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Abstract

Many hard combinatorial problems can be modeled by a system of polynomial

equations. N. Alon coined the term polynomial method to describe the use of nonlin-

ear polynomials when solving combinatorial problems. We continue the exploration

of the polynomial method and show how the algorithmic theory of polynomial ideals

can be used to detect k-colorability, unique Hamiltonicity, and automorphism rigid-

ity of graphs. Our techniques are diverse and involve Nullstellensatz certificates,

linear algebra over finite fields, Gröbner bases, toric algebra, convex programming,

and real algebraic geometry.
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1 Introduction

In his well-known survey [1], Noga Alon used the term polynomial method to refer to the
use of nonlinear polynomials when solving combinatorial problems. Although the poly-
nomial method is not yet as widely used as its linear counterpart, increasing numbers of
researchers are using the algebra of multivariate polynomials to solve interesting problems
(see for example [2, 12, 13, 17, 19, 23, 24, 32, 31, 35, 36, 38, 43] and references therein).
In the concluding remarks of [1], Alon asked whether it is possible to modify algebraic
proofs to yield efficient algorithmic solutions to combinatorial problems. In this paper, we
explore this question further. We use polynomial ideals and zero-dimensional varieties to
study three hard recognition problems in graph theory. We show that this approach can
be fruitful both theoretically and computationally, and in some cases, result in efficient
recognition strategies.

Roughly speaking, our approach is to associate to a combinatorial question (e.g., is
a graph 3-colorable?) a system of polynomial equations J such that the combinatorial
problem has a positive answer if and only if system J has a solution. These highly
structured systems of equations (see Propositions 1.1, 1.3, and 1.4), which we refer to
as combinatorial systems of equations, are then solved using various methods including
linear algebra over finite fields, Gröbner bases, or semidefinite programming. As we shall
see below this methodology is applicable in a wide range of contexts.

In what follows, G = (V, E) denotes an undirected simple graph on vertex set V =
{1, . . . , n} and edges E. Similarly, by G = (V, A) we mean that G is a directed graph
with arcs A. When G is undirected, we let

Arcs(G) = {(i, j) : i, j ∈ V, and {i, j} ∈ E}

consist of all possible arcs for each edge in G. We study three classical graph problems.
First, in Section 2, we explore k-colorability using techniques from commutative al-

gebra and algebraic geometry. The following polynomial formulation of k-colorability is
well-known [5].

Proposition 1.1. Let G = (V, E) be an undirected simple graph on vertices V = {1, . . . , n}.
Fix a positive integer k, and let K be a field with characteristic relatively prime to k. The
polynomial system

JG = {xk
i − 1 = 0, xk−1

i + xk−2
i xj + · · ·+ xk−1

j = 0 : i ∈ V, {i, j} ∈ E}

has a common zero over K (the algebraic closure of K) if and only if the graph G is
k-colorable.

Remark 1.2. Depending on the context, the fields K we use in this paper will be the
rationals Q, the reals R, the complex numbers C, or finite fields Fp with p a prime number.

Hilbert’s Nullstellensatz [11, Theorem 2, Chapter 4] states that a system of polynomial
equations {f1(x) = 0, . . . , fr(x) = 0} with coefficients in K has no solution with entries
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in its algebraic closure K if and only if

1 =

r
∑

i=1

βifi, for some polynomials β1, . . . , βr ∈ K[x1, . . . , xn].

Thus, if the system has no solution, there is a Nullstellensatz certificate that the associated
combinatorial problem is infeasible. We can find a Nullstellensatz certificate 1 =

∑r
i=1 βifi

of a given degree D := max16i6r{deg(βi)} or determine that no such certificate exists by
solving a system of linear equations whose variables are in bijection with the coefficients
of the monomials of β1, . . . , βr (see [15] and the many references therein). The number
of variables in this linear system grows with the number

(

n+D
D

)

of monomials of degree
at most D. Crucially, the linear system, which can be thought of as a D-th order linear
relaxation of the polynomial system, can be solved in time that is polynomial in the
input size for fixed degree D (see [34, Theorem 4.1.3] or the survey [15]). The degree D
of a Nullstellensatz certificate of an infeasible polynomial system cannot be more than
known bounds [26], and thus, by searching for certificates of increasing degrees, we obtain
a finite (but potentially long) procedure to decide whether a system is feasible or not
(this is the NulLA algorithm in [34, 14, 13]). The philosophy of “linearizing” a system
of arbitrary polynomials has also been applied in other contexts besides combinatorics,
including computer algebra [18, 25, 37, 44], logic and complexity [9], cryptography [10],
and optimization [30, 28, 29, 39, 40, 41].

As the complexity of solving a combinatorial system with this strategy depends on
its certificate degree, it is important to understand the class of problems having small
degrees D. In Theorem 2.1, we give a combinatorial characterization of non-3-colorable
graphs whose polynomial system encoding has a degree one Nullstellensatz certificate of
infeasibility. Essentially, a graph has a degree one certificate if there is an edge covering
of the graph by three and four cycles obeying some parity conditions on the number of
times an edge is covered. This result is reminiscent of the cycle double cover conjecture
of Szekeres (1973) [47] and Seymour (1979) [42]. The class of non-3-colorable graphs with
degree one certificates is far from trivial; it includes graphs that contain an odd-wheel or
a 4-clique [34] and experimentally it has been shown to include more complicated graphs
(see [34, 13, 15]).

In our second application of the polynomial method, we use tools from the theory
of Gröbner bases to investigate (in Section 3) the detection of Hamiltonian cycles of
a directed graph G. The following ideals algebraically encode Hamiltonian cycles (see
Lemma 3.8 for a proof).

Proposition 1.3. Let G = (V, A) be a simple directed graph on vertices V = {1, . . . , n}.
Assume that the characteristic of K is relatively prime to n and that ω ∈ K is a primitive
n-th root of unity. Consider the following system in K[x1, . . . , xn]:

HG = {xn
i − 1 = 0,

∏

j∈δ+(i)

(ωxi − xj) = 0 : i ∈ V }.

Here, δ+(i) denotes those vertices j which are connected to i by an arc going from i to j
in G. The system H has a solution over K if and only if G has a Hamiltonian cycle.
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We prove a decomposition theorem for the ideal HG generated by the above poly-
nomials, and based on this structure, we give an algebraic characterization of uniquely
Hamiltonian graphs (reminiscent of the one for k-colorability in [24]). Our results also
provide an algorithm to decide this property. These findings are related to a well-known
theorem of Smith [50] which states that if a 3-regular graph has one Hamiltonian cycle
then it has at least three. It is still an open question to decide the complexity of finding
a second Hamiltonian cycle knowing that it exists [6].

Finally, in Section 4 we explore the problem of determining the automorphisms Aut(G)
of an undirected graph G. Recall that the elements of Aut(G) are those permutations
of the vertices of G which preserve edge adjacency. Of particular interest for us in that
section is when graphs are rigid ; that is, |Aut(G)| = 1. The complexity of this decision
problem is still wide open [7]. The combinatorial object Aut(G) will be viewed as an
algebraic variety in Rn×n as follows.

Proposition 1.4. Let G be a simple undirected graph and AG its adjacency matrix. Then
Aut(G) is the group of permutation matrices P = [Pi,j]

n
i,j=1 given by the zeroes of the ideal

IG ⊆ R[x1, . . . , xn] generated from the equations:

(PAG − AGP )i,j = 0, 1 6 i, j 6 n;
n
∑

i=1

Pi,j = 1, 1 6 j 6 n;

n
∑

j=1

Pi,j = 1, 1 6 i 6 n; P 2
i,j − Pi,j = 0, 1 6 i, j 6 n.

(1)

Proof. The last three sets of equations say that P is a permutation matrix, while the first
one ensures that this permutation preserves adjacency of edges (PAGP⊤ = AG).

In what follows, we shall interchangeably refer to Aut(G) as a group or the variety
of Proposition 1.4. This real variety can be studied from the perspective of convexity.
Indeed, from Proposition 1.4, Aut(G) consists of the integer vertices of the polytope of
doubly stochastic matrices commuting with AG. By replacing the equations P 2

i,j−Pi,j = 0
in (1) with the linear inequalities Pij > 0, we obtain a polyhedron PG which is a convex
relaxation of the automorphism group of the graph. This polytope and its integer hull
have been investigated by Friedland and Tinhofer [48, 20], where they gave conditions for
it to be integral. Here, we uncover more properties of the polyhedron PG and its integer
vertices Aut(G).

Our first result is that PG is quasi-integral ; that is, the graph induced by the integer
points in the 1-skeleton of PG is connected (see Definition 7.1 in Chapter 4 of [27]). It
follows that one can decide rigidity of graphs by inspecting the vertex neighbors of the
identity permutation. Another application of this result is an output-sensitive algorithm
for enumerating all automorphisms of any graph [3]. The problem of determining the
triviality of the automorphism group of a graph can be solved efficiently when PG is
integral. Such graphs have been called compact and a fair amount of research has been
dedicated to them (see [8, 48] and references therein).
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Next, we use the theory of Gouveia, Parrilo, and Thomas [21], applied to the ideal IG

of Proposition 1.4, to approximate the integer hull of PG by projections of semidefinite
programs (the so-called theta bodies). In their work, the authors of [21] generalize the
Lovász theta body for 0/1 polyhedra to generate a sequence of semidefinite programming
relaxations computing the convex hull of the zeroes of a set of real polynomials [33,
32]. The paper [21] provides some applications to finding maximum stable sets [33] and
maximum cuts [21]. We study the theta bodies of the variety of automorphisms of a
graph. In particular, we give sufficient conditions on Aut(G) for which the first theta
body is already equal to PG (in much the same way that stable sets of perfect graphs are
theta-1 exact [21, 33]). Such graphs will be called exact. Establishing these conditions for
exactness requires an interesting generalization of properties of the symmetric group (see
Theorem 4.6 for details). In addition, we prove that compact graphs are a proper subset of
exact graphs (see Theorem 4.4). This is interesting because we do not know of an example
of a graph that is not exact, and the connection with semidefinite programming may
open interesting approaches to understanding the complexity of the graph automorphism
problem.

Below, we assume the reader is familiar with the basic properties of polynomial ideals
and commutative algebra as introduced in the elementary text [11]. A quick, self-contained
review can also be found in Section 2 of [24].

2 Recognizing Non-3-colorable Graphs

In this section, we give a complete combinatorial characterization of the class of non-3-
colorable simple undirected graphs G = (V, E) with a degree one Nullstellensatz certificate
of infeasibility for the following system (with K = F2) from Proposition 1.1:

JG = {x3
i + 1 = 0, x2

i + xixj + x2
j = 0 : i ∈ V, {i, j} ∈ E}. (2)

This polynomial system has a degree one (D = 1) Nullstellensatz certificate of infeasibility
if and only if there exist coefficients ai, aij, bij , bijk ∈ F2 such that

∑

i∈V

(ai +
∑

j∈V

aijxj)(x
3
i + 1) +

∑

{i,j}∈E

(bij +
∑

k∈V

bijkxk)(x
2
i + xixj + x2

j ) = 1. (3)

Our characterization involves two types of substructures on the graph G (see Figure
1). The first of these are oriented partial-3-cycles, which are pairs of arcs {(i, j), (j, k)} ⊆
Arcs(G), also denoted (i, j, k), in which (k, i) ∈ Arcs(G) (the vertices i, j, k induce a
3-cycle in G). The second are oriented chordless 4-cycles, which are sets of four arcs
{(i, j), (j, k), (k, l), (l, i)} ⊆ Arcs(G), denoted (i, j, k, l), with (i, k), (j, l) 6∈ Arcs(G) (the
vertices i, j, k, l induce a chordless 4-cycle).

Theorem 2.1. For a given simple undirected graph G = (V, E) the following two condi-
tions are equivalent:

the electronic journal of combinatorics 17 (2010), #R114 5



(ii)

j

i l

k

(i)
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j

Figure 1: (i) partial 3-cycle, (ii) chordless 4-cycle

1. The polynomial system over F2 encoding the 3-colorability of G

JG = {x3
i + 1 = 0, x2

i + xixj + x2
j = 0 : i ∈ V, {i, j} ∈ E}

has a degree one Nullstellensatz certificate of infeasibility.

2. There exists a set C of oriented partial 3-cycles and oriented chordless 4-cycles from
Arcs(G) such that

(a) |C(i,j)| + |C(j,i)| ≡ 0 (mod 2) for all {i, j} ∈ E and

(b)
∑

(i,j)∈Arcs(G),i<j |C(i,j)| ≡ 1 (mod 2),

where C(i,j) denotes the set of cycles in C in which the arc (i, j) ∈ Arcs(G) appears.

Moreover, such graphs are non-3-colorable and can be recognized in polynomial time.

We can consider the set C in Theorem 2.1 as a covering of E by directed edges. From
this perspective, Condition 1 in Theorem 2.1 means that every edge of G is covered by
an even number of arcs from cycles in C. On the other hand, Condition 2 says that if Ĝ
is the directed graph obtained from G by the orientation induced by the total ordering
on the vertices 1 < 2 < · · · < n, then when summing the number of times each arc in Ĝ
appears in the cycles of C, the total is odd.

Note that the 3-cycles and 4-cycles in G that correspond to the partial 3-cycles and
chordless 4-cycles in C give an edge-covering of a non-3-colorable subgraph of G. Also,
note that if a graph G has a non-3-colorable subgraph whose polynomial encoding has
a degree one infeasibility certificate, then the encoding of G will also have a degree one
infeasibility certificate.

The class of graphs with encodings that have degree one infeasibility certificates in-
cludes all graphs containing odd wheels as subgraphs (e.g., a 4-clique) [34].

Corollary 2.2. If a graph G = (V, E) contains an odd wheel, then the encoding of 3-
colorability of G from Theorem 2.1 has a degree one Nullstellensatz certificate of infeasi-
bility.
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Figure 2: Odd wheel

Proof. Assume G contains an odd wheel with vertices labelled as in Figure 2 below. Let

C := {(i, 1, i + 1) : 2 6 i 6 n − 1} ∪ {(n, 1, 2)}.
Figure 2 illustrates the arc directions for the oriented partial 3-cycles of C. Each

edge of G is covered by exactly zero or two partial 3-cycles, so C satisfies Condition 1 of
Theorem 2.1. Furthermore, each arc (1, i) ∈ Arcs(G) is covered exactly once by a partial
3-cycle in C, and there is an odd number of such arcs. Thus, C also satisfies Condition 2
of Theorem 2.1.

A non-trivial example of a non-3-colorable graph with a degree one Nullstellensatz
certicate is the Grötzsch graph.

Example 2.3. Consider the Grötzsch graph in Figure 3, which has no 3-cycles. The
following set of oriented chordless 4-cycles gives a certificate of non-3-colorability by The-
orem 2.1:

C := {(1, 2, 3, 7), (2, 3, 4, 8), (3, 4, 5, 9), (4, 5, 1, 10), (1, 10, 11, 7),

(2, 6, 11, 8), (3, 7, 11, 9), (4, 8, 11, 10), (5, 9, 11, 6)}.
Figure 3 illustrates the arc directions for the 4-cycles of C. Each edge of the graph is
covered by exactly two 4-cycles, so C satisfies Condition 1 of Theorem 2.1. Moreover,
one can check that Condition 2 is also satisfied. It follows that the graph has no proper
3-coloring.

We now prove Theorem 2.1 using ideas from polynomial algebra. First, notice that
we can simplify a degree one certificate as follows: Expanding the left-hand side of (3)
and collecting terms, the only coefficient of xjx

3
i is aij and thus aij = 0 for all i, j ∈ V .

Similarly, the only coefficient of xixj is bij , and so bij = 0 for all {i, j} ∈ E. We thus
arrive at the following simplified expression:

∑

i∈V

ai(x
3
i + 1) +

∑

{i,j}∈E

(
∑

k∈V

bijkxk)(x
2
i + xixj + x2

j) = 1. (4)
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Figure 3: Grötzsch graph.

Now, consider the following set F of polynomials:

x3
i + 1 ∀i ∈ V, (5)

xk(x
2
i + xixj + x2

j ) ∀{i, j} ∈ E, k ∈ V. (6)

The elements of F are those polynomials that can appear in a degree one certificate
of infeasibility. Thus, there exists a degree one certificate if and only if the constant
polynomial 1 is in the linear span of F ; that is, 1 ∈ 〈F 〉F2

, where 〈F 〉F2
is the vector space

over F2 generated by the polynomials in F .
We next simplify the set F . Let H be the following set of polynomials:

x2
i xj + xix

2
j + 1 ∀{i, j} ∈ E,

(7)

xix
2
j + xjx

2
k ∀(i, j), (j, k), (k, i) ∈ Arcs(G),

(8)

xix
2
j + xjx

2
k + xkx

2
l + xlx

2
i ∀(i, j), (j, k), (k, l), (l, i) ∈ Arcs(G), (i, k), (j, l) 6∈ Arcs(G).

(9)

If we identify the monomials xix
2
j as the arcs (i, j), then the polynomials (8) correspond

to oriented partial 3-cycles and the polynomials (9) correspond to oriented chordless 4-
cycles. The following lemma says that we can use H instead of F to find a degree one
certificate.

Lemma 2.4. We have 1 ∈ 〈F 〉F2
if and only if 1 ∈ 〈H〉F2

.

Proof. The polynomials (6) above can be split into two classes of equations: (i) k = i or
k = j and (ii) k 6= i and k 6= j. Thus, the set F consists of

x3
i + 1 ∀i ∈ V, (10)

xi(x
2
i + xixj + x2

j ) = x3
i + x2

i xj + xix
2
j ∀{i, j} ∈ E, (11)

xk(x
2
i + xixj + x2

j) = x2
i xk + xixjxk + x2

jxk ∀{i, j} ∈ E, k ∈ V, i 6= k 6= j. (12)

the electronic journal of combinatorics 17 (2010), #R114 8



Using polynomials (10) to eliminate the x3
i terms from (11), we arrive at the following set

of polynomials, which we label F ′:

x3
i + 1 ∀i ∈ V,

(13)

x2
i xj + xix

2
j + 1 = (x3

i + x2
i xj + xix

2
j ) + (x3

i + 1) ∀{i, j} ∈ E,

(14)

x2
i xk + xixjxk + x2

jxk ∀{i, j} ∈ E, k ∈ V, i 6= k 6= j.

(15)

Observe that 〈F 〉F2
= 〈F ′〉F2

. We can eliminate the polynomials (13) as follows. For
every i ∈ V , (x3

i + 1) is the only polynomial in F ′ containing the monomial x3
i and

thus the polynomial (x3
i + 1) cannot be present in any nonzero linear combination of the

polynomials in F ′ that equals 1. We arrive at the following smaller set of polynomials,
which we label F ′′.

x2
i xj + xix

2
j + 1 ∀{i, j} ∈ E, (16)

x2
i xk + xixjxk + x2

jxk ∀{i, j} ∈ E, k ∈ V, i 6= k 6= j. (17)

So far, we have shown 1 ∈ 〈F 〉F2
= 〈F ′〉F2

if and only if 1 ∈ 〈F ′′〉F2
.

Next, we eliminate monomials of the form xixjxk. There are 3 cases to consider.
Case 1: {i, j} ∈ E but {i, k} 6∈ E and {j, k} 6∈ E. In this case, the monomial xixjxk

appears in only one polynomial, xk(x
2
i + xixj + x2

j ) = x2
i xk + xixjxk + x2

jxk, so we can
eliminate all such polynomials.

Case 2: i, j, k ∈ V , (i, j), (j, k), (k, i) ∈ Arcs(G). Graphically, this represents a 3-cycle
in the graph. In this case, the monomial xixjxk appears in three polynomials:

xk(x
2
i + xixj + x2

j ) = x2
i xk + xixjxk + x2

jxk, (18)

xj(x
2
i + xixk + x2

k) = x2
i xj + xixjxk + xjx

2
k, (19)

xi(x
2
j + xjxk + x2

k) = xix
2
j + xixjxk + xix

2
k. (20)

Using the first polynomial, we can eliminate xixjxk from the other two:

x2
i xj + xjx

2
k + x2

i xk + x2
jxk = (x2

i xj + xixjxk + xjx
2
k) + (x2

i xk + xixjxk + x2
jxk),

xix
2
j + xix

2
k + x2

i xk + x2
jxk = (xix

2
j + xixjxk + xix

2
k) + (x2

i xk + xixjxk + x2
jxk).

We can now eliminate the polynomial (18). Moreover, we can use the polynomials (16)
to rewrite the above two polynomials as follows.

xkx
2
i + xix

2
j = (x2

i xj + xjx
2
k + x2

i xk + x2
jxk) + (xjx

2
k + x2

jxk + 1) + (xix
2
j + x2

i xj + 1),

xix
2
j + xjx

2
k = (xix

2
j + xix

2
k + x2

i xk + x2
jxk) + (xix

2
k + x2

i xk + 1) + (xjx
2
k + x2

jxk + 1).

Note that both of these polynomials correspond to two of the arcs of the 3-cycle (i, j),
(j, k), (k, i) ∈ Arcs(G).
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Case 3: i, j, k ∈ V , (i, j), (j, k) ∈ Arcs(G) and (k, i) 6∈ Arcs(G). We have

xk(x
2
i + xixj + x2

j ) = x2
i xk + xixjxk + x2

jxk, (21)

xi(x
2
j + xjxk + x2

k) = xix
2
j + xixjxk + xix

2
k. (22)

As before we use the first polynomial to eliminate the monomial xixjxk from the second:

xix
2
j + xjx

2
k + (x2

i xk + xix
2
k + 1) = (xix

2
j + xixjxk + xix

2
k) + (x2

i xk + xixjxk + x2
jxk)

+ (xjx
2
k + x2

jxk + 1).

We can now eliminate (21); thus, the original system has been reduced to the following
one, which we label as F ′′′:

x2
i xj + xix

2
j + 1 ∀{i, j} ∈ E, (23)

xix
2
j + xjx

2
k ∀(i, j), (i, k), (j, k) ∈ Arcs(G), (24)

xix
2
j + xjx

2
k + (x2

i xk + xix
2
k + 1) ∀(i, j), (j, k) ∈ Arcs(G), (k, i) 6∈ Arcs(G). (25)

Note that 1 ∈ 〈F 〉F2
if and only if 1 ∈ 〈F ′′′〉F2

.
The monomials x2

i xk and xix
2
k with (k, i) 6∈ Arcs(G) always appear together and only

in the polynomials (25) in the expression (x2
i xk + xix

2
k + 1). Thus, we can eliminate the

monomials x2
i xk and xix

2
k with (k, i) 6∈ Arcs(G) by choosing one of the polynomials (25)

and using it to eliminate the expression (x2
i xk + xix

2
k + 1) from all other polynomials in

which it appears. Let i, j, k, l ∈ V be such that (i, j), (j, k), (k, l), (l, i) ∈ Arcs(G) and
(k, i), (i, k) 6∈ Arcs(G). We can then eliminate the monomials x2

i xk and xix
2
k as follows:

xix
2
j + xjx

2
k + xkx

2
l + xlx

2
i = (xix

2
j + xjx

2
k + x2

i xk + xix
2
k + 1)

+ (xkx
2
l + xlx

2
i + x2

i xk + xix
2
k + 1).

Finally, after eliminating the polynomials (25), we have system H (polynomials (7), (8),
and (9)):

x2
i xj + xix

2
j + 1 ∀{i, j} ∈ E,

xix
2
j + xjx

2
k ∀(i, j), (j, k), (k, i) ∈ Arcs(G),

xix
2
j + xjx

2
k + xkx

2
l + xlx

2
i ∀(i, j), (j, k), (k, l), (l, i) ∈ Arcs(G), (i, k), (j, l) 6∈ Arcs(G).

The system H has the property that 1 ∈ 〈F ′′′〉F2
if and only if 1 ∈ 〈H〉F2

, and thus,
1 ∈ 〈F 〉F2

if and only if 1 ∈ 〈H〉F2
as required

We now establish that the sufficient condition for infeasibility 1 ∈ 〈H〉F2
is equivalent

to the combinatorial parity conditions in Theorem 2.1.

Lemma 2.5. There exists a set C of oriented partial 3-cycles and oriented chordless
4-cycles satisfying Conditions 1. and 2. of Theorem 2.1 if and only if 1 ∈ 〈H〉F2

.
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Proof. Assume that 1 ∈ 〈H〉F2
. Then there exist coefficients ch ∈ F2 such that

∑

h∈H chh =
1. Let H ′ := {h ∈ H : ch = 1}; then,

∑

h∈H′ h = 1. Let C be the set of oriented partial
3-cycles (i, j, k) where xix

2
j +xjx

2
k ∈ H ′ together with the set of oriented chordless 4-cycles

(i, j, l, k) where xix
2
j +xjx

2
l +xlx

2
k +xkx

2
i ∈ H ′. Now, |C(i,j)| is the number of polynomials

in H ′ of the form (8) or (9) in which the monomial xix
2
j appears, and similarly, |C(j,i)|

is the number of polynomials in H ′ of the form (8) or (9) in which the monomial xjx
2
i

appears. Thus,
∑

h∈H′ h = 1 implies that, for every pair xix
2
j and xjx

2
i , either

1. |C(i,j)| ≡ 0 (mod 2), |C(j,i)| ≡ 0 (mod 2), and x2
i xj + xix

2
j + 1 6∈ H ′ or

2. |C(i,j)| ≡ 1 (mod 2), |C(j,i)| ≡ 1 (mod 2), and x2
i xj + xix

2
j + 1 ∈ H ′.

In either case, we have |C(i,j)| + |C(j,i)| ≡ 0 (mod 2). Moreover, since
∑

h∈H′ h = 1, there
must be an odd number of the polynomials of the form x2

i xj + xix
2
j + 1 in H ′. That is,

case 2 above occurs an odd number of times and therefore,
∑

(i,j)∈Arcs(G),i<j |C(i,j)| ≡ 1

(mod 2) as required.
Conversely, assume that there exists a set C of oriented partial 3-cycles and oriented

chordless 4-cycles satisfying the conditions of Theorem 2.1. Let H ′ be the set of polyno-
mials xix

2
j + xjx

2
k where (i, j, k) ∈ C and the set of polynomials xix

2
j + xjx

2
l + xlx

2
k + xkx

2
i

where (i, j, l, k) ∈ C together with the set of polynomials x2
i xj + xix

2
j + 1 ∈ H where

|C(i,j)| ≡ 1. Then, |C(i,j)| + |C(j,i)| ≡ 0 (mod 2) implies that every monomial xix
2
j ap-

pears in an even number polynomials of H ′. Moreover, since
∑

(i,j)∈Arcs(G),i<j |C(i,j)| ≡ 1

(mod 2), there are an odd number of polynomials x2
i xj +xix

2
j +1 appearing in H ′. Hence,

∑

h∈H′ h = 1 and 1 ∈ 〈H〉F2
.

Combining Lemmas 2.4 and 2.5, we arrive at the characterization stated in Theo-
rem 2.1. That such graphs can be decided in polynomial time follows from the fact that
the existence of a certificate of any fixed degree can be decided in polynomial time (as
is well known and follows since there are polynomially many monomials up to any fixed
degree; see also [34, Theorem 4.1.3]).

Finally, we pose as open problems the construction of a variant of Theorem 2.1 for
general k-colorability and also combinatorial characterizations for larger certificate degrees
D.

Problem 2.6. Characterize those graphs with a given k-colorability Nullstellensatz cer-
tificate of degree D.

3 Recognizing Uniquely Hamiltonian Graphs

Throughout this section we work over an arbitrary algebraically closed field K = K,
although in some cases, we will need to restrict its characteristic. Let us denote by HG

the Hamiltonian ideal generated by the polynomials from Proposition 1.3. A connected,
directed graph G with n vertices has a Hamiltonian cycle if and only if the equations
defined by HG have a solution over K (or, in other words, if and only if V (HG) 6= ∅ for
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the algebraic variety V (HG) associated to the ideal HG). In a precise sense to be made
clear below, the ideal HG actually encodes all Hamiltonian cycles of G. However, we need
to be somewhat careful about how to count cycles (see Lemma 3.8). In practice ω can be
treated as a variable and not as a fixed primitive n-th root of unity. A set of equations
ensuring that ω only takes on the value of a primitive n-th root of unity is the following:

{ωi(n−1) + ωi(n−2) + · · ·+ ωi + 1 = 0 : 1 6 i 6 n}.
We can also use the cyclotomic polynomial Φn(ω) [16], which is the polynomial whose
zeroes are the primitive n-th roots of unity.

We shall utilize the theory of Gröbner bases to show that HG has a special (alge-
braic) decomposition structure in terms of the different Hamiltonian cycles of G (this is
Theorem 3.9 below). In the particular case when G has a unique Hamiltonian cycle, we
get a specific algebraic criterion which can be algorithmically verified. These results are
Hamiltonian analogues to the algebraic k-colorability characterizations of [24]. We first
turn our attention more generally to cycle ideals of a simple directed graph G. These
will be the basic elements in our decomposition of the Hamiltonian ideal HG, as they
algebraically encode single cycles C (up to symmetry).

When G has the property that each pair of vertices connected by an arc is also con-
nected by an arc in the opposite direction, then we call G doubly covered. When G = (V, E)
is presented as an undirected graph, we shall always view it as the doubly covered directed
graph on vertices V with arcs Arcs(G).

Let C be a cycle of length k > 2 in G, expressed as a sequence of arcs,

C = {(v1, v2), (v2, v3), . . . , (vk, v1)}.
For the purpose of this work, we call C a doubly covered cycle if consecutive vertices
in the cycle are connected by arcs in both directions; otherwise, C is simply called di-
rected. In particular, each cycle in a doubly covered graph is a doubly covered cycle.
These definitions allow us to work with both undirected and directed graphs in the same
framework.

Definition 3.1 (Cycle encodings). Let ω be a fixed primitive k-th root of unity and let
K be a field with characteristic not dividing k. If C is a doubly covered cycle of length k
and the vertices in C are {v1, . . . , vk}, then the cycle encoding of C is the following set of
k polynomials in K[xv1

, . . . , xvk
]:

gi =











xvi
+ (ω2+i−ω2−i)

(ω3−ω)
xvk−1

+ (ω1−i−ω3+i)
(ω3−ω)

xvk
i = 1, . . . , k − 2,

(xvk−1
− ωxvk

)(xvk−1
− ω−1xvk

) i = k − 1,

xk
vk

− 1 i = k.

(26)

If C is a directed cycle of length k in a directed graph, with vertex set {v1, . . . , vk}, the
cycle encoding of C is the following set of k polynomials:

gi =

{

xvk−i
− ωk−ixvk

i = 1, . . . , k − 1,

xk
vk
− 1 i = k.

(27)
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Definition 3.2 (Cycle Ideals). The cycle ideal associated to a cycle C is

HG,C = 〈g1, . . . , gk〉 ⊆ K[xv1
, . . . , xvk

],

where the gis are the cycle encoding of C given by (26) or (27).

The polynomials gi are computationally useful generators for cycle ideals. (Once again,
see [11] for the relevant background on Gröbner bases and term orders.)

Lemma 3.3. The set of cycle encoding polynomials F = {g1, . . . , gk} is a reduced Gröbner
basis for the cycle ideal HG,C with respect to any term order ≺ with xvk

≺ · · · ≺ xv1
.

Proof. Since the leading monomials in a cycle encoding:

{xv1
, . . . , xvk−2

, x2
vk−1

, xk
vk
} or {xv1

, . . . , xvk−2
, xvk−1

, xk
vk
} (28)

are relatively prime, the polynomials gi form a Gröbner basis for HG,C (see Theorem 3
and Proposition 4 in [11, Section 2]). That F is reduced follows from inspection of (26)
and (27).

Remark 3.4. In particular, since reduced Gröbner bases (with respect to a fixed term
order) are unique, it follows that cycle encodings are canonical ways of generating cycle
ideals (and thus of representing cycles by Lemma 3.6).

Having explicit Gröbner bases for these ideals allows us to compute their Hilbert series
easily.

Corollary 3.5. The Hilbert series of K[xv1
, . . . , xvk

]/HG,C for a doubly covered cycle or
a directed cycle is equal to (respectively)

(1 − t2)(1 − tk)

(1 − t)2
or

(1 − tk)

(1 − t)
.

Proof. If ≺ is a graded term order, then the (affine) Hilbert function of an ideal and of
its ideal of leading terms are the same [11, Chapter 9, §3]. The form of the Hilbert series
is now immediate from (28).

The naming of these ideals is motivated by the following result; in words, it says that
the cycle C is encoded as a complete intersection by the ideal HG,C .

Lemma 3.6. The following hold for the ideal HG,C.

1. HG,C is radical,

2. |V (HG,C)| = k if C is directed, and |V (HG,C)| = 2k if C is doubly covered undirected.
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Proof. Without loss of generality, we suppose that vi = i for i = 1, . . . , k. Let ≺ be any
term order in which xk ≺ · · · ≺ x1. From Lemma 3.3, the set of gi form a Gröbner basis
for HG,C . It follows that the number of standard monomials of HG,C is 2k if C is doubly
covered undirected (resp. k if it is directed). Therefore by [24, Lemma 2.1], if we can
prove that |V (HG,C)| > k (resp. |V (HG,C)| > 2k), then both statements 1. and 2. follow.

When C is directed, this follows easily from the form of (27), so we shall assume that C
is doubly covered undirected. We claim that the k cyclic permutations of the two points:

(ω, ω2, . . . , ωk), (ωk, ωk−1, . . . , ω)

are zeroes of gi, i = 1, . . . , k. Since cyclic permutation is multiplication by a power of ω,
it is clear that we need only verify this claim for the two points above. In the fist case,
when xi = ωi, we compute that for i = 1, . . . , k − 2:

(ω3 − ω)gi(ω, . . . , ωk) = (ω3 − ω)ωi + (ω2+i − ω2−i)ωk−1 + (ω1−i − ω3+i)ωk

= ω3+i − ω1+i + ω1+i+k − ω1−i+k + ω1−i+k − ω3+i+k

= 0,

since ωk = 1. In the second case, when xi = ω1−i, we again compute that for i =
1, . . . , k − 2:

(ω3 − ω)gi(ω
k, . . . , ω) = (ω3 − ω)ω1−i + (ω2+i − ω2−i)ω2 + (ω1−i − ω3+i)ω

= ω4−i − ω2−i + ω4+i − ω4−i + ω2−i − ω4+i

= 0.

Finally, it is obvious that the two points zero gk−1 and gk, and this completes the proof.

Remark 3.7. Conversely, it is easy to see that points in V (HG,C) correspond to cycles
of length k in G. That this variety contains k or 2k points corresponds to there being k
or 2k ways of writing down the cycle since we may cyclically permute it and also reverse
its orientation (if each arc in the path is bidirectional).

Before stating our decomposition theorem (Theorem 3.9), we need to explain how the
Hamiltonian ideal encodes all Hamiltonian cycles of the graph G.

Lemma 3.8. Let G be a connected directed graph on n vertices. Then,

V (HG) =
⋃

C

V (HG,C),

where the union is over all Hamiltonian cycles C in G.

Proof. We only need to verify that points in V (HG) correspond to cycles of length n.
Suppose there exists a Hamiltonian cycle in the graph G. Label vertex 1 in the cycle with
the number x1 = ω0 = 1 and then successively label vertices along the cycle with one

the electronic journal of combinatorics 17 (2010), #R114 14



higher power of ω. It is clear that these labels xi associated to vertices i zero all of the
equations generating HG.

Conversely, let v = (x1, . . . , xn) be a point in the variety V (HG) associated to HG; we
claim that v encodes a Hamiltonian cycle. From the edge equations, each vertex must be
adjacent to one labeled with the next highest power of ω. Fixing a starting vertex i, it
follows that there is a cycle C labeled with (consecutively) increasing powers of ω. Since ω
is a primitive nth root of unity, this cycle must have length n, and thus is Hamiltonian.

Combining all of these ideas, we can prove the following result.

Theorem 3.9. Let G be a connected directed graph with n vertices. Then,

HG =
⋂

C

HG,C ,

where C ranges over all Hamiltonian cycles of the graph G.

Proof. Since HG contains a square-free univariate polynomial in each indeterminate, it is
radical (see for instance [24, Lemma 2.1]). It follows that

HG = I(V (HG))

= I

(

⋃

C

V (HG,C)

)

=
⋂

C

I(V (HG,C))

=
⋂

C

HG,C ,

(29)

where the second inequality comes from Lemma 3.8 and the last one from HG,C being a
radical ideal (Lemma 3.6).

We call a directed graph (resp. doubly covered graph) uniquely Hamiltonian if it
contains n cycles of length n (resp. 2n cycles of length n).

Corollary 3.10. The graph G is uniquely Hamiltonian if and only if the Hamiltonian
ideal HG is of the form HG,C for some length n cycle C.

This corollary provides an algorithm to check whether a graph is uniquely Hamiltonian.
We simply compute a unique reduced Gröbner basis of HG and then check that it has
the same form as that of an ideal HG,C . Another approach is to count the number of
standard monomials of any Gröbner bases for HG and compare with n or 2n (since HG is
radical). We remark, however, that it is well-known that computing a Gröbner basis in
general cannot be done in polynomial time [51, p. 400].

We close this section with a directed and an undirected example of Theorem 3.9.
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Example 3.11. Let G be the directed graph with vertex set V = {1, 2, 3, 4, 5} and arcs
A = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1), (1, 3), (1, 4)}. Moreover, let ω be a primitive 5-th root
of unity. The ideal HG ⊂ K[x1, x2, x3, x4, x5] is generated by the polynomials, {x5

i − 1 :
1 6 i 6 5} union with the polynomials

{(ωx1 − x2)(ωx1 − x3)(ωx1 − x4), ωx2 − x3, ωx3 − x4, ωx4 − x5, ωx5 − x1}.

A reduced Gröbner basis for HG with respect to the ordering x5 ≺ x4 ≺ x3 ≺ x2 ≺ x1 is

{x5
5 − 1, x4 − ω4x5, x3 − ω3x5, x2 − ω2x5, x1 − ωx5},

which is a generating set for HG,C with C = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}.

Let G be an undirected graph with vertex set V and edge set E, and consider the
auxiliary directed graph G̃ with vertices V and arcs Arcs(G). Notice that G̃ is doubly
covered, and hence each of its cycles are doubly covered. We apply Theorem 3.9 to HG̃ to
determine and count Hamiltonian cycles in G. In particular, the cycle C = {v1, v2, . . . , vn}
of G is Hamiltonian if and only if the two cycles

{(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)}, {(v2, v1), (v3, v2), . . . , (vn, vn−1), (v1, vn)}

are Hamiltonian cycles of G̃.

Example 3.12. Let G be the undirected complete graph on the vertex set V = {1, 2, 3, 4}.
Let G̃ be the doubly covered graph with vertex set V and arcs Arcs(G). Notice that G̃ has
twelve Hamiltonian cycles:

C1 ={(1, 2), (2, 3), (3, 4), (4, 1)}, C2 ={(2, 1), (3, 2), (4, 3), (1, 4)},
C3 ={(1, 2), (2, 4), (4, 3), (3, 1)}, C4 ={(2, 1), (4, 2), (3, 4), (1, 3)},
C5 ={(1, 3), (3, 2), (2, 4), (4, 1)}, C6 ={(3, 1), (2, 3), (4, 2), (1, 4)},
C7 ={(1, 3), (3, 4), (4, 2), (2, 1)}, C8 ={(3, 1), (4, 3), (2, 4), (1, 2)},
C9 ={(1, 4), (4, 2), (2, 3), (3, 1)}, C10 ={(4, 1), (2, 4), (3, 2), (1, 3)},

C11 ={(1, 4), (4, 3), (3, 2), (2, 1)}, C12 ={(4, 1), (3, 4), (2, 3), (1, 2)}.

One can check in a symbolic algebra system such as SINGULAR or Macaulay 2 that the
ideal HG̃ is the intersection of the cycle ideals HG̃,Ci

for i = 1, . . . , 12.

4 Permutation Groups as Algebraic Varieties and

their Convex Approximations

In this section, we study convex hulls of permutations groups viewed as permutation
matrices. We begin by studying the convex hull of automorphism groups of undirected
simple graphs; these have a natural polynomial presentation using Proposition 1.4 from
the introduction. For background material on graph automorphism groups see [7, 8].
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We write Aut(G) for the automorphism group of a graph G = (V, E). Elements of
Aut(G) are naturally represented as |V | × |V | permutation matrices; they are the integer
vertices of the rational polytope PG defined in the discussion following Proposition 1.4.
The polytope PG was first introduced by Tinhofer [48]. Since we are primarily interested
in the integer vertices of PG, we investigate IPG, the integer hull of PG (i.e. IPG =
conv(PG ∩ Zn×n)). In the fortunate case that PG is already integral (PG = IPG), we say
that the graph G is compact, a term coined in [48]. This occurs, for example, in the
special case that G is an independent set on n vertices. In this case Aut(G) = Sn and
PG is the well-studied Birkhoff polytope, the convex hull of all doubly-stochastic matrices
(see Chapter 5 of [27]). One can therefore view PG as a generalization of the Birkhoff
polytope to arbitrary graphs. Unfortunately, the polytope PG is not always integral. For
instance, PG is not integral when G is the Petersen graph. Nevertheless, we can prove the
following related result.

Proposition 4.1. The polytope PG is quasi-integral. That is, the induced subgraph of the
integer points of the 1-skeleton of PG is connected.

Proof. We claim that there exists a 0/1 matrix A such that PG is the set of points
{x ∈ Rn×n : Ax = 1, x > 0} (where 1 is the all 1s vector). By the main theorem
of Trubin [49] and independently [4], polytopes given by such systems are quasi-integral
(see also Theorem 7.2 in Chapter 4 of [27]). Therefore, we need to rewrite the defining
equations presented in Proposition 1.4 to fit this desired shape. Fix indices 1 6 i, j 6 n
and consider the row of PG defined by the equation

∑

r∈δ(j)

Pir −
∑

k∈δ(i)

Pkj = 0.

Here δ(i) denotes those vertices j which are connected to i. Adding
∑n

r=1 Prj = 1 to both
sides of this expression yields

∑

r∈δ(j)

Pir +
∑

k/∈δ(i)

Pkj = 1. (30)

We can therefore replace the original n2 equations defining PG by (30) over all 1 6

i, j 6 n. The result now follows provided that no summand in each of these equations
repeats. However, this is clear since if summands Pkj and Pir are the same, then r = j,
which is impossible since r ∈ δ(j).

We would still like to find a tighter description of IPG in terms of inequalities. For
this purpose, recall the radical polynomial ideal IG in Proposition 1.4 and its real variety
VR(IG). We approximate a tighter description of IPG using a hierarchy of projected
semidefinite relaxations of conv(VR(IG)). When these relaxations are tight, we obtain a
full description of IPG that allows us to optimize and determine feasibility via semidefinite
programming.

We begin with some preliminary definitions from [21] and motivated by Lovász &
Schrijver [33]. Let I ⊂ R[x1, . . . , xn] be a real radical ideal (I = I(VR(I))). A polynomial
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f is said to be nonnegative mod I (written f > 0 (mod I)) if f(p) > 0 for all p ∈ VR(I).
Similarly, a polynomial f is said to be a sum of squares mod I if there exist h1, . . . , hm ∈
R[x1, . . . , xn] such that f −∑m

i=1 h2
i ∈ I. If the degrees of the h1, . . . , hm are bounded by

some positive integer k, we say f is k-sos mod I.
The k-th theta body of I, denoted THk(I), is the subset of Rn that is nonnegative

on each f ∈ I that is k-sos mod I. We say that a real variety VR(I) is theta k-exact if
conv(VR(I)) = THk(I). When the ideal I is real radical, theta bodies provide a hierarchy
of semidefinite relaxations of conv(VR(I)):

TH1(I) ⊇ TH2(I) ⊇ · · · ⊇ conv(VR(I))

because in this case theta bodies can be expressed as projections of feasible regions of
semidefinite programs (such regions are called spectrahedra). In order to exploit this
theory, we must establish that IG is indeed real radical.

Lemma 4.2. The ideal IG ⊆ R[x1, . . . , xn] is real radical.

Proof. Let JG be the ideal in C[x1, . . . , xn] generated by the same polynomials that gen-
erate IG, and R

√
IG be the real radical of IG. Since the polynomial x2

i − xi ∈ JG for each
1 6 i 6 n, Lemma 2.1 of [24] implies JG =

√
JG (where

√
JG is the radical of JG). Together

with the fact that VC(JG) = VR(IG), this implies JG ⊇ R
√

IG. Since IG = JG∩R[x1, . . . , xn],
we conclude IG ⊇ R

√
IG. The result follows since trivially, IG ⊆ R

√
IG.

From Lemma 4.2, we conclude that if IG is theta k-exact, linear optimization over the
automorphisms can be performed using semidefinite programming provided that one first
computes a basis for the quotient ring R[P11, P12, . . . , Pnn]/IG (e.g., obtained from the
standard monomials of a Gröbner basis). Using such a basis one can set up the necessary
semidefinite programs (see Section 2 of [21] for details). In fact, for k-exact ideals, one
only needs those elements of the basis up to degree 2k. This motivates the need for
characterizing those graphs for which IG is k-exact.

In this section we focus on finding graphs G such that IG is 1-exact; we shall call
such graphs exact in what follows. The key to finding exact graphs is the following
combinatorial-geometric characterization.

Theorem 4.3. [21] Let VR(I) ⊂ Rn be a finite real variety. Then VR(I) is exact if and
only if there is a finite linear inequality description of conv(VR(I)) such that for every
inequality g(x) > 0, there is a hyperplane g(x) = α such that every point in VR(I) lies
either on the hyperplane g(x) = 0 or the hyperplane g(x) = α.

A result of Sullivant (see Theorem 2.4 in [46]) directly implies that when the polytope
P = conv(VR(I)) is lattice isomorphic to an integral polytope of the form [0, 1]n∩L where
L is an affine subspace, then P satisfies the condition of Theorem 4.3. Putting these ideas
together we can prove compactness implies exactness. Furthermore, the class of exact
graphs properly extends the class of compact graphs. The proof of this latter fact is an
extension of a result in [48].
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Theorem 4.4. The class of exact graphs strictly contains the class of compact graphs.
More precisely:

1. If G is a compact graph, then G is also exact.

2. Let G1, . . . , Gm be k-regular connected compact graphs, and let G =
⊔m

i=1 Gi be the
graph that is the disjoint union of G1, . . . , Gm. Then G is always exact, but G may
not be compact. Indeed, G is compact if and only if Gi

∼= Gj for all 1 6 i, j 6 n.

Proof. If G is compact, then the integer hull of PG is precisely the affine space

{P ∈ Rn×n : PAG = AGP,
n
∑

i=1

Pij =
n
∑

j=1

Pij = 1, 1 6 i, j 6 n}

intersected with the cube [0, 1]n×n. That G is exact follows from Theorem 2.4 of [46].
We now prove Statement 2. If Gi 6∼= Gj for some pair (i, j), then G was shown to be

non-compact by Tinhofer (see [48, Lemma 2]). Nevertheless, G is exact. We prove this
for m = 2, and the result will follow by induction. We claim that if G = G1 ⊔ G2 with
G1 6∼= G2, then the integer hull IPG is the solution set to the following system (which we
denote by ˜IPG):

(PAG − AGP )i,j = 0 1 6 i, j 6 n,
n
∑

i=1

Pi,j = 1 1 6 j 6 n,

n
∑

j=1

Pi,j = 1 1 6 i 6 n,

n1
∑

i=1

n1+n2
∑

j=n1+1

Pi,j = 0,

0 6 Pi,j 6 1,

where ni = |V (Gi)| with n1 6 n2. Statement 2 then follows again from Theorem 2.4 of
[46].

We now prove the claim. Let AGi
be the adjacency matrix of Gi. Index the adjacency

matrix of G = G1 ⊔ G2 so that the first n1 rows (and hence first n1 columns) index the
vertices of G1. Any feasible P of PG can be written as a block matrix

P =

(

AP BP

CP DP

)

,

in which AP is n1 × n1. Since G1 and G2 are not isomorphic, the only integer vertices of

PG are of the form

(

P1 0
0 P2

)

where Pi is an automorphism of Gi.
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Now let P be any non-integer vertex of PG. We claim that the row sums of BP must
be 1. This will establish that IPG is described by the system ˜IPG. To see this, observe
that if Q is any point in PG not in IPG, it is a convex combination of points in PG, one
of which (say P ) is non-integer. If the row sums of BP are 1, then Q violates the system
˜IPG.

We now prove that if P is a non-integer vertex of PG, then the row sums of BP must
be 1. Since P commutes with the adjacency matrix AG of G, we must have

AP AG1
= AG1

AP , BP AG2
= AG1

BP , CP AG2
= AG1

CP , DP AG2
= AG2

DP .

Let {b1, . . . , bn2
} be the column sums of BP . We shall calculate the sum of the entries

in each column of BPAG2
= AG1

BP in two ways. First, consider AG1
BP . Since G1 is

k-regular, each entry of the i-th column of BP will contribute exactly k times to the sum
of the entries of the i-th column of AG1

BP . Thus, the sum of the entries of the i-th column
of AG1

BP is kbi.
Second, consider BP AG2

. The sum of the entries in its i-th column is the sum of the
entries of the columns of BP indexed by the neighbors of i in G2. Thus, the sum of the
entries in the i-th column of BP AG2

is
∑

l∈δG2
(i) bl. It follows that kbi =

∑

l∈δG2
(i) bl for

each 1 6 i 6 n. This equality can be written concisely as:

(

kIn2×n2
− AG2

)







b1
...

bn2






= 0.

The matrix kIn2×n2
− AG2

is the Laplacian of G2. It is well known that the kernel of
the Laplacian of a connected graph is one dimensional (see [8], Lemma 13.1.1). Since G2

is regular, the kernel contains the all ones vector. It follows that b1 = · · · = bn2
. By a

similar argument, the row sums of CP are all the same. Since all row sums and column
sums of P are 1, and the row sums and column sums of AG1

are the same, it follows that
the row sums of BP are equal and are the same as the column sums of CP .

Now assume for contradiction that the row sums of BP are not 1. If the row sums are
0, then BP and CP would be 0 matrices. Since G1 and G2 are compact this would imply
AP and DP are permutation matrices, contradicting that P is not integral. Thus the sum
of each row of BP is λ with 0 < λ < 1. This implies the sum of the rows of AP is 1 − λ
and that 1

1−λ
AP is a feasible solution to PG1

. By compactness of G1, the matrix 1
1−λ

AP

is a convex combination
∑k

i=1 µkQk of permutations Qk of G1. This implies that

P =
k
∑

i=1

µi

(

(1 − λ)Qk BP

CP DP

)

,

which is a convex combination of feasible solutions to PG, contradicting P being a vertex.
It follows that the row sums of BP must be 1.

Exact graphs are then more abundant than compact graphs and the convex hull of
automorphisms of an exact graph has a description in terms of semidefinite programming.
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It is thus desirable to find nice classes of graphs that are exact. Notice that exactness is
really a property of the set of permutation matrices representing an automorphism group.
This discussion motivates the following question.

Question 4.5. Which permutation subgroups of Sn are exact?

Here we view a permutation subgroup of Sn through its natural permutation represen-
tation in Rn×n. In this light, a permutation subgroup can be considered as a variety, and
we say the permutation subgroup is exact if this variety is exact. As an example, consider
the alternating group An as a subgroup of Sn. It is known (see [7]) that An is never the
automorphism group of a graph on n vertices, so it cannot be presented as the integer
points of a polytope of the form PG with |V (G)| = n. However, there is a description of
An as a variety whose points are vertices of the n × n Birkhoff polytope:

n
∑

j=1

Pi,j = 1, 1 6 i 6 n;

n
∑

i=1

Pi,j = 1, 1 6 j 6 n;

det(P ) = 1; P 2
i,j − Pi,j = 0, 1 6 i, j 6 n.

More generally, when a finite permutation group has a description as a variety, we
can apply the theory of theta bodies to obtain descriptions of convex hulls. Using the
algebraic-geometric ideas outlined in [45] we give a sufficient condition for exactness of
permutation groups.

Let A = {σ1, . . . , σd} be a subgroup of Sn. We consider A as the set of matrices
{Pσ1

, . . . , Pσd
} ⊆ Zn×n, where Pσi

is the permutation matrix corresponding to σi. Let
C[x] := C[xσ1

, . . . , xσd
] be the polynomial ring in d indeterminates indexed by permuta-

tions in A, and let C[t] := C[tij : 1 6 i, j 6 n].
The algebra homomorphism induced by the map

π : C[x] → C[t], π(xσi
) =

∏

16j,k6n

t
(Pσi

)jk

jk (31)

has kernel IA, which is a prime toric ideal [45]. By Theorem 4.3, Corollary 8.9 in [45], and
Corollary 2.5 in [46], the group A is exact if and only if for every reverse lexicographic
term ordering ≺ on C[x], the initial ideal in≺(IA) is generated by square-free monomials.
We now describe a family of permutation groups that are exact.

Let A ⊆ Zn×n be a subgroup of Sn. We say that A is permutation summable if for any
permutations P1, . . . , Pm ∈ A satisfying the inequality

∑m
i=1 Pi − I > 0 (entry-wise), we

have that
∑m

i=1 Pi−I is also a sum of permutation matrices in A. For example, Birkhoff’s
Theorem (see e.g., Theorem 1.1 in Chapter 5 of [27]) implies Sn is permutation summable.
Note that in this case PSn

is the Birkhoff polytope which is known to be exact by the
results in [21]. We prove the following result.

Theorem 4.6. Let A = {σ1, . . . , σd} be a permutation group that is a subgroup of Sn.
(1) If A is permutation summable, then A is exact.
(2) Suppose IA, the toric ideal associated to A, has a quadratically generated Gröbner

basis with respect to any reverse lexicographic ordering ≺, then A is exact.
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Proof. Let IA be the kernel of the algebra homomorphism induced by (31). We shall
abbreviate the action of π on xσ by π(xσ) = tPσ for any σ ∈ A.

Let G be a reduced Gröbner basis for IA with respect to some reverse lexicographic
order ≺ on {xσ1

, . . . , xσd
}. Let xu − xv ∈ G with leading term xu. By Theorem 4.3,

Corollary 8.9 in [45] and Corollary 2.5 in [46], Statement (1) follows if we can find a
square-free monomial xu′ ∈ in≺(IA) such that xu′

divides xu.
Let xτ be the smallest variable dividing xv with respect to ≺. Then xτ is smaller

than any variable appearing in xu by the choice of a reverse lexicographic ordering. Since
xu − xv ∈ G, we have π(xu) = π(xv). It follows that π(xτ ) divides π(xu), so letting
xu = xσi1

· · ·xσik
for some {σi1 , . . . , σik} ⊆ A, we have

π(xu)

π(xτ )
= t

Pσi1
+···+Pσik t−Pτ ,

in which
∑k

j=1 Pσij
− Pτ is a matrix with nonnegative integer entries. Choose a subset

{ρ1, . . . , ρr} ⊂ {σi1 , . . . , σik} such that {Pρ1
, . . . , Pρr

} minimally supports Pτ with Pρi
6=

Pρj
for all i, j, and let xu′

= xρ1
· · ·xρr

. We claim that xu′

is a square-free monomial that
divides xu and lies in in≺(IA), which will prove Statement (1).

By construction, all indeterminates xρ1
, . . . , xρr

are distinct, so xu′

is square-free.
Moreover, since {ρ1, . . . , ρr} ⊂ {σi1 , . . . , σik}, we have that xu′

divides xu. It remains
to show that xu′

lies in in≺(IA). To see this, note that
∑r

i=1 Pρi
− Pτ has nonnegative

integer entries, and hence so does

M =

r
∑

i=1

(Pτ )
−1Pρi

− I

(multiplying by P−1
τ permutes matrix entries, and therefore does not effect nonnegativity).

Since A is permutation summable, the matrix M is a sum of matrices in A, and hence so
is PτM =

∑r
i=1 Pρi

− Pτ . It follows that

r
∑

i=1

Pρi
− Pτ =

r−1
∑

j=1

Pσlj

for some {σl1 , . . . , σlr−1
} ⊂ A. In particular, π(xu′

) = π(xτ )·π(xv′) and so xu′−xτx
v′ ∈ IA.

Since xτ is smaller than any term in xu′

(the monomial xu′

divides xu and the same holds
for xu), the leading term of xu′ −xτx

v′ is xu′

; hence, xu′ ∈ in≺(IA). This proves Statement
(1).

For Statement (2), since any Gröbner basis is quadratically generated, by part (1)
it suffices to show that if P1, P2, Q ∈ A with all entries of P1 + P2 − Q nonnegative,
then P1 + P2 − Q is a permutation matrix. Since supp(Q) ⊂ supp(P1) ∪ supp(P2), the
permutation Q is a vertex of a face containing P1 and P2. By Theorem 3.5 of [22], Q is on
the smallest face containing P1 and P2, and this face is centrally symmetric. Thus, there
is a vertex R such that Q + R = P1 + P2, and the result follows.
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In light of Theorem 4.6, we would like to find permutation groups A that are per-
mutation summable. As we have seen, Birkhoff’s Theorem (see [45]) implies that Sn is
permutation summable. We can use this fact to construct more permutation summable
groups. For instance, Sn1

× · · · × Snm
is permutation summable, simply by applying the

permutation summability condition on each Sni
and taking direct sums. More generally,

if H1, . . . , Hm are permutation summable, then so is H1 × · · · × Hm. We present another
class of permutation summable groups that contains familiar groups.

Definition 4.7. Let A be a permutation subgroup of Sn. We say A is strongly fixed-point
free if for every σ ∈ A\{1}, we have σ(i) 6= i for any i ∈ {1, . . . , n}.

Corollary 4.8. Let A be a strongly fixed-point free subgroup of Sn. Then A is exact.

Proof. Let A be strongly fixed-point free. Consider any subset {Pσ1
, . . . , Pσk

} of A and

assume
∑k

i=1 Pσi
− I is a matrix with nonnegative entries. Then one of the matrices in A

contains a fixed point. Without loss of generality, assume Pσ1
is one such matrix. Since

A is strongly fixed-point free, we have Pσ1
= I. Hence,

k
∑

i=1

Pσi
− I =

k
∑

i=2

Pσi
,

and thus A is permutation summable. The result now follows from Theorem 4.6.

There are many well-known families of permutation groups that are strongly fixed-
point free, and hence exact. These include the group generated by any n cycle in Sn, and
even dihedral groups (dihedral groups of order 4n as subgroups of S2n).
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[27] M. M. Kovalëv, M. K. Kravtsov, and V.A. Yemelichev, Polytopes, graphs and optimi-
sation, Cambridge University Press, Cambridge, 1984, Translated from the Russian
by G. H. Lawden.

[28] J. B. Lasserre, An explicit equivalent positive semidefinite program for nonlinear 0-1
programs, SIAM J. Optim. 12 (2002), no. 3, 756–769 (electronic).

[29] M. Laurent, Semidefinite representations for finite varieties, Math. Program. 109

(2007), no. 1, Ser. A, 1–26.

[30] M. Laurent and F. Rendl, Semidefinite programming & integer programming, Hand-
book on Discrete Optimization (K. Aardal, G. Nemhauser, and R. Weismantel, eds.),
Elsevier B.V., 2005, pp. 393–514.

[31] S.-Y.R. Li and W.C.W Li, Independence numbers of graphs and generators of ideals,
Combinatorica 1 (1981), no. 1, 55–61.

[32] L. Lovász, Stable sets and polynomials, Discrete Math. 124 (1994), no. 1-3, 137–153,
Graphs and combinatorics (Qawra, 1990).

[33] L. Lovász and A. Schrijver, Cones of matrices and set-functions and 0-1 optimization,
SIAM J. Optim. 1 (1991), no. 2, 166–190.

[34] S. Margulies, Computer algebra, combinatorics, and complexity: Hilbert’s Nullstel-
lensatz and NP-complete problems, Ph.D. thesis, UC Davis, 2008.

[35] Y. Matiyasevich, A criteria for colorability of vertices stated in terms of edge orien-
tations, Discrete Analysis 26 (1974), 65–71.

[36] , Some algebraic methods for calculation of the number of colorings of a graph,
Zapiski Nauchnykh Seminarov POMI 293 (2001), 193–205.
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