))p/2

dµ 6

∫

Ωd

(
d∏

i=1

(yi − xi)

)p/2

dµ.
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Let us now take a closer look at λ2d(Ωd) (i.e. at the volume of Ωd). This volume can
be computed in many ways. A close look leads us two consider the first point fixed, to
consider the choices for the second point and then integrate over the first point, which
gives

λ2d(Ωd) =

∫

[0,1]d

d∏

i=1

(1 − xi)dx1 . . . dxd =

∫

[0,1]d

d∏

i=1

xidx1 . . . dxd =
1

2d
.

Another argument would consist of taking a point (x, y) ∈ [0, 1]d × [0, 1]d completely at
random. The inequality x1 6 y1 is satisfied in half of all cases and likewise for all other
components. Since all components are independent, we have λ2d(Ω) = 2−d. This implies
µ = 2dλ2d and therefore

∫

Ωd

(
d∏

i=1

(yi − xi)

)p/2

dµ =

(

2

∫ 1

0

∫ 1

x

(y − x)p/2dydx

)d

=

(
8

(p + 2)(p + 4)

)d

.

3.3 The proof of Theorem 3

Proof. The statement is only non-trivial when ess sup06x61 |f(x)| < ∞. We can divide the
entire function by ess sup06x61 |f(x)| and are thus given a function which maps (ignoring
sets of measure 0) f : Ω → [−1, 1]. By scaling and translation, it is thus only necessary
to consider the case f : Ω → [0, 1]. We divide [0, 1] into n intervals via

Ai =

[
i

n
,
i + 1

n

)

for 0 6 i 6 n − 2 and An−1 =

[
n − 1

n
, 1

]

.

Then, we have

∫

Ω

∫

Ω

|f(x) − f(y)| dxdy 6
1

n
+

n−1∑

i=0

n−1∑

j=0

|i − j|
n

µ(f−1(Ai))µ(f−1(Aj)).

Rewriting the sum as a matrix expression and µ(f−1(Ai))+ · · ·+µ(f−1(An−1)) = 1 gives

n−1∑

i=0

n−1∑

j=0

|i − j|
n

µ(f−1(Ai))µ(f−1(Aj)) 6 max
{
xT Ax : ‖x‖ℓ1 6 1

}

= max
{
xT Ax : ‖x‖ℓ1 = 1

}
,

where the matrix A is given by

A =

( |i − j|
n

)n

i,j=1

.
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This is a typical optimization under constraints problem and the usual Lagrangian ap-
proach yields that the maximum is assumed for x = (0.5, 0, 0, . . . , 0, 0.5), hence

max
{
xT Ax : ‖x‖ℓ1 = 1

}
6

1

2

n − 1

n
.

Altogether, ∫

Ω

∫

Ω

|f(x) − f(y)| dxdy 6
1

n
+

1

2

n − 1

n
=

1

2

n + 1

n
.

Letting n → ∞ implies the result.

3.4 The proof of Theorem 4

Proof. We start with the lower bound. Taking a random interval could be simulated as
follows: we start by taking any random point α in [0, 1] and then take a random length
β from [0, 1] and move this length along the starting point (and maybe jumping from the
right end of the interval to the left end of the interval, if necessary). This could also be
simulated by substituting the point set P by {P + α} and just considering the interval
[0, β], i.e. the average L1−star discrepancy and so

DP

N =

∫ 1

0

∫ 1

0

∣
∣
∣
∣

A([0, x), N, {P + α})
N

− λ([0, x))

∣
∣
∣
∣
dxdα =

∫ 1

0

D
(1)
N ({P + α})dα.

It is easily seen, or follows directly from the general framework [9, Theorem 1] that for
any point set P ⊂ [0, 1]

DN ({P + α}) 6 2DN(P)

(a proof of this statement is very similar to the usual proof for D∗
N 6 DN 6 2D∗

N). This
inequality applied a second time yields

1

2
DN(P) 6 DN ({P + α}) 6 2DN(P).

and in combination with [3, Theorem 1.8]

1

2
DN(P)2

6 D
(1)∗
N (P),

the lower bound follows via the inequality chain

D
(1)
N ({P + α}) >

1

2
DN({P + α})2

>
1

8
DN(P)2.

Regarding the upper bound, by the symmetry of our torus-setting, it is of no importance
whether we consider P or the more general {P + α} from the statement. Hence, it is
sufficient to show the result for α = 0. Let the discrepancy function g : [0, 1] → R be
defined as

g(x) =
# {xi : xi ∈ [0, x]}

N
− x.
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Let a = X1 and b = X2 be random values given by the uniform distributed random
variables. If a < b and a, b /∈ P, then

∣
∣
∣
∣

# {xi : xi ∈ (a, b]}
N

− (b − a)

∣
∣
∣
∣
= |g(b) − g(a)| .

Similarly, if b < a and a, b /∈ P, then
∣
∣
∣
∣

# {xi : xi ∈ [0, 1] \ (b, a]}
N

− (1 − (a − b))

∣
∣
∣
∣
=

∣
∣
∣
∣

N − # {xi : xi ∈ [b, a)}
N

− (1 − (a − b))

∣
∣
∣
∣

=

∣
∣
∣
∣

# {xi : xi ∈ [b, a)}
N

− (b − a)

∣
∣
∣
∣

= |g(a) − g(b)| .

Thus we have, since a, b /∈ P almost everywhere,

DP

N (P) =

∫ 1

0

∫ 1

0

∣
∣
∣
∣

# {xi : xi ∈ I[a, b]}
N

− λ(I[a, b])

∣
∣
∣
∣
dadb

=

∫ 1

0

∫ 1

0

|g(a) − g(b)| dadb.

The result then follows from Theorem 3 and ess sup06x61 |g(x)| = D∗
N (P).

3.5 The proof of Theorem 5

Proof. We go back to our definition of DP

N as the expected value of the random variable
∣
∣
∣
∣

# {xi : xi ∈ I[X1, X2]}
N

− λ(I[X1, X2])

∣
∣
∣
∣
,

where X1, X2 are uniformly distributed random variables. This random variable is ob-
viously nonnegative and assumes, as largest value, DN . We recall an inequality due to
Bhatia and Davis.

Theorem (Bhatia & Davis, [2]). Let a probability distribution f have compact support

supp(f) ⊆ [m, M ] and let is expected value be m 6 µ 6 M . Then the variance satisfies

V(f) 6 (µ − m)(M − µ).

This, applied to our problem, implies

V

∣
∣
∣
∣

# {xi : xi ∈ I[X1, X2]}
N

− λ(I[X1, X2])

∣
∣
∣
∣
6 DP

N(DN − DP

N ).

If we combine this with Chebycheff’s inequality, we get, for any real k > 0,

P

(∣
∣
∣
∣

# {xi : xi ∈ I[X1, X2]}
N

− λ(I[X1, X2])

∣
∣
∣
∣
− DP

N > k
√

DP

N (DN − DP

N)

)

6
1

k2
.
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There are two ways to see this: first, the usual interpretation that large deviations happen
rarely. A second interpretation comes from the more measure-theoretic view of probability
theory. Define the set A ⊂ [0, 1]2 as

A =

{

(a, b) ∈ [0, 1]2 :

∣
∣
∣
∣

# {xi : xi ∈ I[a, b]}
N

− λ(I[a, b])

∣
∣
∣
∣
− DP

N > k
√

DP

N (DN − DP

N)

}

,

then Tchebycheff’s inequality states that λ2(A) 6 k−2. We only consider the case A 6= ∅
(if A is empty, then the very last argument from the proof applies and we are done). Let
us define the function g : [0, 1]2 → R

g(a, b) =

∣
∣
∣
∣

# {xi : xi ∈ I[a, b]}
N

− λ(I[a, b])

∣
∣
∣
∣
.

If this function were Lipschitz continuous (it is not!), the rest of the proof would be clear:
Take a point (a, b) ∈ [0, 1]2 where g(a, b) assumes the maximal value g(a, b) = DN (P).
Then, for k small enough, (a, b) ∈ A. Since A has small measure, it does not cover a
large area and we can find another point (c, d) /∈ A, which is close to the original point
(a, b). Since (c, d) is not in A, we have an upper bound for g(c, d) and can use Lipschitz
continuity to find an upper bound for g(a, b) and thus DN(P). This strategy of proof
is not feasible but can be slightly modified to yield a proof. A is not empty, it is hence
possible to fix a (a, b) ∈ A with g(a, b) = DN(P). We distinguish two cases.

Case 1. We reach the discrepancy because there are too many points on too small a
space, i.e. we have

# {xi : xi ∈ I[a, b]}
N

− λ(I[a, b]) = DN(P).

In order to rectify this imbalance, we make the interval slightly larger: We make a smaller
and b larger (remember that we are on the torus, making a smaller if a is already 0 means
reaching values slightly smaller than 1). We do this, until we reach the point (c, d) ∈ ∂A.
A simple continuity argument shows, that there are still more points in (c, d) than its
length and perfect distribution suggest (otherwise we have made the interval too large
too quickly), this means that

# {xi : xi ∈ I[c, d]}
N

− λ(I[c, d]) = g(c, d).

As a consequence,

DN(P) − g(c, d) =
# {xi : xi ∈ I[a, b]}

N
− # {xi : xi ∈ I[c, d]}

N
+ λ(I[c, d]) − λ(I[a, b])

6 λ(I[c, d]) − λ(I[a, b]),

where the difference between the cardinality of the sets is positive because I[a, b] ⊆ I[c, d].
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Case 2. The second case is somewhat dual to the first: We have a space with too few
points in it, i.e.

λ(I[a, b]) − # {xi : xi ∈ I[a, b]}
N

= DN(P).

We rectify this by making the interval smaller, i.e. increasing a and decreasing b. We do
so, until we reach a boundary point (c, d) ∈ ∂A. This boundary point satisfies

λ(I[c, d]) − # {xi : xi ∈ I[c, d]}
N

= g(c, d)

and so, as in the first case, as a consequence,

DN(P) − g(c, d) = λ(I[a, b]) − λ(I[c, d]) +
# {xi : xi ∈ I[c, d]}

N
− # {xi : xi ∈ I[a, b]}

N
6 λ(I[a, b]) − λ(I[c, d]).

It follows immediately from the definition of I[a, b] that generally

|λ(I[x, y]) − λ(I[z, w])| 6 |x − z| + |y − w| ,

where in the case interesting to us, we even have equality. Now, let’s go back to the two
cases. We have a point (a, b) ∈ A and are looking for the nearest point (c, d) /∈ A, where
in each case only a fourth (a quadrant) of all possible directions is feasible (because in
the first case a has to get smaller and b has to get larger and conversely for the second
case). Since the area of A is λ(A) 6 1/k2, the worst case in Euclidean distance would be
a quarter of a circle with the midpoint in (a, b) and radius r. Since our above inequality
is a statement in the ℓ1−norm, we have to substitute this with an isosceles triangle where
the area condition implies for the length of the two legs ℓ of the triangle that

ℓ 6
√

2
1

k

and so, in both cases,

DN(P) − g(c, d) 6
√

2
1

k
.

Since (c, d) ∈ ∂A, we have

g(c, d) 6 k
√

DP

N(DN − DP

N ) + DP

N

and hence altogether

DN(P) 6 k
√

DP

N(DN − DP

N ) + DP

N +
√

2
1

k
.

Setting

k =

(
2

DN(P)DP

N(P) − DP

N(P)2

)1/4

yields the result.
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The two components of the proof, which would be most suitable for improvement are
clearly the bound on the variance, which is certainly far from best possible and knowledge
about the structure the set A can possibly assume, which would also be very interesting
in itself.

3.6 The proof of Theorem 6

Proof. As we have already seen in the proof of Theorem 4

DP

N (P) =

∫ 1

0

D
(1)
N ({P + α})da.

However, independently and uniformly distributed random variables are invariant under
the translation P → {P + α} and thus we are just dealing with the average L1−star
discrepancy. Theorem 1 then gives

lim
N→∞

DP

N(P)
√

N =

√
π

32
.
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