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1 Introduction

In the literature generated by the seminal papers [1, 19] and revolving around the so-called
Razumov–Stroganov (RS) conjecture, it has often been remarked that there are more
conjectures than theorems. The present work, sadly, will not help correct this imbalance:
it is entirely based on one more conjecture. The latter, however, is of some interest since
it connects the two sides of the Razumov–Stroganov conjecture; that is, it expresses the
number of Fully Packed Loop configurations (FPLs) in a triangle with certain boundary
conditions as the constant term of a quasi-generating function which is closely related to
expressions appearing in the context of the Temperley–Lieb(1) (sometimes called O(1))
model of loops [10, 20, 9]. This formula was inspired by an attempt to understand the
observations of Thapper [22] on the enumeration of FPLs with prescribed connectivity,
itself based on earlier work [3, 4]. In fact, we shall show in what follows that our new
conjecture implies both the RS conjecture [19] and the conjectures of [22]. Since this article
was written, the RS conjecture was proved in [2]; however there is no direct connection
between our results and this proof, which provides no explicit formulae for the counting
of FPLs.

The paper is organized as follows. The next section contains some basic definitions.
In Section 3, we briefly recall the various statistical models involved and the required
content from the work referred to above. Section 4 contains the main formula of this
paper, its conjectural meaning, and the connection to the Razumov–Stroganov conjecture.
Section 5 provides the link to Thapper’s conjectures. The final section briefly describes
the introduction of an extra parameter τ in the formulae. Technical details and numerical
results are to be found in the appendices.

2 Preliminaries

2.1 Bijections

Let n be a positive integer. Various sets are in bijection:

1. the set of Ferrers diagrams contained inside the “staircase” Ferrers diagram (denoted
by n in what follows) with rows of lengths n− 1, n− 2, . . . , 1;

2. the set of Dyck paths of length 2n;

3. the set of link patterns of size 2n, that is planar pairings of 2n points inside a
half-plane (the points sitting on the boundary);

4. the set of sequences of integers (αi)i=0,...,n−1 such that αi+1 > αi and 0 6 αi 6 2i
for all i.

These various bijections are described in Fig. 1. The only bijection which we shall write
down explicitly is from Ferrers diagrams to increasing sequences: starting from a diagram
α ⊂ n, consider the sequence of lengths of its rows and pad it with zeroes so that it
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Figure 1: Bijections. From left to right: Ferrers diagrams and sequences of increasing
integers; Ferrers diagrams and Dyck paths; Dyck paths and link patterns.

has exactly n parts α̃1, . . . , α̃n (with in particular α̃n = 0); the sequence is then given by
αi = α̃n−i + i, i = 0, . . . , n− 1.

We shall mostly use in what follows Ferrers diagrams and increasing sequences, iden-
tified via the bijection above. We shall call An their set.

2.2 Order, embedding

We call |α| the number of boxes of α ∈ An: |α| =
∑n−1

i=0 (αi − i).
We consider the partial order on Ferrers diagrams which is simply inclusion. In terms

of sequences, α ⊂ β iff αi 6 βi for all i. The smallest element is the empty Ferrers
diagram, denoted by ∅; the largest element is n itself.

In what follows whenever we consider matrices with indices in An, we shall assume
that an arbitrary total order which refines ⊂ has been chosen. Accordingly, an upper
triangular matrix Mαβ is a matrix such that Mαβ = 0 whenever α 6⊂ β.

Finally, note that viewed as Ferrers diagrams, we have An ⊂ An+1. This embedding,
in terms of sequences, sends α = (α0, . . . , αn−1) to (0, α0 + 1, . . . , αn−1 + 1). One must be
warned that not all quantities defined below satisfy a “stability” property with respect to
this embedding i.e. some quantities depend explicitly on n and not just on the underlying
Ferrers diagrams. The quantities that are stable are the matrices P, C, C, I to be defined
below. The quantities that are not stable satisfy instead recurrence relations with respect
to n, see Section 5.4.

2.3 Schur functions

To any Ferrers diagrams one can associate a Schur function. In the case of α ∈ An,
and using an alphabet of n letters, the Schur function can be defined in terms of the
corresponding sequence of integers α = (αi) as

sα(u) =
det
(
u

αj

i

)

06i,j6n−1

∆(u)
(2.1)

where u := (u0, . . . , un−1) and the denominator is simply the numerator with empty
Ferrers diagram: ∆(u) :=

∏

06i<j6n−1(uj − ui), that is the Vandermonde determinant.
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2.4 The involution

The Schur functions associated to α ∈ An span a vector space of dimension the Catalan
number cn = (2n)!/n!/(n+1)!. It can be made into a commutative algebra Λn by defining
its structure constants to be the Littlewood–Richardson coefficients Cρ

στ . In other words
Λn is a truncation of the algebra of symmetric functions in which one restricts oneself to
diagrams inside n = (n−1, n−2, . . . , 1): if Λ∞ denotes the algebra of symmetric functions,
that is simply the algebra of all Schur functions with the ordinary function product, then
Λn is canonically identified with the quotient Λ∞ by the span of the σ 6⊂ n, the latter
being an ideal. In what follows we actually need the slightly larger space Λ̂∞ of symmetric
power series. Λn is clearly also a quotient of Λ̂∞.

We now introduce an involution ı on Λ̂∞. It is defined by its action on elementary
symmetric functions ei through their generating series

∏

i(1 + zui) =
∑

i eiz
i: [14]

ı

(
∏

i

(1 + zui)

)

=
∏

i

1

1 − z ui

1+ui

(2.2)

where the (ui) are an arbitrary alphabet, and the equality should be understood order by
order in z. By the morphism property this defines ı entirely on Λ∞ (we shall extend it
below to Λ̂∞).

Denote
s̃α(u) := ı(sα(u))

One can compute s̃α(u) explicitly as follows. Note that by (2.2), ı is the composition
of: (a) the change of variables u 7→ u

1+u
, and (b) the transposition of diagrams.1 Thus,

if one defines the sequence (α′
i) associated to the transpose diagram α′ as the ordered

complement of the {2n− 1−αi} inside {0, 1, . . . , 2n− 1} (it can also be defined from the
lengths of the columns α̃′

i by α′
i = α̃′

n−i + i), then from (2.1),

s̃α(u) =

det

((
ui

1+ui

)α′

j

)

06i,j6n−1

∆
(

u
1+u

)

=
n−1∏

i=0

(1 + ui)
n−1

det

((
ui

1+ui

)α′

j

)

06i,j6n−1

∆(u)

(2.3)

This also leads to the following lemma:

Lemma 1. There is an expansion of the form

s̃α(u) = sα′(u) +
∑

β)α′

cβsβ(u)

where the cβ are some coefficients.

1Equivalently, it is the composition of two commuting involutions: (a) u 7→ − u

1+u
and (b) transposition

of Ferrers diagrams composed with multiplication by (−1)|α|.
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Proof. Expand by multilinearity

det

((
ui

1+ui

)α′

j

)

06i,j6n−1

∆(u)
=

∑

k1,...,kn>0

ck1,...,kn

det
(

u
α′

j+kj

i

)

06i,j6n−1

∆(u)

where the ck1,...,kn
are certain binomial coefficients, with c0,...,0 = 1.

Note that the sequence (α′
i + ki)i=0,...,n−1 is not necessarily increasing; however, if

two terms are equal, then the determinant is zero, and if they are all distinct, then there
exists a permutation P which reorders them; call β the corresponding increasing sequence:
βP(i) := α′

i + ki. In the latter case we have det(u
βj

i )/∆(u) = (−1)|P|sβ(u).
Next we use the fact, which will be needed again in what follows, that if α′

i 6 βP(i)

for some P and all i, where α′ and β are increasing sequences, then α′
i 6 βi for all i

(induction on the number of inversions |P|, noting that if i is such that P(i) > P(i+ 1),
then α′

i < α′
i+1 6 βP(i+1) < βP(i), so that one can permute the images of i and i+ 1, thus

reducing |P| by one).
Combining the facts above leads to the expansion of the form of the lemma.

This lemma has two consequences. The first is that ı is well-defined on the whole of
Λ̂∞ (only finite sums occur for any coefficient of the image of any symmetric power series).
It is then easy to check that ı is indeed an involution on Λ̂∞.

The second is that this involution ı is compatible with the quotient to Λn (keeping in
mind that n is invariant by transposition).

Finally, note that setting z = 1 in (2.2) leads to

ı

(
∏

i

(1 + ui)

)

=
∏

i

(1 + ui) (2.4)

Thus,
∏

i(1 + ui), the sum of elementary symmetric functions, is left invariant by ı.

2.5 Change of basis

The link patterns can be considered as forming the canonical basis of a vector space. It is
however convenient to introduce another basis; it is naturally indexed by elements of An

(increasing sequences) too, and is related to the canonical basis by a triangular change
of basis (recall that we identify indices using the bijection of 2.1). If a vector has entries
ψπ in the canonical basis and entries Ψα in this new basis (note the use of lowercase vs
uppercase in order to distinguish these quantities), then

Ψα =
∑

π∈An

ψπP
π
α (2.5)

Here P is the transpose of the usual matrix of change of basis. The reason for this
transposition is that, to conform with the conventions of [22], our operators will act on
the right. The matrix P is given explicitly in appendix B; we only need the fact that it
is upper triangular, with ones on the diagonal. Its coefficients are closely connected with
Kazhdan–Lusztig polynomials, see for example [21].
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Figure 2: A FPL configuration and the associated link pattern.

3 Statistical models of loops and Razumov–Stroganov

conjecture

3.1 Counting of FPLs

We introduce here the statistical lattice model called Fully Packed Loop (FPL) model. It
is defined on a subset of the square lattice; in any given configuration of the model, edges
of the lattice can have two states, empty or occupied, in such a way that each vertex
has exactly two neighboring occupied edges (i.e. paths made of occupied edges visit every
vertex of the lattice). We only consider the situation in which the Boltzmann weights are
trivial, that is the pure enumeration problem.

Given a positive integer n, we are interested in FPL configurations inside an n×n grid
with specific boundary conditions exemplified in Fig. 2: external edges are alternatingly
occupied or empty. The justification for these boundary conditions comes from the con-
nection to the six-vertex model (in which they correspond to the so-called Domain Wall
Boundary Conditions), as well as to Alternating Sign Matrices, see [18].

Observe that there are two types of paths: the closed ones (loops) and the open ones,
whose endpoints lie on the boundary. Ignoring the former, we see that to each FPL we
can associate a link pattern that encodes the connectivity of its endpoints. Let us call
ψπ the number of FPLs with connectivity π. Note that the endpoints must be labelled,
which implies the choice of an origin; but it is in fact irrelevant due to Wieland’s theorem
[23], which states that ψπ = ψρ(π) where ρ(π) is the link pattern obtained from π by cyclic
rotation of the 2n points.

In general, one does not know how to compute ψπ. There has been however some
progress [5, 11, 12, 4, 22], and we are particularly interested here in the formulae of
[4, 22], which appear as a byproduct of proofs or attempted proofs of certain conjectures
of [25]. Specifically, consider as in [22] FPL configurations in a triangle of the form of
Fig. 3, with exactly 2n vertical occupied external edges at the bottom, interlaced with
2n − 1 empty edges. We further require that each of the 2n − 2 external horizontal
edges on the left (excluding the bottommost one) be connected to one of the 2n − 2
external horizontal edges on the right. These configurations can be classified as follows:
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Figure 3: Boundary conditions for FPLs in a triangle.

1 2 3 4 5 6
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1

3
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1

2
π = 1 2 3 4 5 6

σ = (0, 1, 3) =

τ = (0, 1, 2) = ∅

Figure 4: Example of parameterization of the boundary conditions of FPLs in a triangle.

the connectivity of the vertical external edges can be encoded into a link pattern π of size
2n; furthermore, it is shown in [22] that if one considers the sequence of the 2n vertical
edges on either left or right boundaries read from bottom to top, then it forms a Dyck
path with occupied=up and empty=down. Equivalently, in our language, the sequence
of locations of occupied vertical edges on the left (resp. right) boundary, numbered from
bottom (0) to top (2n−1), is a sequence in An, which we denote by σ (resp. τ), see Fig. 4
for an example. Finally, define aσ,π,τ to be the number of FPLs in a triangle with the
boundary conditions defined above and given σ, π, τ .

Then the following equality between the two enumeration problems holds:

ψπ =
∑

σ,τ∈An

aσ,π,τPσ′(−k)Pτ ′(k − n + 1) (3.1)

where k is an integer to be discussed below, and Pσ(x) is a polynomial of x which, for
positive integer x, coincides with the number of Semi-Standard Young Tableaux of shape
σ; in fact,

Pσ(x) =







sσ(1, . . . , 1
︸ ︷︷ ︸

x

) x ∈ Z+

sσ′(−1, . . . ,−1
︸ ︷︷ ︸

−x

) x ∈ Z−

Explicitly, it is given by

Pσ(x) =

n−1∏

i=0

(x− n + i+ 1) · · · (x− n + σi)

σi!

∏

06i<j6n−1

(σj − σi)
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Formula (3.1) can be deduced from Eq. (4) in [22].2 In the derivation, the value of
k appears in relation to the geometry of FPLs, and the exact range of k for which the
formula is proved is not made clear. In the present work we only require that the formula
be true for one value of k – the explicit value being irrelevant since the result should be
independent of k. See also Theorem 4.2 of [4] (which is the special case k = 0).

3.2 The Temperley–Lieb(1) loop model

Another, a priori unrelated model is the following. Consider the semi-group generators
ei, 1 6 i 6 2n, acting on link patterns of size 2n as follows: ei turns a link pattern π into
the link pattern obtained from π by pairing together (i) the points which are connected
to i and i + 1 in π and (ii) i and i + 1, all the other pairings remaining the same. For
i = 2n one assumes periodic boundary conditions i.e. 2n+ 1 ≡ 1. By linearity the ei can
be made into operators on the space of linear combinations of link patterns (thus forming
a representation of the Temperley–Lieb(1) algebra, see [5] for more details) and one can
then define the Hamiltonian:

H =
2n∑

i=1

ei

The ei (resp. H) possess a left eigenvector which is (1, . . . , 1) in the canonical basis,
with eigenvalue 1 (resp. 2n); thus, H also possesses a (right) eigenvector with the same
eigenvalue, denoted by ψ′:

Hψ′ = 2nψ′ (3.2)

It is easy to check that H satisfies the hypotheses of the Perron–Frobenius theorem, so
that 2n is the (strictly) largest eigenvalue of H, and ψ′ is uniquely defined by (3.2) up to
normalization. The latter, since H has integer entries, can always be chosen such that ψ′

has positive coprime integer entries, denoted by ψ′
π. An example is provided in appendix

C.
In a series of papers [7, 8, 10], it was shown how to generalize the Temperley–Lieb(1)

loop model to an inhomogeneous model, then relate its Perron–Frobenius eigenvector
to the quantum Knizhnik–Zamolodchikov equation, and finally write quasi-generating
functions for entries of ψ′. More precisely, the last step involves first performing the
change of basis (2.5); then the new entries Ψ′

α can be written

Ψ′
α = ∆(u)

∏

06i<j6n−1

(1 + uj + uiuj)
∣
∣
∣
Qn−1

i=0
u

αi
i

(3.3)

where |··· means picking the coefficient of a monomial in a polynomial of the variables
u0, . . . , un−1. (note that in [10] a slightly different notation ai = 1 + αi−1, 1 6 i 6 n is
used).

2Technically, it is obtained from Eq. (4) of [22] by setting m = 0 in it, m being the number of extra
arches that surround all arches (see also Section 5.4 of the present work). The formula of Theorem 4.2
of [4] is only proved for m sufficiently large, but a clever argument in Section 5 of [4] shows a property of
polynomiality in m, which allows to continue it to m = 0.
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3.3 The Razumov–Stroganov conjecture

Finally, to conclude this introductive section, we mention the following conjecture as
inspiration for this work:

Conjecture. (Razumov, Stroganov [19]) For π a link pattern of size 2n, let ψ′
π be as above

the entry of the properly normalized Perron–Frobenius eigenvector of the Hamiltonian of
the Temperley–Lieb(1) loop model, and ψπ be the number of FPLs with connectivity π;
then

ψ′
π = ψπ

In a recent preprint [2], Cantini and Sportiello have proved this conjecture.

4 The formula

Let n be a fixed positive integer, σ, τ be two Ferrers diagrams and α = (αi) be a sequence
of integers in An. We define Aσ,α,τ to be the coefficient of a monomial in the expansion
of a certain formal power series:

Aσ,α,τ = s̃σ(u)sτ(u)∆(u)
n−1∏

i=0

(1 + ui)
n−1

∏

06i<j6n−1

(1 + uj + uiuj)
∣
∣
∣
Qn−1

i=0
u

αi
i

(4.1)

Note the important fact that
∏

06i<j6n−1(1 + uj + uiuj) is a nonsymmetric factor. If
it were symmetric, we would simply be picking one term in the expansion of a certain
symmetric function in terms of Schur functions, but it is not so.

One can rewrite (4.1) as a multiple contour integral in which the contours surround 0
clockwise (but not −1):

Aσ,α,τ =

∮ n−1∏

i=0

dui

2πiuαi+1
i

s̃σ(u)sτ (u)∆(u)

n−1∏

i=0

(1 + ui)
n−1

∏

06i<j6n−1

(1 + uj + uiuj) (4.2)

Using (2.1) and (2.3), one can also rewrite (4.1) more explicitly:

Aσ,α,τ =

det
(
u

τj

i

)
det

((
ui

1+ui

)σ′

j

)

∆(u)

n−1∏

i=0

(1 + ui)
2(n−1)

∏

06i<j6n−1

(1 + uj + uiuj)
∣
∣
∣
Qn−1

i=0
u

αi
i

(4.3)

where the τj and σ′
j are the increasing sequences associated to τ and σ′.

In what follows we shall use the simplifying notation: let us write

〈F (u)〉α := F (u)∆(u)
∏

06i<j6n−1

(1 + uj + uiuj)
∣
∣
∣
Qn−1

i=0
u

αi
i

(4.4)
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for any symmetric function F . With this notation,

Aσ,α,τ =

〈

s̃σ(u)sτ(u)
n−1∏

i=0

(1 + ui)
n−1

〉

α

(4.5)

Aσ,α,τ is of course an integer.

4.1 Some properties

An important fact is the following:

Lemma 2. If |σ| + |τ | > |α|, Aσ,α,τ = 0. If |σ| + |τ | = |α|, Aσ,α,τ = Cα
σ′,τ .

Proof. By degree counting. According to Lemma 1, the lowest degree terms of (4.1) as a
power series in the variables ui are sσ′(u)sτ (u)∆(u). i.e. of degree |σ|+|τ |+n(n−1)/2. The
first result follows from the fact that we pick out a term of degree

∑

i αi = |α|+n(n−1)/2.
If |σ|+ |τ | = |α|, one finds Aσ,α,τ = sσ′(u)sτ(u)∆(u)|

Q

i u
αi
i

. Expanding sσ′(u)sτ(u)∆(u) =
∑

ρ C
ρ
σ′,τsρ(u)∆(u) =

∑

ρ C
ρ
σ′,τ det(u

ρj

i ), we conclude that Aσ,α,τ = Cα
σ′,τ .

Compare the first part of the lemma with Lemma 3.7 of [22]. By triangularity of
the change of basis P, the second part of the lemma also says that aσ,α,τ = Cα

σ′,τ . This
generalizes Lemma 3.6(b) of [22], that is Lemma 4.1(2) of [4].

Similarly, we have

Lemma 3. If τ 6⊂ α or σ′ 6⊂ α, Aσ,α,τ = 0.

Proof. By symmetrizing the integrand of (4.2), one can write

Aσ,α,τ =

∮ n−1∏

i=0

dui

2πiui
s̃σ(u)sτ(u)∆(u)

n−1∏

i=0

(1 + ui)
n−1AS

[∏

06i<j6n−1(1 + uj + uiuj)
∏n−1

i=0 u
αi

i

]

60

(4.6)
where AS(f) := 1

n!

∑

P∈Sn
(−1)|P|f(uP(1), . . . , uP(n)), and 6 0 means that one keeps only

terms containing solely nonpositive powers of the ui since otherwise they do not con-
tribute to the contour integral. Now expanding the product in brackets we notice that all
monomials are of the form

∏

i u
−βi

i where 0 6 βi 6 αi for all i:

AS

[∏

06i<j6n−1(1 + uj + uiuj)
∏n−1

i=0 u
αi

i

]

60

=
∑

06βi6αi

cβ det
i,j

(u
−βj

i )

where the cβ are some coefficients. Using the same reordering argument of the βj as in
Lemma 1 (and absorbing the resulting sign in the cβ), we conclude that

Aσ,α,τ =
∑

β⊂α

cβ

∮ n−1∏

i=0

dui

2πiui
s̃σ(u)sτ (u)sβ(u

−1)

n−1∏

i=0

(1 + ui)
n−1∆(u)∆(u−1)

=
∑

β⊂α

cβ

(

s̃σ(u)sτ(u)

n−1∏

i=0

(1 + ui)
n−1

∣
∣
∣
∣
∣
sβ(u)

)
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where by definition (X(u)|sβ(u)) is the coefficient of sβ(u) in the expansion of X(u) as a
sum of Schur functions. To perform this expansion, we use Lemma 1 and the well-known
property of the multiplication of Schur functions that the resulting Ferrers diagrams must
always contain the original ones, that is here σ′ and τ . We then find that non-zero terms
are of the form σ′, τ ⊂ β ⊂ α.

Compare with Lemma 4.1(1) of [4], also present as Lemma 3.6(a) in [22]. As a corollary,
when σ /∈ An or τ /∈ An, Aσ,α,τ = 0. From now on, we shall consider Aσ,α,τ as a tensor
where all three indices live in An.

4.2 Connection to FPLs

The introduction of these quantities is motivated by

Conjecture 1.
∑

α∈An
Aσ,α,τ (P

−1)α
π is equal to aσ,π,τ , the number of FPL configurations

in a triangle with boundary conditions specified by σ, π, τ (cf. Section 3.1).

This conjecture has been checked numerically up to n = 5, using the numerical data
kindly provided by the author of [22].

4.3 Summation

We now show how summing the Aσ,α,τ according to the prescription of [22] produces a
formula which was proved in [10] in the context of the qKZ equation, that is on the other
side of the Razumov–Stroganov conjecture.

Proposition 1. Conj. 1 implies the Razumov–Stroganov conjecture.

Proof. If Conj. 1 is true, then we can compute the number of FPL configurations with a
given connectivity as follows. Fix an arbitrary integer k and define

Ψα :=
∑

σ,τ∈An

Aσ,α,τPσ′(−k)Pτ ′(k − n + 1) (4.7)

(compare with (3.1)).
Inserting the formula (4.5) for Aσ,α,τ yields

Ψα =

〈
n−1∏

i=0

(1 + ui)
n−1

∑

σ∈An

s̃σ(u)Pσ′(−k)
∑

τ∈An

sτ (u)Pτ ′(k − n + 1)

〉

α

(4.8)

The summations over σ and τ can be easily performed (for example by use of the dual
Cauchy identity or usual Cauchy identity depending on the sign of the arguments of P ).
We find

∑

τ∈An
sτ (u)Pτ ′(k − n+ 1) =

∏

i(1 + ui)
k−n+1. Similarly

∑

σ∈An
s̃σ(u)Pσ′(−k) =

ı(
∏

i(1 + ui)
−k) but by (2.4) we can remove ı and the formula simplifies to

Ψα = 〈1〉α = ∆(u)
∏

06i<j6n−1

(1 + uj + uiuj)
∣
∣
∣
Qn−1

i=0
u

αi
i

(4.9)
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which coincides with the expression (3.3) for Ψ′
α.

At this stage, to produce the number of FPL configurations with connectivity π, we
should then apply the matrix P−1 to the entries Ψα (by combining the Conj. 1 with
formula (3.1)). However this is not necessary, since showing Ψ′

α = Ψα is equivalent to
ψ′

π = ψπ.

4.4 Special cases

The trivial case is when α = ∅, that is the sequence (0, 1, 2, . . . , n− 1). Since |α| = 0 we
find Aσ,∅,τ = δσ,∅δτ,∅ and Ψ∅ = 1.

Another special case is when α = n, the largest element of An, that is the sequence
(0, 2, . . . , 2n − 2). In this case we can use the result first conjectured in [10] and proved
in [24, 13]:

[
∏

06i6j6n−1

(1 − uiuj) AS

(
n−1∏

i=0

u−2i
i

∏

06i<j6n−1

(1 + uiuj + τuj)

)]

60

= AS

(
n−1∏

i=0

(
u−1

i (τ + u−1
i )
)i

)

=
∏

06i<j6n−1

(u−1
j − u−1

i )(τ + u−1
i + u−1

j )

Here τ = 1. The left hand side is exactly what appears in Eq. (4.6) for α = n, the
truncation to nonpositive monomials being possible since other terms do not contribute
to the constant term. Replacing with the right hand sides gives us two expressions:

Aσ, n,τ = s̃σ(u)sτ (u)∆(u)
∏

06i6j6n−1

(1 − uiuj)
−1

n−1∏

i=0

u−2i
i (1 + ui)

n+i−1
∣
∣
CT

= s̃σ(u)sτ (u)∆(u)∆(u−1)

∏

06i6j6n−1

(1 − uiuj)
−1

∏

06i<j6n−1

(1 + u−1
i + u−1

j )

n−1∏

i=0

(1 + ui)
n−1
∣
∣
CT

(where CT means extracting the constant term). Equivalently, we have

Aσ, n,τ =

(

s̃σ(u)sτ (u)
n−1∏

i=0

(1 + ui)
n−1

∏

06i6j6n−1

(1 − uiuj)
−1

∣
∣
∣
∣
∣

∏

06i<j6n−1

(1 + ui + uj)

)

where we have used as before the usual scalar product (·|·) for which Schur functions are
orthonormal. Note that both bra and ket depend explicitly on n.

It is shown in [10] by direct calculation that Pπ
n

= δπ
n
. Therefore, aσ, n,τ = Aσ, n,τ

and the formula above gives a closed expression for it.
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5 Analogues of Thapper’s conjectures

In this section we prove Thapper’s conjectures assuming Conj. 1, that is we prove some
properties of the Aσ,α,τ that are analogous to those found by Thapper in the context of
FPL enumeration.

5.1 The action of Λn

Consider the operator that acts by inserting a factor sλ(u) in the generating series. It is
convenient to introduce another bracket notation 〈·〉σ,α,τ which, compared to 〈·〉α, incor-

porates the factors s̃σ(u)sτ (u)
∏n−1

i=0 (1 + ui)
n−1. In other words let us compute

〈sλ(u)〉σ,α,τ := sλ(u)s̃σ(u)sτ (u)∆(u)
n−1∏

i=0

(1 + ui)
n−1

∏

06i<j6n−1

(1 + uj + uiuj)
∣
∣
∣
Qn−1

i=0
u

αi
i

(5.1)

Similarly consider the insertion of s̃λ(u):

〈s̃λ(u)〉σ,α,τ := s̃λ(u)s̃σ(u)sτ (u)∆(u)

n−1∏

i=0

(1 + ui)
n−1

∏

06i<j6n−1

(1 + uj + uiuj)
∣
∣
∣
Qn−1

i=0
u

αi
i

(5.2)

Note that one can expand sλ(u)sτ (u) in terms of Schur functions, resulting in

〈sλ(u)〉σ,α,τ =
∑

µ∈An

Cµ
λ,τAσ,α,µ (5.3)

where the summation can be restricted to An because all other terms vanish. Of course
the matrices C(λ)µ

τ := Cµ
λ,τ form a representation λ 7→ C(λ) of Λn (regular representation).

One can also expand s̃λ(u)sτ (u) in terms of Schur functions sµ(u), with some a priori
unknown coefficients C̃µ

λ,τ :

〈s̃λ(u)〉σ,α,τ =
∑

µ∈An

C̃µ
λ,τAσ,α,µ (5.4)

One must be careful that C̃µ
λ,τ is not symmetric in the exchange of λ and τ . If we call

C̃(λ)µ
τ := C̃µ

λ,τ , this gives another distinct action of Λn. It commutes with the previous
one.

In fact in what follows it will be more natural to consider the transpose matrices C(λ)T

and C̃(λ)T , which also form representations of Λn (since it is commutative).
Of course we have dual statements by expanding this time the expression in brackets

multiplied by s̃σ(u) in terms of s̃µ(u) and using the fact that ı is an involution:

〈sλ(u)〉σ,α,τ =
∑

µ∈An

C̃µ
λ,σAµ,α,τ (5.5)
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and
〈s̃λ(u)〉σ,α,τ =

∑

µ∈An

Cµ
λ,σAµ,α,τ (5.6)

Finally we can also expand sλ(u)
∏
u−αi

i in monomials. This is actually more subtle
than it seems because it results in monomials for which the sequence of inverse powers is
not increasing. It is shown in appendix A (Lemma 4) that one can always reexpress the
coefficient of any monomial as a linear combination of the coefficients of the monomials
with increasing inverse powers. Note that we can discard any positive powers because
they do not contribute.

That is, there exist coefficients C
β
λ,α such that

〈sλ(u)F (u)〉α =
∑

β∈An

C
β
λ,α 〈F (u)〉β (5.7)

for any symmetric function F , and similarly for C̃
β
λ,α.

In the present case, we find

〈sλ(u)〉σ,α,τ =
∑

β∈An

C
β
λ,αAσ,β,τ (5.8)

and
〈s̃λ(u)〉σ,α,τ =

∑

β∈An

C̃
β
λ,αAσ,β,τ (5.9)

which can be made into matrices C(λ)β
α := C

β
λ,α and C̃(λ)β

α := C̃
β
λ,α.

Combining these relations (5.3–5.9) results in various identities.
A special case occurs when one considers the multiplication by

∏

i(1 + ui), because of
the fact that it is invariant by the involution. We have:

〈
∏

i

(1 + ui)

〉

σ,α,τ

=
∑

µ∈An

Cµ
τAσ,α,µ =

∑

µ∈An

Cµ
σAµ,α,τ =

∑

β∈An

Cβ
αAσ,β,τ (5.10)

with the obvious notations Cµ
τ =

∑n−1
i=0 Cµ

ei,τ
and Cβ

α =
∑n−1

i=0 Cβ
ei,α

(ei is the one-column
diagram with i boxes).

Observe also that taking σ = ∅ in (5.6) and combining with (5.4) results in

Aλ,α,τ =
∑

µ∈An

C̃µ
λ,τA∅,α,µ (5.11)

5.2 Matrix identities

Introduce, following [22], the matrices A(λ)τα := Aλ,α,τ and Ā(α)στ := Aσ,α,τ . Note that
Lemma 3 says that the A(σ) are upper triangular. We now rewrite the various identities
of the previous section in these matrix notations.
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Relations (5.3–5.9) become

C̃(λ)T Ā(α) = Ā(α)C(λ) (5.12)

C(λ)TA(σ) = A(σ)C(λ) (5.13)

C(λ)T Ā(α) = Ā(α)C̃(λ) (5.14)

C̃(λ)TA(σ) = A(σ)C̃(λ) (5.15)

and (5.10) becomes

CT Ā(α) = Ā(α)C (5.16)

CTA(α) = A(α)C (5.17)

Compare with Conj. 3.4 and 3.5(a) of [22] (with B = CT : B removes columns of boxes to
Ferrers diagrams whereas C adds them – so that B is upper triangular whereas C is lower
triangular).

As to (5.11), it becomes
A(λ) = C̃(λ)TA(∅) (5.18)

According to Lemmas 3 and 2, A(∅) is upper triangular with ones on the diagonal, and
therefore invertible. The matrices A(λ)A(∅)−1 are equal to C̃(λ)T and thus satisfy the
relations of the Λn algebra, cf. Prop. 3.9 of [22]. In particular they commute, cf. Prop. 3.10
of [22].

One can similarly combine (5.6) and (5.9) to obtain

A(λ) = A(∅)C̃(λ) (5.19)

i.e. C̃(λ) = A(∅)−1A(λ).
More directly, we conclude from (5.13,5.15) that the matrices C(λ) and C̃(λ) provide

us with another pair of commuting representations of Λn; and that A(∅) intertwines
the representations C(λ) and C(λ)T , as well as C̃(λ) and C̃(λ)T . In fact, any linear
combination of the A(σ) is an intertwiner, but for it to be invertible the coefficient of
A(∅) must be non-zero.

5.3 The involution

Consider the matrix I of the involution ı acting on Λn:

s̃λ =
∑

µ∈An

Iµ
λsµ + terms not inside n (5.20)

(equivalently Iµ
λ := C̃µ

λ,∅). Then by definition we have

C̃(λ) = IC(λ)I (5.21)

That is, I intertwines the representations C(λ) and C̃(λ) of Λn.
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We now have a chain of (invertible) intertwiners between the four representations
C(λ), C(λ)T , C̃(λ)T , C̃(λ). Composing them, we find that

C̃(λ) = RC(λ)R (5.22)

with R := A(∅)−1ITA(∅), R2 = 1.
What is the meaning of R? It is a simple exercise to check, combining the various

relations found so far, that
∑

β∈An

Aσ,β,τR
β
α = Aτ,α,σ (5.23)

That is, R corresponds to the operation of mirror image in the space of link patterns. In
the canonical link pattern basis (r := PRP−1), we simply have rπ

π′ = 1 if π and π′ are
mirror images of each other, and 0 otherwise.

5.4 Recurrence

Let m be a non-negative integer. By definition, let (α)m be the sequence of increasing
integers in An+m associated to a sequence α ∈ An by the embedding of An into An+m

described in Section 2.2. Explicitly, (α)m = (0, 1, . . . , m − 1, m + α0, . . . , m + αn−1). In
other words, viewed as a Dyck path, (α)m consists of m up steps, then the Dyck path α
of length 2n, then m down steps. We also write (α)1 = (α). Let us derive a recurrence
relation for Ψ(α)m

using the formalism of the previous sections.
Start with the formula (4.9) for Ψ(α)m

and note that we are simply looking for the
constant term as a function of u0. So we can set u0 = 0; as a result, the Vandermonde
determinant shifts all powers of ui by 1, so that one can now apply the same argument
to u1, etc. After m steps we find the following formula:

Ψ(α)m
= ∆(u)

n−1∏

i=0

(1 + ui)
m

∏

06i<j6n−1

(1 + uj + uiuj)
∣
∣
∣
Qn−1

i=0
u

αi
i

(5.24)

Using bracket notations, this is nothing but

Ψ(α)m
=

〈
n−1∏

i=0

(1 + ui)
m

〉

α

(5.25)

Note that this means that Ψ does not satisfy a stability property with respect to the
embedding of An into An+m.

The insertion of such products has already been analyzed in Section 5.1. Applying
(5.7), we find a recurrence relation for Ψα:

Ψ(α)m
=
∑

β∈An

Ψβ(Cm)β
α (5.26)

It formulates a component of size m+ n in terms of components of size n.
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Let us now discuss briefly the change of basis to the link pattern basis. It turns out to
be “compatible” with the operation (·)m in the following sense: for all ρ ∈ An+m, α ∈ An,

P
ρ
(α)m

=

{

Pπ
α if ρ = (π)m for some π ∈ An

0 otherwise
(5.27)

(this property is a combination of the upper triangularity and stability with respect to
the embedding of P). Thus, writing

Ψ(α)m
=
∑

π∈An

Ψ(π)m
Pπ

α (5.28)

and inverting P, we can rewrite (5.26)

ψ(π)m
=
∑

ρ∈An

ψρ(c
m)ρ

π (5.29)

with c := PCP−1.
In particular, for m = 1, since any link pattern contains a pairing of neighbors, which

after appropriate rotation can be mapped to (0, 2n−1), (5.29) provides a closed recurrence
relation for the ψπ.

NB: one can also write recurrence relations for the Aσ,α,τ . Following the same reasoning
as for Ψ, but paying attention to the extra factors occurring because of the explicit
dependence of Aσ,(α)m,τ on the size m+n, we find that Aσ,(α)m ,τ =

〈∏n−1
i=0 (1 + ui)

2m
〉

σ,α,τ
.

Just like Ψ, Aσ,α,τ does not satisfy a stability property with respect to the embedding of
An into An+m. Use of relations (5.10) give various identities, including recurrences, for
the Aσ,α,τ . Also, if one uses one of the first two equalities of (5.10) and apply it to the
relation (4.7), one finds

Ψ(α)m
=
∑

σ,τ∈An

Aσ,α,τPσ′(2m− k)Pτ ′(k − n−m+ 1)

or the same expression with instead Pσ′(−k)Pτ ′(k − n + m + 1), which is of course the
same up to a change of the arbitrary integer k. This expression is Eq. (4) (with arbitrary
m) of [22] (see also Theorem 4.2 of [4]).

5.5 Largest component

As has already been mentioned in Section 4.4, the change of basis is trivial for the largest
component, so that the component ψ

n
(i.e. with n viewed as a link pattern) is the same

as the component Ψ
n

in our basis (i.e. the component with sequence αi = 2i).
Furthermore, it is also known [10] how to obtain the sum of components; one has

∑

ǫ1,...,ǫn−1∈{0,1}

Pπ
(0,2−ǫ1,...,2(n−1)−ǫn−1) = 1 ∀π ∈ An
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Note that this is exactly the image of n by the action of C, so that (PC)π
n

= 1 for all
π. Multiplying on the right by P−1 and using again Pπ

n
= δπ

n
we find cπ

n
= 1, which is

exactly the content of Conj. 3.5(b) of [22].
Thus, as explained in [22], the recurrence produces in this case the identity

ψ
n+1

=
∑

π∈An

ψπ (5.30)

as well as the more general one

ψ( n)m+1
=
∑

π∈An

ψ(π)m
(5.31)

to compare with the conjectures of [25].

5.6 The A’s from the Ψ’s

It it perhaps suggestive that using the various matrices defined above, one can in fact
compute Aσ,α,τ from the data of the Ψα alone. Indeed, introducing yet another notation
A(σ, τ) for the row vector with entries Aσ,α,τ , and similarly for Ψ, we have

A(σ, τ) = Ψ C̃(σ)C(τ)Cn−1 (5.32)

6 The τ -generalization

In [17, 8], it was suggested how to generalize the ground state eigenvector ψ′ of the
Temperley–Lieb(1) model into a vector depending on an extra parameter τ (often written
as τ = −q − q−1) and which is obtained by specializing a certain polynomial solution of
the quantum Knizhnik–Zamolodchikov (qKZ) equation. The original vector is recovered
by taking τ = 1. The parameter τ does not seem to have any obvious meaning in terms
of FPLs, though a connection to Totally Symmetric Self-Complementary Plane Partitions
was found in [6]. Many formulae generalize to τ away from unity [10]. It is natural to
wonder if the formulae of the present work fall in this category. We briefly present here
this generalization.

Introduce the τ -dependent bracket

〈F (u)〉α := F (u)∆(u)
∏

06i<j6n−1

(1 + τuj + uiuj)
∣
∣
∣
Qn−1

i=0
u

αi
i

This produces a natural generalization of the Ψa:

Ψa = 〈1〉α

which corresponds to the homogeneous limit of a solution of the qKZ system of difference
equations. The change of basis to the link pattern basis can be found for all τ in [10] (or
in (B.1) where the Ui are Chebyshev polynomials of τ ).
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Since the interpretation in terms of FPLs in a triangle is lacking, there seems little
point in introducing the τ -generalization of Aσ,α,τ . However, one can still define the
various matrices of multiplication by a Schur function sλ. The matrices C(λ) are of course
unchanged; however the matrices C(λ) which act on increasing sequences by

〈sλ(u)F (u)〉α =
∑

β∈An

C
β
λ,α 〈F (u)〉β

now have entries which are polynomials in τ , and can be computed using the methods
of appendices A and B. They still form a reprentation of Λn. The dual versions can be
defined via the involution

ı

(
∏

i

(1 + zui)

)

=
∏

i

1

1 − z ui

1+τui

Of particular interest is the (self-dual) operator C of multiplication by
∏n−1

i=0 (1+τui),
that is

C =
n−1∑

i=0

C(ei)τ
i

It corresponds to setting z = τ in the notations of appendix B.
Then all the recursion relations conjectured in [22] are satisfied by Ψ for all τ , with

the use of this modified matrix C. Namely, equations (5.26) and (5.29) hold without any
change. However, naively, they do not form a closed set of recursion relations. The reason
is that for τ 6= 1, Wieland’s rotational invariance theorem does not hold any more: in
general ψπ 6= ψρ(π), so one cannot assume that there exists a pairing (0, 2n− 1).

However, a remarkable phenomenon occurs: in the link pattern basis, one has

ψπ =
∑

ρ∈An

ψρc
(ρ)

π

where now π is an arbitrary link pattern of size n + 1, and c is the matrix of size cn+1.
This is a non-trivial generalization of Eq. (5.29) at m = 1, in the sense that in the special
case where π has a pairing (0, 2n− 1), i.e. π = (π′), we recover (5.29).

Thus, we have a closed recursion again, and the vectors ψ for successive values of n
can be obtained by simply iterating the matrices c in size 1, . . . , n. This observation will
be the subject of future work.

Note added. After this work was completed, Nadeau announced [15] a direct proof of
Conj. 3.4 of [22] i.e. the analogue of (5.17). He also announced [16] a bijection between
Knutson–Tao puzzles and FPLs in a triangle with |α| = |σ| + |τ |, which would provide a
bijective proof of the second part of Lemma 2.
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A Existence of the matrix K

In this section we no longer assume that the sequences (αi) are increasing.

Lemma 4. Let α = (α0, . . . , αn−1) be an arbitrary sequence of integers such that αi 6 2i.
There exist coefficients Kβ

α such that for any symmetric function F (u),

〈F (u)〉α =
∑

β∈An

〈F (u)〉β Kβ
α (A.1)

Proof. The relation can be checked on Schur functions sτ (u) only. Furthermore, if τ /∈ An,
because αi 6 2i, both sides of the equality are zero. So one can think of 〈·〉α as a linear form
on Λn. It it actually convenient at this stage to switch to a different basis of Λn, namely
sτ (u)

∏n−1
i=0 (1 + ui)

n−1 (in order to avoid having to introduce yet another new notation).
Plugging this into (A.1), we note that the right hand side is simply (A(∅)K)τ,α. Let us
thus define

Aext(∅)τ,α =

〈

sτ (u)
n−1∏

i=0

(1 + ui)
n−1

〉

α

(A.2)

that is the same definition as for A, but in which we relax the constraint that (αi) is
increasing. Then, by definition,

K = A(∅)−1Aext(∅) (A.3)

satisfies the relation (A.1).

This way, we see that we can build a matrix C(λ) that satisfies (5.7): simply define

C(λ) = KCext(λ) (A.4)

where Cext(λ) is an explicit matrix which encodes the decomposition of sλ(u) into mono-
mials; for example in the case of Cext

z :=
∑n−1

i=0 Cext(ei)z
i corresponding to multiplication

by
∏

i(1 + zui), we get

Cext
z

β
α =

{

z
P

i(αi−βi) if αi − βi ∈ {0, 1} for all i

0 otherwise
(A.5)

The same procedure works of course for C̃(λ).
This construction of C(λ), C̃(λ) is not very explicit because it assumes the knowledge

of K, which requires to compute Aext(∅) and to invert A(∅). We provide a simpler
formula in the next section.
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B The matrices P, Pext

We describe the change of basis from increasing sequences to link patterns, given by
the matrix P. In fact we describe a slightly bigger matrix, Pext, which allows for more
general (non-decreasing) sequences. This is borrowed from appendix A of [10] and since
these results are not needed in the rest of the paper, we do not provide their proof and
refer to [10] for details.

Define Ui := 1,−1, 0 depending on whether i = 0, 1, 2 mod 3 (these are evaluations of
Chebyshev polynomials at the parameter τ = 1). Given a sequence of integers α = (αi),
define

Pπ
α =

∏

06i<j<2n
i and j paired by π

U#{ℓ:i6αℓ<j}−(j−i+1)/2 (B.1)

Let us call P the matrix of Pπ
α in which α ∈ An, and Pext to be given by

Pext = PK (B.2)

that is the matrix of passage from any sequence α to link patterns π (see appendix A).
The claim is that (B.1) provides the entries of Pext for any non-decreasing sequence α.

As an application, let us provide a direct way of computing c(λ) := PC(λ)P−1, the
matrix that implements multiplication by sλ(u) in the link pattern basis. Using (A.4)
and (B.2), we find

c(λ) := PC(λ)P−1 = PextCextP−1 (B.3)

Consider now the generating function of elementary symmetric functions corresponding
to multiplying by

∏

i(1 + zui):

cz :=
n−1∑

i=0

c(ei)z
i (B.4)

It is easy to check that starting from a monomial
∏

i u
−αi

i with an increasing sequence
α and multiplying by

∏

i(1 + zui), one produces sums of monomials with non-decreasing
sequences of powers. Thus one can use (B.1) (and (A.5)) to calculate explicitly cz using
(B.3). Any c(λ) can then be computed by applying say the Von Nägelsbach–Kostka
identity (dual Jacobi–Trudi identity). If one is only interested in c = c1, the matrix that
appears in recurrence formulae (cf. (5.29)) one can of course directly set z = 1.

C Example of ground state entry of the Temperley–

Lieb loop model

We consider the model in size 2n = 6. The basis is ordered as follows: ∅, , , ,

n = (modulo the bijection to link patterns of Section 2.1). The matrices of the ei
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are:

e1 =









0 0 0 0 0
0 0 0 0 0
0 1 1 0 0
0 0 0 0 0
1 0 0 1 1









e2 =









0 0 0 0 0
1 1 1 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 0 0









e3 =









1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 1 1









e4 =









0 0 0 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 0 0
0 0 0 0 0









e5 =









0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 1 0
1 0 1 0 1









e6 =









1 0 0 0 1
0 1 1 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









so that

H =









2 1 0 0 1
2 3 2 2 0
0 1 2 0 1
0 1 0 2 1
2 0 2 2 3









with Perron–Frobenius eigenvector

ψ′ =
(
1 2 1 1 2

)

D Example of matrices Ā and C

We again provide data for n = 3. The basis is ordered as in the previous section, but
in this section the matrices are as defined in Sections 4 and 5 i.e. we do not use the link
pattern basis. To recover the data of [22] or of the previous section, one needs to use the
change of basis (cf. (2.5)) given by the matrix

P =









1 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
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First we give the Aσ,α,τ under the form of the matrices Ā:

Ā(∅) =









1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









Ā( ) =









4 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









Ā( ) =









7 3 1 0 0
4 1 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0









Ā( ) =









6 4 0 1 0
3 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0









Ā( ) =









17 13 4 3 1
13 7 1 1 0
4 1 0 0 0
3 1 0 0 0
1 0 0 0 0









Summing these objects, cf. (4.7), reproduces Ψ:

Ψ =
(
1 2 2 1 2

)

Note that one possible choice in (4.7) is to set k = 0; since Pλ(0) = δ∅
λ , one sums in this

case the first lines of the matrices Ā only, with coefficients Pτ ′(−n + 1) which is nothing
but (−1)|τ | times the dimension of τ viewed as a GL(n−1) representation. In the present
case, we find 1,−2, 1, 3,−2. Of course the same linear combination works when summing
the first rows only (set k = n− 1).

Next, let us describe the various matrices of the representations of Λn. The C are
Littlewood–Richardson coefficients, so they are known. Using the matrix

A(∅) =









1 4 7 6 17
0 1 3 4 13
0 0 1 0 4
0 0 0 1 3
0 0 0 0 1
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one can build the C:

C(∅) =









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









C(∅) =









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









C( ) =









0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 1 0









C( ) =









0 1 −1 0 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0









C( ) =









0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0









C( ) =









0 0 1 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









C( ) =









0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0









C( ) =









0 0 0 1 −1
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









C( ) =









0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0









C( ) =









0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









so that finally,

C = C(∅) + C( ) + C( ) =









1 1 0 0 0
0 1 1 1 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1









The dual versions C̃, C̃ can be obtained by use of the involution whose matrix is

I =









1 0 0 0 0
0 1 0 0 0
0 1 0 1 0
0 −1 1 0 0
0 −1 1 −1 1









and will not be listed here.
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