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Abstract

We propose the following model of a random graph on n vertices. Let F be a
distribution in R

n(n−1)/2
+ with a coordinate for every pair ij with 1 6 i, j 6 n. Then

GF,p is the distribution on graphs with n vertices obtained by picking a random
point X from F and defining a graph on n vertices whose edges are pairs ij for
which Xij 6 p. The standard Erdős-Rényi model is the special case when F is
uniform on the 0-1 unit cube. We examine basic properties such as the connectivity
threshold for quite general distributions. We also consider cases where the Xij are
the edge weights in some random instance of a combinatorial optimization problem.
By choosing suitable distributions, we can capture random graphs with interesting
properties such as triangle-free random graphs and weighted random graphs with
bounded total weight.

1 Introduction

Probabilistic combinatorics is today a thriving field bridging the classical area of probabil-
ity with modern developments in combinatorics. The theory of random graphs, pioneered
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by Erdős-Rényi [7] has given us numerous insights, surprises and techniques and has been
used to count, to establish structural properties and to analyze algorithms.

In the standard unweighted model Gn,p, each pair of vertices ij of an n-vertex graph is
independently declared to be an edge with probability p. Equivalently, one picks a random
number Xij for each ij in the interval [0, 1], i.e., a point in the unit cube, and defines as
edges all pairs for which Xij 6 p. To get a weighted graph, we avoid the thresholding
step.

In this paper, we propose the following extension to the standard model. We have
a distribution F in RN

+ where N = n(n − 1)/2 allows us a coordinate for every pair of
vertices. A random point X from F assigns a non-negative real number to each pair of
vertices and is thus a random weighted graph. The random graph GF,p is obtained by
picking a random point X according to F and applying a p-threshold to determine edges,
i.e., the edge set EF,p = {ij : Xij 6 p}. It is clear that this generalizes the standard
model Gn,p which is the special case when F is uniform over a cube.

In the special case where F (x) = 1x∈K is the indicator function for some convex subset
K of RN

+ we use the notation GK,p and EK,p. Thus to obtain GK,p we let X be a random
point in K. It includes the restriction of any Lp ball to the positive orthant. The case of
the simplex

K = {x ∈ RN : ∀e, xe > 0,
∑

e

αixe 6 L}

for some set of coefficients α appears quite interesting by itself and we treat it in detail in
Section 4. In the weighted graph setting, it corresponds to a random graph with a bound
on the total edge weight. In general, F could be any distribution, but we will consider a
further generalization of the cube and simplex, namely, when F has a logconcave density
f . We call this a logconcave distribution. A function f : Rn → R+ is logconcave if for any
two points x, y ∈ Rn and any λ ∈ [0, 1],

f(λx+ (1− λ)y) > f(x)λf(y)1−λ,

i.e., ln f is concave. We discuss the motivation presently along with a precise definition.
The model appears to be considerably more general than Gn,p. Nevertheless, can we

recover interesting general properties including threshold phenomena?
The average case analysis of algorithms for NP-hard problems was pioneered by Karp

[13] and in the context of graph algorithms, the theory of random graphs has played a
crucial role (see [9] for a somewhat out-dated survey). To improve on this analysis, we
need tractable distributions that provide a closer bridge between average case and worst-
case. We expect the distributions described here to be a significant platform for future
research.

We end this section with a description of the model and a summary of our main results.

1.1 The model and motivation

We consider logconcave density functions f whose support lies in the positive orthant. For
such a density f , let σ2

e(f) = EX∼f (X2
e ) denote the second moment along each axis e. We
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just use σe when f is fixed and simply σ when the second moment is the same along every
axis. We will also use σmin = σmin(f) := minσe(f) and σmax = σmax(f) := maxσe(f). We
also restrict f to be downmonotone, i.e., for any x, y ∈ RN such that x 6 y coordinate-
wise, we have f(x) > f(y). We denote by F the distribution obtained from f . Given
such an F , we generate a random graph GF,p by picking a point X from F and including
as edges all pairs ij for which Xij 6 p.

We now give some rationale for the model. First, it is clear that we need the distri-
bution to have some “spread” in order to avoid focusing on essentially a single graph.
Fixing only the standard deviations along the axes allows highly restricted distributions,
e.g., the line from the origin to the vector of all 1’s. To avoid this, we require that the
density is down-monotone. When f corresponds to the uniform density over a convex
body K, this means that when x ∈ K, the box with 0 and x at opposite corners is also
in K. It also implies that f can be viewed as the restriction to the positive orthant of
a 1-unconditional distribution for which the density f(x1, . . . , xN) stays fixed when we
reflect on any subset of axes, i.e., negating subset of coordinates keeps f the same. Such
distributions include, e.g., the Lp ball for any p but also much less symmetric sets, e.g.,
the uniform distribution over any down-monotone convex body.

To generalize further, we allow logconcave densities. Allowing arbitrary densities with
down-monotone supports would lead to the same problem as before, and we need a con-
cavity condition on the density. Logconcavity is particularly suitable since products and
marginals of logconcave functions remain logconcave. So, e.g., the distribution restricted
to a particular pair ij is also logconcave.

The model departs from the standard Gn,p model by allowing for dependencies, i.e.,
the joint distribution for a subset of coordinates is not a product distribution and could
be quite far from any product distribution. Moreover the coordinates are neither posi-
tively correlated nor negatively correlated in general. Nevertheless, there is a significant
literature on the geometry and concentration of logconcave distributions and we leverage
these ideas in our proofs.

We note briefly that sampling logconcave distributions efficiently requires only a func-
tion oracle, i.e., for any point x, we can compute a function proportional to the density
at x (see e.g., [17]).

Following our presentation for general monotone logconcave densities, we focus our
attention on an interesting special case: a simplex in the positive orthant with unequal
edge lengths, i.e., there is a single defining constraint of the form a · X 6 1, a > 0, in
addition to the nonnegativity constraints. This can be interpreted as a budget constraint
for a random graph.

2 Results

2.1 Random graphs from logconcave densities.

We prove asymptotic results that require n → ∞. As such we we need to deal with a
sequence of distributions Fn, but for notational convenience we always refer to F .
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Our first result estimates the point at which GF,p is connected in general in terms of
n and σ, the standard deviation in any direction. Our main result is that after fixing the
second moments along every axis, the threshold for connectivity can be narrowed down
to within an O(log n) factor.

Theorem 2.1 Let F be distribution in the positive orthant with a down-monotone log-
concave density. Then there exist absolute constants 0 < c1 < c2 such that

lim
n→∞

P(GF,p is connected) =


0 p <

c1σmin

n

1 p >
c2σmax lnn

n

F being so general makes this theorem quite difficult to prove. It requires several results
that are trivial in Gn,p.

The reader will notice the disparity between the upper and lower bound.

Conjecture 2.2 1 Let F be as in Theorem 2.1. Then there exists a constant c0 such that
if p < c0σmin lnn/n then whp2 GF,p has isolated vertices.

Having proven Theorem 2.1 it becomes easy to prove other similar results.

Theorem 2.3 Let F be as in Theorem 2.1. Then there exist absolute constants c3 < c4
such that

lim
n→∞
n even

P(GF,p has a perfect matching) =


0 p <

c3σmin

n

1 p >
c4σmax lnn

n

Finally, for this section, we mention a result on Hamilton cycles that can be obtained
quite simply from a result of Hefetz, Krivelevich and Szabó [10].

Theorem 2.4 Let F be as in Theorem 2.1. Then there exists an absolute constant c6
such that if

p > c6σmax
lnn

n
· ln ln lnn

ln ln ln lnn

then GF,p is Hamiltonian whp.

1In an early version of this paper, an abstract of which appeared in FOCS 2008, we incorrectly claimed
this conjecture as a theorem.

2A sequence of events En is said to occur with high probability whp, if limn→∞ P(En)→ 1 as n→∞
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2.2 Random Graphs from a Simplex

We now turn to a specific class of convex bodies K for which we can prove fairly tight
results. We consider the special case where X is chosen uniformly at random from the
simplex

Σ = Σn,L,α =

{
X ∈ RN

+ :
∑
e∈En

αeXe 6 L

}
.

Here N =
(

n
2

)
and En =

(
[n]
2

)
and L is a positive real number and αe > 0 for e ∈ En.

We observe first that GΣn,L,α,p and GΣn,N,αN/L,p have the same distribution and so we
assume, unless otherwise stated, that L = N . The special case where α = 1 (i.e. αe = 1
for e ∈ En) will be easier than the general case. We will see that in this case GΣ,p behaves
a lot like Gn,p.

Although it is convenient to phrase our theorems under the assumption that L = N ,
we will not always assume that L = N in the main body of our proofs. It is informative
to keep the L in some places, in which case we will use the notation ΣL for the simplex.
In general, when discussing the simplex case, we will use Σ for the simplex. On the other
hand, we will if necessary subscript Σ by one or more of the parameters α,L, p if we need
to stress their values.

We will not be able to handle completely general α. We will restrict our attention to
the case where

1

M
6 αe 6 M for e ∈ En (1)

where M = M(n). An α that satisfies (1) will be called M-bounded.
This may seem restrictive, but if we allow arbitrary α then by choosing E ⊆ En and

making αe, e /∈ E very small and αe = 1 for e ∈ E then GΣ,p will essentially be a random
subgraph of G = ([n], E), perhaps with a difficult distribution.

We first discuss the connectivity threshold: We need the following notation.

αv =
∑
w 6=v

αvw, for v ∈ [n],

where, if e = {v, w} then αvw = αe.

Theorem 2.5

(a) Let p = ln n+cn

n
. Then if α = 1,

lim
n→∞

P(GΣ,p is connected) =


0 cn → −∞
e−e−c

cn → c

1 cn →∞
.

(b) Suppose that α is M-bounded and M 6 (lnn)1/4. Let p0 be the solution to∑
v∈[n]

ξv(p) = 1
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where ξv(p) =
(
1− αvp

N

)N
. Then for any fixed ε > 0,

lim
n→∞

P(GΣ,p is connected) =

{
0 p 6 (1− ε)p0

1 p > (1 + ε)p0

.

Our proof of part (a) of the above theorem relies on the following:

Lemma 2.6 If α = 1 and m is the number of edges in GΣ,p then

(a) Conditional on m, GΣ,p is distributed as Gn,m i.e. it is a random graph on vertex set
[n] with m edges.

(b) Whp m satisfies

E(m) +
√

E(m)ω 6 m 6 E(m) +
√

E(m)ω

for any ω = ω(n) which tends to infinity with n.

So to prove part Theorem 2.5(a) all we have to verify is that E(m) ∼ 1
2
n(lnn + cn) and

apply known results about the connectivity threshold for random graphs, see for example
Bollobás [4] or Janson,  Luczak and Ruciński [11]. (We do this explicitly in Section 4.2).
Of course, this implies much more about GΣ,p when α = 1. It turns out to be Gn,m in
disguise, where m = m(p).

Our next theorem concerns the existence of a giant component i.e. one of size linear
in n. It is somewhat weak.

Theorem 2.7 Let ε > 0 be a small positive constant and α be M-bounded.

(a) If p 6 (1−ε)
Mn

then whp the maximum component size in GΣ,p is O(lnn).

(b) If p > (1+ε)M
n

then whp there is a unique giant component in GΣ,p of size > κn where
κ = κ(ε,M).

Next, we turn our attention to the diameter of GΣ,p.

Theorem 2.8 Let k > 2 be a fixed integer. Suppose that α is M-bounded and assume
that M = no(1). Suppose that θ is fixed and satisfies 1

k
< θ < 1

k−1
. Suppose that p = 1

n1−θ .
Then whp diam(GΣ,p) = k.

2.3 Randomly weighted graphs

We will also consider the use ofX as weights for an optimisation problem. In particular, we
will consider the Minimum Spanning Tree (MST) and the Asymmetric Traveling Salesman
Problem (ATSP) in which the weights X : [n]2 → R+ are randomly chosen from a simplex.
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Our next theorem concerns spanning trees. We say that α is decomposable if there
exist dv, v ∈ [n] such that αvw = dvdw. In which case we define

dS =
∑
v∈S

dv for S ⊆ V and D = dV .

Let ΛX be weight of the minimum weight spanning tree of the complete graph Kn

when the edge weights are given by a random point X from Σn,α.

Theorem 2.9 If α is decomposable and dv ∈ [ω−1, ω], ω = (lnn)1/10 for v ∈ V and X
is chosen uniformly at random from Σn,α then

E[ΛX ] ∼
∞∑

k=1

(k − 1)!

Dk

∑
S⊆V
|S|=k

∏
v∈S dv

d2
S

.

(The notation an ∼ bn means that limn→∞(an/bn) = 1, assuming that bn > 0 for all n.)

Note that if dv = 1 for all v ∈ [n] then the expression in the theorem yields E[ΛX ] ∼ ζ(3).
Now we consider the Asymmetric Traveling Salesman Problem. We will need to make

an extra assumption about the simplex. We assume that

αv1,w = αv2,w for all v1, v2, w.

Under this assumption, the distribution of the weights of edges leaving a vertex v is
independent of the particular vertex v. We call this row symmetry. We show that a
simple patching algorithm based on that in [14] works whp.

Theorem 2.10 Suppose that the cost matrix X of an instance of the ATSP is drawn
from a row symmetric M-bounded simplex where M 6 nδ, for sufficiently small δ. Then
there is an O(n3) algorithm that whp finds a tour that is asymptotically optimal, i.e.,
whp the ratio of cost of the tour found to the optimal tour cost tends to one.

3 Proofs: logconcave densities

We consider logconcave distributions restricted to the positive orthant. We also assume
they are down-monotone, i.e., if x > y then the density function f satisfies f(y) > f(x).
We begin by collecting some well-known facts about logconcave densities and proving
some additional properties. These properties will be the main tools for our subsequent
analysis and allow us to deal with the non-independence of edges. In particular, they will
allow us to estimate the probability that certain sets of edges are included or excluded
from GF,p. We specifically assume the following about F :

Assumption A: F : RN
+ → R+ is a distribution with a down-monotone logconcave

density function f with support in the positive orthant.
The two main lemmas of this section are
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Lemma 3.1 Let F satisfy Assumption A. Let G = (V,E) be a random graph from GF,p

and S ⊆ V × V with |S| = s. Then

e−a1ps/σmin 6 P(S ∩ E = ∅) 6 e−a2ps/σmax

where a1, a2 are some absolute constants and the lower bound requires p < σmin/4.

Lemma 3.2 Let F satisfy Assumption A. Let G = (V,E) be a random graph from GF,p

and S ⊆ V × V with |S| = s. There exist constants b1 < b2 such that(
b1p

σmax

)s

6 P(S ⊆ E) 6

(
b2p

σmin

)s

.

The lower bound requires p 6 σmin/4.

Note how these lemmas approximate what happens in Gn,p and note the absence of an
inequality for P(S ∩ E = ∅, T ⊆ E) where S ∩ T = ∅. The lower bounds are not used in
this paper, but we hope to be able to use them in any subsequent paper.

3.1 Properties

The following classical theorem summarizing basic properties of logconcave functions was
proved by Dinghas [5], Leindler [15] and Prékopa [19, 20].

Theorem 3.3 All marginals as well as the distribution function of a logconcave function
are logconcave. The convolution of two logconcave functions is logconcave.

We will use several results from [16]. In order to state them we need some additional
notation. A logconcave function f : Rm → R+ is isotropic if (i) it has mean 0 and (ii)
its co-variance matrix is the identity. It is a density if

∫
x
f(x)dx = 1. If f is a density

then so is fλ(x) = λmf(λx). Also σe(fλ) = σe(f)/λ for all e. These identities are useful
for translating results on the isotropic case to a more general case. For a function f we
denote its maximum value by Mf .

Lemma 3.4

(a) Let f : R→ R+ be a logconcave density function with mean µf . Then

1

8σf

6 f(µf ) 6 Mf 6
1

σf

.

(For a one dimensional function f , it is appropriate to use σf = σ(f)).

(b) Let X be a random variable with a logconcave density function f : R→ R+.

(i) For every c > 0,

P(f(X) 6 c) 6
c

Mf

.
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(ii)

P(X > E(X)) >
1

e
.

(c) Let X be a random point drawn from a logconcave distribution in Rm. Then

E(|X|k)1/k 6 2kE(|X|).

(d) If f : Rs → R+ is an isotropic logconcave density function then

Mf > (4eπ)−s/2.

Proof The above lemma is from [16]. Part (a) of this lemma is from Lemma 5.5.
Part (bi) is Lemma 5.6(a) and Part (bii) is Lemma 5.4. Part (c) is Lemma 5.22. Part (d)
is Lemma 5.14(c). �

We prove the next two lemmas with our theorems in mind.

Lemma 3.5 Let X be a random variable with a non-increasing logconcave density func-
tion f : R+ → R+.

(a) For any p > 0,

P(X 6 p) 6 pMf 6
p

σf

.

(b) For any 0 6 p 6 σf ,

P (X 6 p) >
p

2σf

.

Proof For part (a) use P(x 6 p) =
∫ p

x=0
f(x)dx 6 pMf and then apply Lemma

3.4(a).
For part (b), we check the value of f(p). If f(p) > Mf/2, then the claim follows from

monotonicity. If not, by Lemma 3.4(bi),

P

(
f(X) 6

Mf

2

)
6

1

2

and so

P(X 6 p) > P

(
f(X) >

Mf

2

)
>

1

2
>

p

2σf

as required. �

Lemma 3.6 Let v = (v1, . . . , vs) where

vi =

∫
Rs

+

xif(x) dx

be the centroid of F . Then vi > σi/4 for all i 6 s and f(v) > e−A1s/σΠ, where σΠ =∏s
i=1 σi and A1 > 0 is some absolute constant.
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Proof Applying Lemma 3.4(c) with k = 2 gives

vi >
1

4

(∫
Rs

+

x2
i f(x) dx

) 1
2

>
σi

4
.

We next prove that
f(v) > 2−2s−4f(0). (2)

Let H ⊆ Rs be a hyperplane through v that is tangent to the set {x : f(x) > f(v)}. Let
a be the unit normal to H. The down-monotonicity of f implies that a is non-negative.
Let H(t) denote the hyperplane parallel to H at distance t from the origin. Let

h(t) =

∫
H(t)

f(y)dy

be the marginal of f along a. The function h is also a logconcave density and observe
that its mean µh = a · v.

Let x be a point on H = H(a · v). Since H is a tangent plane f(x) 6 f(v). Using
logconcavity,

f(x/2)2 > f(0)f(x)

and so

f(x/2) >

√
f(0)

f(x)
f(x) >

√
f(0)

f(v)
f(x).

Therefore

h(a · v/2) =

∫
H(a·v/2)

f(y) dy >
1

2s−1

√
f(0)

f(v)
h(µh) >

1

2s−1

√
f(0)

f(v)

1

8σ(h)

where we have used Lemma 3.4(a) for the last inequality.
On the other hand, using Lemma 3.4(a) we have h(a · v/2) 6 Mh 6 1

σ(h)
and (2)

follows.
Applying Lemma 3.4(d) to the isotropic logconcave function

f̂(y1, y2, . . . , ys) = 2−sσΠf(|σ1y1|, |σ2y2|, . . . , |σsys|)

we see that f(0) which is the maximum of f̂ is at least (2πe)−s/σΠ. The lemma follows
from (2). �

3.1.1 Proofs of the Main lemmas

Proof of Lemma 3.1 We consider the projection of F to the subspace spanned by
S. For x ∈ RS

+ let

fS(x) =

∫
y∈RS̄

f(x, y)dy.
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0

B(x)

x
∂B(x)

K

Figure 1: Proof of Lemma 3.1: the ratio of the measure of ∂B(x) ∩K to the measure of
B(x) ∩K is a nonincreasing function of each coordinate xe.

It is logconcave by Theorem 3.3. For a point x ∈ Rs
+, let B(x) be the positive orthant at

x, i.e.,
B(x) = {y ∈ Rs

+ : y > x}.
Let g(x) be the integral of fS over B(x). Then by Theorem 3.3, g is also logconcave. The
function h(x) = ln g(x) is concave and so for e ∈ S,

∂h(x)

∂xe

=

∂g(x)
∂xe

g(x)

is nonincreasing, see Figure 1. Therefore, it achieves its maximum at xe = 0, i.e.,

∂h(x)

∂xe

6
∂g(0)

∂xe

since g(0) = 1. The derivative of g at xe = 0 is simply the probability mass at xe = 0,
i.e.,

∂g(0)

∂xe

= −
∫

xe=0

fS(x) dx 6 − 1

8σmax

where the inequality is from Lemma 3.4(a). (Consider φe(x) =
∫

y∈RS\{e} fS(x, y)dy.

Lemma 3.4(a) implies that φe(0) > 1/σe). Thus, by concavity,

h(x) 6 h(0)− 1

8σmax

∑
e∈S

xe

the electronic journal of combinatorics 17 (2010), #R108 11



and so
g(x) 6 e−

Ps
e=1 xe/8σmax .

Setting xe = p for all e ∈ S, we get the first inequality of the lemma.
For the lower bound, first assume that σmax = σmin = σ. Let fS be the marginal of f

in RS
+ and let v = (v1, . . . , vs), s = |S| be the centroid of fS. Consider the box induced

by the origin and v. From Lemma 3.6

g(σ/4, σ/4, . . . , σ/4) > fS(v)(σ/4)s > e−(A1+2)s.

For p < σ/4, by the logconcavity of g along the line from 0 to (σ/4, . . . , σ/4),

g(p, . . . , p) > g(0)1−4p/σg(σ/4, . . . , σ/4)4p/σ = g(σ/4, . . . , σ/4)4p/σ > e−A2ps/σ.

We now remove the assumption σmax = σmin using scaling. Define

ĝ(y1, y2, . . . , ys) = σΠf(σ1y1, σ2y2, . . . , σsys).

ĝ is the density of the vector Y defined by Ye = Xe/σe for all e ∈ S. Thus E(Y 2
e ) = 1 for

all e ∈ S and

P(Xe > p, e ∈ S) = P(Ye > p/σe, e ∈ S) > P(Ye > p/σmin, e ∈ S) > e−A2ps/σmin .

�
Proof of Lemma 3.2 We prove the lemma in the case where σmin = σmax = σ.

The general case follows by scaling as at the end of the proof of Lemma 3.1. Consider the
projection to the span of S and the induced density fS. From Lemma 3.6, we see that
for p 6 σ/4, for any point x with 0 6 xe 6 p for all e ∈ S, fS(x) > (4eA1σ)−s. The lower
bound follows.

For the upper bound, assume σmin = σmax = σ and project to S as before. Then
consider the origin symmetric function g obtained by reflecting f on each axis and scaling
to keep it a density, i.e.,

g(x1, . . . , xn) = 2−sf(|x1|, . . . , |xn|).

This function is 1-unconditional (i.e., reflection-invariant for the axis planes) and its co-
variance matrix is σ2I. By a result of Ball (Theorem 7 in [1]), we have that

g(0)1/s 6 eL/σ

where L is the supremum of LK over all 1-unconditional convex bodies K of volume 1
with covariance matrix equal to L2

KI. It is a famous open conjecture that LK = O(1) for
any convex body K of unit volume with covariance matrix L2

KI. This has been verified for
1-unconditional bodies (via the results of [3] and [18]). Thus, in our setting, g(0) 6 (c/σ)s

for an absolute constant c. The upper bound on fS follows. �
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3.2 Proof of Theorem 2.1

For a set S, |S| = k, the probability that it forms a component of GF,p, is by Lemma 3.1,
at most e−a2pk(n−k)/σmax . Therefore,

P(G is not connected) 6
bn/2c∑
k=1

(
n

k

)
e−a2pk(n−k)/σmax .

It follows that for p > 3σmax lnn/(a2n), the random graph is connected whp.
We show next that if p 6 σmin/(2eb2n) then whp |EF,p| 6 n/2 and so GF,p cannot be

connected. Indeed, if p 6 σmin/(2eb2n) where b2 is as in Lemma 3.2 and N =
(

n
2

)
,

P(|EF,p| > n/2) 6

(
N

n/2

)(
b2p

σmin

)n/2

6
1

2n/2
.

�

3.3 Proof of Theorem 2.3

The proof of Theorem 2.1 shows that if p < c1σmin/n then there are isolated vertices and
so we can take c3 = c1. We have no hope of getting the constants a1, a2 right here for
all F and so we will be content with finding a perfect matching between V1 = [n/2] and
V2 = [n] \ V1. Applying Hall’s Theorem we see that

P(GF,p has no p.m.) 6 2

n/4∑
k=1

(
n/2

k

)(
n/2

k − 1

)
e−a2k(n/2−k+1)p/σmax

6 2

n/4∑
k=1

(
n2e2−a2np/4σmax

4k2

)k

= o(1)

provided p > 9σmax lnn/(a2n). �

3.4 Proof of Theorem 2.4

We use the following result from [10]: Let G = (V,E) have n vertices and let 12 6 d =

d(n) 6 eln
1/3 n be a parameter such that with n0 = n ln ln n ln d

ln n ln ln ln n
:

P1 For every S ⊂ V , if |S| 6 n0/d then |N(S)| > d|S|.
(N(S) denotes the set of vertices not in S that have at least one neighbor in S).

P2 There is an edge in G between any two disjoint subsets A,B ⊂ V such that |A|, |B| >
n0/4130.
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If G satisfies P1,P2 then G is Hamiltonian.
So let p = γσmax ln n

n
where lower bounds on γ = γ(n) will be exposed below. We will

use d = ln ln ln n
ln ln ln ln n

. First of all, if γ > 2d/a2, then

P(P1 fails) 6
n0/d∑
s=1

(
n

s

)(
n

ds

)
e−a2γs(n−s) ln n/n

6
n0/d∑
s=1

(
ne

s
· n

ded

ddsd
· n−a2(1−o(1))γ

)s

= o(1).

Then, if γ > 3 ln ln ln n
B2 ln d

, we have

P(P2 fails) 6

(
n

n0/4130

)2

e−a2γ(n0/4130)2 ln n/n

6

(
B1n

n0

· n−γB2n0/n

)2n0

for some B1, B2 > 0

= o(1).

The theorem follows.

4 Proofs: Simplex

The case of the uniform distribution over a simplex is much easier to analyse, taking into
account its precise structure. Here, to some extent, probabilities can be estimated very
precisely.

The following lemma represents a sharpening of Lemmas 3.1 and 3.2 for the simplex
case. For S ⊆ E, let

α(S) =
∑
e∈S

αe.

Lemma 4.1

(a) If S ⊆ En and Ep = E(GΣL,p) and α(S)p 6 L then,

P(S ∩ Ep = ∅) =

(
1− α(S)p

L

)N

.

(b) If S, T ⊆ En and S ∩ T = ∅ and |T | = o(n) and α(S)|T |p, α(T )Np,MNp = o(L)
and α(S)p 6 L then

P(S ∩ Ep = ∅, T ⊆ Ep) = (1 + o(1))

(∏
e∈T

αe

)(
Np

L

)|T |(
1− α(S)p

L

)N

.
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(If α(S)p > L then the above probabilities are all zero).

Proof
(a) With volN denoting N -dimensional volume, we have

volN(ΣL) =
Ln

N !
∏

e∈En
αe

and so

P(S ∩ Ep = ∅) =
volN(ΣL ∩ {Xe > p : e ∈ S})

volN(ΣL)

=
(L− α(S)p)N/(N !

∏
e∈En

αe)

Ln/(N !
∏

e∈En
αe)

=

(
1− α(S)p

L

)N

. (3)

(b) Assume first that S = ∅. For T ′ ⊆ T and e /∈ T ′ we have

P(e ∈ Ep | Xf , f ∈ T ′) = 1−

(
1− αep

L−
∑

f∈T ′ αfXf

)N−|T ′|

6
αe(N − |T ′|)p
L−

∑
f∈T ′ αfXf

6
αeNp

L

(
1 +

2α(T ′)p

L

)
.

Hence

P(T ⊆ Ep) 6

(∏
e∈T

αe

)(
Np

L

)|T |
exp

{
2α(T )|T |p

L

}
. (4)

Similarly,

P(e ∈ Ep | Xf , f ∈ T ′) >
αe(N − |T ′|)p
L−

∑
f∈T ′ αfXf

(
1− αe(N − |T ′|)p

2(L−
∑

f∈T ′ αfXf )

)

>
αeNp

L

(
1− |T

′|
N
− αeNp

L

)
.

It follows that

P(T ⊆ Ep) =

(∏
e∈T

αe

)(
Np

L

)|T |
exp

{
O

(
|T |2

N
+
α(T )Np

L

)}
. (5)

Now

P(S ∩ Ep = ∅ | Xe, e ∈ T ) =

(
1− α(S)p

L−
∑

e∈T αeXe

)N−|T |

.
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So, if T ⊆ Ep then

P(S ∩ Ep = ∅ | Xe, e ∈ T ) >

(
1− α(S)p

L

)N (
1− 2α(S)α(T )Np2

L(L− α(T )p)

)
.

and

P(S ∩ Ep = ∅ | Xe, e ∈ T ) 6

(
1− α(S)p

L

)N (
1 +

2α(S)|T |p
L

)
Part (b) follows by combining the above two inequalities with (5). �

4.1 Coupling GΣ,p and Gn,m when α = 1: Proof of Lemma 2.6.

The distribution GΣ,p conditioned on any fixed number of edges m is uniform over graphs
with m edges i.e. is distributed as Gn,m. This is because Σ is axis-symmetric i.e. it is
invariant under permutation of coordinates.

Let eij be the indicator random variable for the event that ij is an edge of GΣ,p and
let m =

∑
i,j eij. Let q = E(eij) so that E(m) = qN . We bound the variance of m.

E(m2)− E(m)2 =
∑
ij

E(e2ij)− E(eij)
2 +

∑
ij 6=kl

(E(eijekl)− E(eij)E(ekl))

6 qN +
∑
ij 6=kl

P(Xij 6 p and Xkl 6 p)− P(Xij 6 p)P(Xkl 6 p). (6)

It follows from Lemma 4.1 that,

q = P(Xij 6 p) = 1−
(

1− p

L

)N

.

Furthermore, if p 6 L/2 then

P(Xkl 6 p and Xij 6 p) = 1− P(Xij > p)− P(Xkl > p) + P(Xij > p and Xkl > p) =

1− 2
(

1− p

L

)N

+

(
1− 2p

L

)N

.

Using these identities, we see that if p 6 L/2 then

E(m2)− E(m)2 6 qN +
N(N − 1)

2

(
1− 2

(
1− p

L

)N

+

(
1−2p

L

)N

−
(

1−
(

1− p
L

)N
)2
)

= qN +
N(N − 1)

2

((
1− 2p

L

)N

−
(

1− p

L

)2N
)

6 qN. (7)

If p > L/2 then P(Xkl 6 p and Xij 6 p) = 1− 2
(
1− p

L

)N
and so (7) is still true.

Using Chebyshev’s inequality,

P(qN +
√
qNω 6 m 6 qN +

√
qNω) = 1− o(1). (8)

This completes the proof of Lemma 2.6. �
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4.2 Connectivity for GΣ,p when α = 1: Proof of Theorem 2.5 (a)

Suppose first that cn → c. Let now L = N and let p = ln n+cn

n
and let m = |Ep|. Then q

in Section 4.1 satisfies

p− p2

2
6 q 6 p. (9)

Let m0 = Np − n2/3 and m1 = Np + n2/3. Now (8) implies that whp, m0 6 m 6 m1.
But then

o(1) + e−e−c

= o(1) + P(Gn,m1 is connected) 6 P(Sp,1 is connected)

6 o(1) + P(Gn,m2 is connected) = o(1) + e−e−c

.

Taking limits gives the result for cn → c and the result for cn → ±∞ follows by mono-
tonicity.

4.3 Connectivity for GΣ,p: Proof of Theorem 2.5 (b)

Applying Lemma 4.1(a) with L = N we see that for v, w ∈ [n],

P(v is isolated) = ξv(p), (10)

where ξv = ξv(p) =
(
1− αvp

N

)N
,

P(v, w are isolated) =

(
1− (αv + αw − αvw)p

N

)N

(11)

Let p = (1− ε)p0. We observe first that

1

2M2
lnn 6 αvp0 6 2M2 lnn for all v ∈ [n]. (12)

If the upper bound breaks for some v ∈ V , then we have αwp0 > 2 lnn and ξw(p0) 6 n−2

for all w ∈ [n] and this contradicts the definition of p0. On the other hand, if the lower
bound breaks for some v ∈ V then αwp0 6 1

2
lnn and ξw(p0) > (1 − o(1))n−1/2 for all

w ∈ [n] and this also contradicts the definition of p0. Define av by ξv(p0) = n−av . It
follows that

1

3M2
6 av 6 3M2 for v ∈ [n]. (13)

Consider the function
φ(x) =

∑
v∈[n]

n−xav .

We know that φ(1) = 1 and φ′(1) = − lnn
∑

v avn
−av 6 − lnn/3M2. It follows that

φ(1 − ε) = Ω((lnn)1/2) for small ε and this implies that if Z0 is the expected number of
isolated vertices in GΣ,p then E(Z0) = Ω((lnn)1/2).
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Since M = o(lnn), (10) and (11) imply that

P(v, w are isolated) ∼ P(v is isolated)P(w is isolated)

and then Chebyshev’s inequality implies that Z0 6= 0 whp and hence whp Sn,p,α is not
connected.

Suppose now that p = (1 + ε)p0. It follows from (12) that the expected number of
isolated vertices A1 in GΣ,p satisfies

A1 =
∑
v∈[n]

ξv(p) 6
∑
v∈[n]

(
1− εavp

N

)N

ξv(p0) 6 n−ε/2M2
∑
v∈[n]

ξv(p0) = n−ε/2M2

.

Thus whp GΣ,p has no isolated vertices. Let Ak denote the expected number of compo-
nents of size 1 6 k 6 n/2 in GΣ,p. Let πk = P(Ak 6= 0) and k0 = n/M6(lnn)2. Then for
2 6 k 6 k0,

πk 6
∑
|S|=k

(
1−

∑
v∈S,w/∈S αvwp

N

)N

(14)

6
∑
|S|=k

(
1−

∑
v∈S αvp

N

)N /(
1−

∑
v,w∈S αvwp

N

)N

6
e2k2MpAk

1

k!

6

(
e2kM(1+ε)(2M3 ln n/n)n−ε/2M2

e

k

)k

6

(
e1+o(1)n−ε/2M2

k

)k

after using p0 6 2M3 lnn/n from (12). Thus
∑k0

k=1Ak = o(1) and so whp there are no
components of size 1 6 k 6 k0 in GΣ,p.
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For k > k0 we use

n/2∑
k=k0

πk 6
n/2∑

k=k0

∑
|S|=k

(
1− knp

2MN

)N

6
n/2∑

k=k0

(
n

k

)
e−k ln n/(4M3)

6
n/2∑

k=k0

(ne
k
· n−1/4M3

)k

6
n/2∑

k=k0

(M6(lnn)2n−1/4M3

)k

= o(1).

Thus whp there are no components of size 1 6 k 6 n/2 in GΣ,p. This completes the
proof of part (b) of Theorem 2.5. �

4.4 Giant Component in GΣ,p: Proof of Theorem 2.7

We use a simple coupling argument. For a vector p ∈ RN
+ we define Gα,p to be the random

graph where X is chosen uniformly from Σα and an edge e is taken iff Xe 6 pe. Suppose
first that λe > 0 for all e ∈ En. Define α′ by α′e = αeλe and define p′ by p′e = pe/λe. We
claim that Gα,p = Gα′,p′ in distribution. Indeed, for a fixed graph G = (V,E) we have

P(Gα,p = G) =

1

volN(ΣN)

∫
06xe6pe

e∈E

volN−|E|

xf > pf , f /∈ E,
∑
f /∈E

αfxf 6 N −
∑
e∈E

αexe)


∏

x∈E

dxe

=

(∏
e∈E

αe

)
N !

(N − |E|)!LN

∫
06xe6pe

e∈E

(
max

{
0, N −

∑
e∈E

αexe −
∑
e/∈E

αepe

})N−|E|∏
x∈E

dxe

=

(∏
e∈E

α′e

)
N !

(N − |E|)!LN

∫
06ye6p′e

e∈E

(
max

{
0, N −

∑
e∈E

α′eye −
∑
e/∈E

α′ep
′
e

})N−|E|∏
e∈E

dye

= P(Gα′,p′ = G)

So for (a) we start with p = p1 and take λe = 1/αe to get GΣ,p = G1,p′ in distribution.
Note that p′e 6 (1− ε)/n and so we can couple so that G1,p′ ⊆ G1, 1−ε

n
1. Part (a) follows

from (8) as in Section 4.1. Part (b) is similar.
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4.5 Diameter of GΣ,p: Proof of Theorem 2.9

Recall that p = 1
n1−θ where 1

k
< θ < 1

k−1
. We show first that whp the diameter exceeds

k − 1. Let Zt denote the number of paths of length t 6 k − 1 from vertex 1 to vertex 2.
We consider the existence of t edges making up a path. Applying Lemma 4.1(b): S = ∅
and |T | = k,

E[Zt] 6 (1 + o(1))nt−1(Mp)t

6 2nt−1

(
M

n1−θ

)t

= 2M tnθt−1

= o(1).

Case 1: k > 3.
We must now show that the diameter is at most k. The following lemma provides some
structure:

Lemma 4.2 The following hold whp:

(a) The maximum degree ∆ 6 ∆0 = 10Mnθ.

(b) Suppose that S ⊆ V with |S| 6 n1−θ−ε for some fixed ε. Then

|N(S)| > nθ|S|/(10M lnn).

Proof (a) We consider the existence of t = 10Mnθ edges incident with a fixed vertex.
Applying Lemma 4.1(b): S = ∅ and |T | = ∆0. (k > 3 is needed here to ensure that
α(T )p = o(1)).

P[∆ > ∆0] 6 (1 + o(1))n

(
n

∆0

)
(Mp)∆0 6 2n

( e
10

)∆0

= o(1).

(b) Using Lemma 4.1(a) we see that the probability that this fails to hold can be bounded
by

n1−θ−ε∑
|S|=1

nθs/(10M ln n)∑
|T |=0

(
1− |S|(n− |S| − |T |)p

MN

)N

6

n1−θ−ε∑
s=1

nθs/(10M ln n)∑
t=0

ns+t exp
{
−s(n− s− t)nθ−1/M

}
6

n1−θ−ε∑
s=1

nθs/(10M ln n)∑
t=0

ns+te−snθ/2M = o(1).

�
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For a vertex v let Nr(v) be the set of vertices at distance r from v. Let r0 =
⌊

k−1
2

⌋
and r1 =

⌊
k
2

⌋
. It follows from Lemma 4.2 that whp we have

(nθ/(10M lnn))r 6 |Nr(v)| 6 (10Mnθ)r for 1 6 r 6 r1.

Furthermore, we have r0 +r1 6 k−1. So suppose that v, w ∈ V and Nr0(v)∩Nr1(w) = ∅.
(If the intersection is non-empty then their distance is already 6 k). Now condition on
the sets T, S of edges and non-edges exposed in the construction of Nr0(v), Nr1(w). Then
whp we have |S| = O(n(M∆0)

r1) and |T | = O((M∆0)
r1).

Let νv = |Nr0(v)|, νw = |Nr1(w)|. Given S, T let R = {xy : x ∈ Nr0(v), y ∈ Nr1(w)}.
Using Lemma 4.1(b), the conditional probability that there is no edge between Nr0(v)
and Nr1(w) is bounded as follows: |R|+ |S| = O(nr1θ+1+o(1)) and |T | = O(nr1θ+o(1)).

P((R ∪ S) ∩ Ep = ∅, T ⊆ Ep)

P(S ∩ Ep = ∅, T ⊆ Ep)
= (1 + o(1))

(
1− α(R)p

N

)N

6 2e−νvνwp/M = exp
{
−Ω(n(r0+r1+1)θ−1−o(1))

}
. (15)

Now (r0 + r1 + 1)θ − 1 = Ω(1) and this completes the proof for the case k > 3.
Case 2: k = 2.

This is much simpler. We show that if p = n−β where β = 1/2− ε then diam(GΣ,p) = 2
whp. Here ε is an arbitrarily small positive constant.

We first argue that the minimum degree in GΣ,p is at least ∆1 = n1/2+ε/(10M lnn).
Indeed, if δ denotes minimum degree then from Lemma 4.1(a),

P[δ 6 ∆1] 6 n

(
n

n−∆1

)(
1− (n−∆1)p

MN

)N

= o(1).

Then by conditioning on N(v), we argue as in (15) that whp every pair of distinct vertices
v, w have a common neighbour. More precisely,

P(N(v) ∩N(w) = ∅, N(v) = X)

P(N(v) = X)
= (1 + o(1))

(
1− ∆1p

MN

)N

6 e−nε

.

4.6 Minimum Spanning Tree: Proof of Theorem 2.8

Suppose that T is our minimum length spanning tree. Then we can write its length `(T )
as

`(T ) =
∑
e∈T

Xe

=
∑
e∈T

∫ N

p=0

1Xe>pdp

=

∫ N

p=0

∑
e∈T

| {e : Xe > p} |dp

=

∫ N

p=0

(κ(GΣ,p)− 1)dp
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where κ denotes the number of components. The final equation is the only place where
we need to assume that T is a minimum length spanning tree.

So,

ΛX =

∫ N

p=0

(E[κ(GΣ,p)]− 1])dp (16)

The general strategy from now on is to show that the integral in (16) is dominated by
small values of p and the expectation E[κ(GΣ,p)] is dominated by the expected number
of small components. We then try and carefully estimate the expected number of small
components when p is small. So, a lot of the proof involves showing that certain quantities
can be ignored.

Going back to (14) (with M = ω2) we see that

πk 6

(
n

k

)(
1− knp

2ω2N

)N

6
(ne
k
· e−np/2ω2

)k

(17)

for 1 6 k 6 n/2.
So, p > p0 = 5ω2 ln n

n
implies Pr[GΣ,p is not connected] = o(N−2). Therefore,

ΛX =

∫ p0

p=0

(E[κ(GΣ,p)]− 1])dp+ o(N−1). (18)

Next let κk,p denote the number of components with k vertices. κ1,p is the number of
isolated vertices and

E[κ1,p] =
∑
v∈V

(
1− dv(D − dv)p

N

)N

.

It follows that

ΛX >
∫ p0

p=0

∑
v∈V

(
1− dv(D − dv)p

N

)N

dp− p0 + o(N−1) > Λ0 =
1

2D

∑
v∈V

1

dv

>
1

2ω2
. (19)

Using Lemma 4.1(b) to tighten (17), we see that for k 6 n1/2 and p 6 p0,

E[κk,p] 6
∑
|S|=k

kk−2(ω2p)k−1

(
1− knp

2ω2N

)N

6
1

ω2p

(
ne · ω2pe−np/2ω2

)k

. (20)

Explanation: Choose a set S of k vertices and then a tree H on these vertices in kk−2

ways. (ω2p)k−1
(
1− kn

2ω2N

)N
bounds the probability that H exists and there are no edges

from S to V \ S.
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So if p1 = 20ω2 ln ω
n

then for k 6 n1/2,∫ p0

p=p1

(E[κk,p]− 1)dp 6
1

ω2p1

(
2eω4

)k ∫ ∞

p=p1

( np
2ω2

e−np/2ω2
)k

dp

=
2

np1

(
2eω4

)k ∫ ∞

x=10 ln ω

(xe−x)kdx

6
2

np1

(
2eω4

)k ∫ ∞

x=10 ln ω

e−2kx/3dx

6
2

np1

(
2eω4

)k 1

kω6k

6
1

ωk+2
.

Now for any k there are fewer than n/k components of size > k. So,∑
k>n1/2

∫ p0

p=p1

(E[κk,p]− 1)dp 6 n1/2p0.

It follows from (18) and (19) that

ΛX =

∫ p1

p=0

(E[κ(GΣ,p)]− 1])dp+O

(
∞∑

k=1

1

ωk+2
+ n1/2p0

)
+ o(N−1) (21)

∼
∫ p1

p=0

E[κ(GΣ,p)]dp

=
ω5∑

k=1

∫ p1

p=0

E[κk,p]dp+O(np1/ω
5)

∼
ω5∑

k=1

∫ p1

p=0

E[κk,p]dp, (22)

Now let τk,p denote the number of components of GΣ,p that are isolated trees with

k vertices. For X ⊆ V we let Ak =
{
a ∈ [1, k]k :

∑k
j=1 aj = 2k − 2

}
. Then, where

q = e−Dp,

E[τk,p] ∼ (k − 2)!pk−1
∑
a∈Ak

∑
f :[k]→V

f an injection

k∏
j=1

d
aj

f(j)q
df(j)

(aj − 1)!
for k 6 ω5. (23)

Explanation: We choose a degree sequence aj, j = 1, 2, . . . , k for our tree. Then we
choose f to assign vertices to the degrees. The number of trees with this degree sequence
is (k−2)!Q

v∈X(av−1)!
. Let H be such a tree. Going back to Lemma 4.1(b) with T = E(H) and

|S| = k(n− k) +
(

k
2

)
− k + 1 we see that the probability H is an isolated tree component

is ∼ pk−1
∏

v∈X d
av
v

(
1− dvDp

N

)N ∼ pk−1
∏

v∈X d
av
v q

dv .
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We will show that the expression (23) can be written

E[τk,p] ∼ (k − 2)!pk−1
∑
a∈Ak

k∏
i=1

n∑
v=1

dai
v q

dv

(ai − 1)!
. (24)

Observe that the sum Σ on the RHS of (24) can be expressed

Σ = Σ1 + · · ·+ Σk

where
Σj =

∑
a∈Ak

∑
f∈Fj

ψ(a, f)

and Fj is the set of functions from [k] → V with a range of size j and ψ(a, f) =∏k
i=1

d
aj
f(i)

q
df(i)

(ai−1)!
.

Thus the sum on the RHS of (23) is equal to Σk. We show next that

Σj+1

Σj

> n1−o(1) 1 6 i < k. (25)

Observe first that
1

ω2kekωDpk!
6 ψ(a, f) 6 ω2k.

Our bounds ω10 6 lnn, k 6 ω5, p 6 p1 imply that ψ(a, f) = no(1) for all a, f . So,
Σj = |Fj|no(1) = nj+o(1). This confirms (25), which implies that Σ ∼ Σk and confirms
(24).

We re-write (24) as

E[τk,p] ∼ (k − 2)!pk−1[x2k−2]

(
n∑

v=1

∞∑
r=1

qdvdr
v

(r − 1)!
xr

)k

= (k − 2)!pk−1[xk−2]

(
n∑

v=1

qdvdve
dvx

)k

= (k − 2)!pk−1
∑
S⊆V
|S|=k

qdS
dk−2

S

(k − 2)!

∏
v∈S

dv (26)

where dS =
∑

v∈S dv.
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So,

ω5∑
k=1

∫ p1

p=0

E[τk,p]dp ∼
ω5∑

k=1

∑
S⊆V
|S|=k

dk−2
S

∏
v∈S

dv

∫ p1

p=0

pk−1e−dSDpdp

=
ω5∑

k=1

∑
S⊆V
|S|=k

∏
v∈S dv

d2
SD

k

∫ dSDp1

x=0

xk−1e−xdx (27)

∼
ω5∑

k=1

∑
S⊆V
|S|=k

∏
v∈S dv

d2
SD

k

∫ ∞

x=0

xk−1e−xdx (28)

=
ω5∑

k=1

(k − 1)!

Dk

∑
S⊆V
|S|=k

∏
v∈S dv

d2
S

(29)

∼
∞∑

k=1

(k − 1)!

Dk

∑
S⊆V
|S|=k

∏
v∈S dv

d2
S

(30)

(27) to (28): dSDp1 > 20k lnω and x > 20k lnω implies that xk−1 6 ex/2. Hence∫ ∞

x=dSDp1

xk−1e−xdx 6
∫ ∞

x=20k ln ω

e−x/2dx = 2ω−10k.

(29) to (30):
∞∑

k=ω5

(k − 1)!

Dk

∑
S⊆V
|S|=k

∏
v∈S dv

d2
S

6
∞∑

k=ω5

(k − 1)!ω2

k2Dk

∑
S⊆V
|S|=k

∏
v∈S

dv 6
∞∑

k=ω5

ω2

k3
= O(ω−13)

which must be compared with (19).
It only remains to show that if σk,p = κk,p − τk,p then

ω5∑
k=1

∫ p1

p=0

E[σk,p]dp = o(ω−2). (31)

But, arguing as in (20) we see that for k 6 n/2,

E[σk,p] 6
∑
|S|=k

kk(ω2p)k

(
1− knp

2ω2N

)N

6
(
nek · ω2pe−np/2ω2

)k

.

Hence,

ω5∑
k=1

∫ p1

p=0

E[σk,p]dp 6
ω5∑

k=1

(2ekω4)k

∫ p1

p=0

( np
2ω2

e−np/2ω2
)k

dp 6
ω5∑

k=1

(2ekω4)kp1 = no(1)−1

and (31) follows. �
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5 TSP algorithm: Proof of Theorem 2.10

A digraph is a set of edges (i, j) and these can equally well be viewed as the set of edges
of a bipartite graph. So we consider there to be a digraph view and a bipartite view. The
algorithm consists of the following:

Step 1 Solve the assignment problem with cost matrixX i.e. find a minimum cost perfect
matching in the bipartite view. The edges (i, a(i)) of the optimal assignment form
a set of vertex disjoint cycles C1, C2, . . . , Ck in the digraph view.

Step 2 Assume that |C1| > |C2| > · · · > |Ck|.
For i = k down to 2: C1 ← C1 ⊕ Ci. (Patch Ci into C1).

Here C1⊕Ci is obtained by removing an edge (a, b) from C1 and an edge (c, d) from
Ci and adding edges (a, d), (c, b) to make one cycle. These two edges are chosen to
minimise the cost Xad +Xcb.

Each patch reduces the number of cycles by one and so the procedure ends with a tour.
Analysis:

(a) The row symmetry assumption implies that the matching found in Step 1 is uniformly
random and so in the digraph view it has O(lnn) cycles whp. We prove this as
follows: For any two permutations π1, π2 we have

P(a(X) = π1) = P(a(π1π
−1
2 X) = π1) = P(a(X) = π2).

It follows that whp |C1| = Ω(n/ lnn).

(b) We next put a high probability bound on the length of the longest edge in the solution
to Step 1. There are several steps:

(1) We let ω = KM(lnn)2 for some large constant K and argue that whp every
vertex in GΣ,p1 , p1 = ω/n, has in-degree and out-degree at least ω0 = L lnn
where L = K1/2.

To verify the degree bounds, fix a vertex v and partition [n] \ {v} into sets
V1, . . . , Vω0 of size ∼ n/ω0. Using Lemma 4.1(a) we see that

P(∃i : dp1(v, Vi) = 0) 6 e−np1/(Mω0) = n−L

where dp(v, Vi) is the number of GΣ,p neighbors of v in Vi.

Thus with probability at least 1− n−L, v has one out-neighbor in each part of
the partition. This gives an out-degree of at least L lnn as required. In-degree
is treated similarly. If L > 2 then the failure probability is sufficient to give
the result for all v.
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(2) We use Lemma 4.1(b) and a simple first moment argument to argue that if
in the bipartite view we have two sets S, T contained in different sides of the
partition and |S| 6 n2/3 and |T | 6 L|S| lnn/4 then whp the induced bipartite
sub-graph on S ∪ T contains at most L|S| lnn/2 edges of length 6 p1. Indeed,
if B is the event that there are S, T with more edges, then

P(B) 6 (1 + o(1))
n2/3∑
s=1

Ls ln n/4∑
t=1

(
n

s

)(
n

t

)(
st

Ls lnn/2

)(
KM2(lnn)2

n

)Ls ln n/2

6 2n
n2/3∑
s=1

(ne
s

)s
(

4en

Ls lnn

)Ls ln n/4(
KM2e(lnn)2s

2n

)Ls ln n/2

= 2n
n2/3∑
s=1

(
ne

s
·
(
M4L3e3(lnn)3s

n

)L ln n/4
)s

= o(1).

(3) Now suppose that the optimum solution to Step 1 contains an edge (x, y) of
length greater than 2Mn−1/2. We grow alternating paths from x, y in a breadth
first manner using edges of length 6 p1. Using (b1) and (b2) we see that the
levels grow at a rate > L lnn/5 until they are of size at least n3/5 say. This
will happen regardless of the matching a produced by Step 1. Indeed, let
S0 = {x} and in general, let Si+1 = a−1(Np(Si) \ S0 ∪ · · · ∪ Si. Np(S) denotes
the neighbors in GF,p1 of a set S contained in one side of the partition. It
follows from (b1) and (b2) that |Si+1| > L|Si| lnn/5, as long as |Si| 6 n2/3.
So whp there exists i0 such that |Si0| > n3/5. Similarly, if T0 = {y} and
Tj+1 = a(Np(Tj))\T0∪· · ·∪Tj then whp there exists j0 such that |Tj0| > n3/5.

We can then use Lemma 4.1(a) to argue that whp there is an edge of length
at most Mn−1/2 joining the final two levels S, T . Indeed

P(∃|S|, |T | > n3/5 : there is no S, T edge of length 6 Mn1/2)

6

(
n

n3/5

)2

e−n7/10

=o(1).

Then exchanging along the alternating path adds edges of total cost at most
Mn−1/2 + o(p1 lnn) 6 2Mn−1/2 and removes an edge of length strictly greater
than this, a contradiction.

(b) It follows from the above that we can whp “ignore” the edges of length > p2 =
Mn−1/4 in our construction in Step 1. Let the edges of length 6 p2 be denoted E1

and the edges of length in the range [p2, 2p2] be denoted E2. We observe next that

the electronic journal of combinatorics 17 (2010), #R108 27



whp |E1| 6 10M2n7/4. Indeed, applying (4) we see that if t = 10M2n7/4 then

P(|E1| > t) 6

(
N

t

)
M t

(
M

n1/4

)t

exp

{
2M3t2

Nn1/4

}
6

(
Ne

t
· M

2

n1/4
· exp

{
2M3t

Nn1/4

})t

=o(1).

Let us now condition on the exact lengths of the edges in E1. The distribution
of remaining edges can now whp be written as X ′

e = p2 + Y ′
e where Y ′ is chosen

uniformly from a simplex Σ′ in at least N ′ > N − 10M2n7/4 dimensions and with
RHS L′ > N − 10M3n7/4 −Np2.

(1) We can now argue very simply: Choose for each 2 6 i 6 k an edge (ai, bi) of
cycle Ci. (If |Ci| = 1 then ai = bi). Then divide C1 into k paths P1, . . . , Pk of
length ∼ |C1|/k. Arguing as in (a1) we can show that whp

each ai has at least n0 = n3/4/(2(lnn)3) E1 ∪ E2 out-neighbors Qi in Pi.
(32)

Indeed, fix i and divide Pi into |Pi|/(2n1/4 lnn) > n3/4/(2(lnn)3) disjoint pieces,
each of size > 2n1/4 lnn. The (conditional) probability that there is no (E1 ∪
E2)-edge from ai to any one of these pieces is at most e−2 ln n = n−2. This
follows by applying Lemma 4.1(a) to Σ′.

Thus (32) holds whp. Now further condition on the lengths of the E2-edges
from the ai to C1. The lengths of the unconditioned edges are now determined
by the uniform selection from a simplex Σ” with ∼ N coordinates and RHS ∼
N . Let Ri be the in-neighbors of the Qi on C1. Applying Lemma 4.1(a) once
more, we see that

P(∃i : there is no Ri : bi edge) 6 (lnn)e−n0p2/M = o(1).

(2) In summary, whp the cost of the patching is O(p2 lnn) = o(1/M). Finally, the
cost of the minimum tour is Ω(1/M) whp. We can for example show that if we
only consider edges of length at most ε/(Mn) for small constant ε then whp
at least half of the vertices have out-degree zero. Lemma 4.1(a) shows that the
expected number of isolated vertices is Ω(n). We can then use the Chebyshev
inequality to argue that there Ω(n) isolated vertices whp.

6 Discussion

Our work raises several open questions.
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0. Connectivity Threshold. Is lnn/n the threshold for connectivity? E.g. prove Con-
jecture 2.2. An analysis of the second moment raises an interesting question about
conditional probabilities of logconcave marginals. Namely, for X ∈ RN drawn from
an isotropic down-monotone logconcave density, is it true that

P(Xk+1 > p | X1, . . . , Xk > p) 6 (1 + cp2)P(Xk+1 > p)

for some constant c?

1. Random graphs with prescribed structure. We can generate interesting classes
of random graphs with prescribed structure. For example, let us consider H-free
subgraphs of a fixed graph G. Let PH ⊆ [0, 1]E(G) be defined as follows: Let
H1, H2, . . . , Hs be an enumeration of the copies of H in G. Fix some p0. PH is the
set of solutions to a linear program.∑

e∈E(Hi)

Xe > |E(H)|p0 for i = 1, 2, . . . , s. (33)

0 6 Xe 6 1, ∀e ∈ E(G).

It is easy to see that GPH ,p0 is H-free, indeed
∑

e∈E(H)Xe 6 |E(H)|p0 for any H
in GPH ,p0 . It would be interesting to analyze important properties of GPH ,p0 . For
example, when H is the list of all triangles of the complete graph, we get triangle-
free graphs. Similarly when H is a path of length 2, we get matchings (and we can
get matchings of any fixed graph by including only the edges as coordinates).

A related question is whether this formulation can be used to generate such H-free
graphs uniformly at random. Logconcave distributions can be sampled, but the
thresholding process might give a (slightly?) nonuniform distribution.

2. Thresholds for monotone properties Do monotone graph properties have sharp
thresholds for logconcave densities as they do for Erdős-Rényi random graphs?

3. Giant Component. When does GF,p have a giant component? We have barely
scratched the surface of this problem.

4. Smoothed Analysis. Smoothed Analysis as proposed by Spielman and Teng [21]
can be viewed as choosing the costs X uniformly from a unit ball. This is a special
case of what we are proposing and it is natural to ask what can be proved about
this generalisation, e.g. for Linear Programming.

5. Hamilton Cycles. Can we remove the ln ln ln n
ln ln ln ln n

factor from the proof of Theorem
2.4?

6. Degree Sequence. This is a fundamental parameter and we know very little about
it.
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