Cyclic partitions of complete uniform hypergraphs

Artur Szymański

A. Paweł Wojda^{*}

szymanski@artgraph.eu

Faculty of Applied Mathemetics AGH University of Science and Technology Cracow, Poland

wojda@agh.edu.pl

Submitted: Jun 4, 2010; Accepted: Aug 5, 2010; Published: Sep 1, 2010 Mathematics Subject Classifications: 05C65

Abstract

By $K_n^{(k)}$ we denote the complete k-uniform hypergraph of order $n, 1 \leq k \leq n-1$, i.e. the hypergraph with the set $V_n = \{1, 2, ..., n\}$ of vertices and the set $\binom{V_n}{k}$ of edges. If there exists a permutation σ of the set V_n such that $\{E, \sigma(E), ..., \sigma^{q-1}(E)\}$ is a partition of the set $\binom{V_n}{k}$ then we call it cyclic q-partition of $K_n^{(k)}$ and σ is said to be a (q, k)-complementing.

In the paper, for arbitrary integers k, q and n, we give a necessary and sufficient condition for a permutation to be (q, k)-complementing permutation of $K_n^{(k)}$.

By \tilde{K}_n we denote the hypergraph with the set of vertices V_n and the set of edges $2^{V_n} - \{\emptyset, V_n\}$. If there is a permutation σ of V_n and a set $E \subset 2^{V_n} - \{\emptyset, V_n\}$ such that $\{E, \sigma(E), ..., \sigma^{p-1}(E)\}$ is a *p*-partition of $2^{V_n} - \{\emptyset, V_n\}$ then we call it a cyclic *p*-partition of K_n and we say that σ is *p*-complementing. We prove that \tilde{K}_n has a cyclic *p*-partition if and only if *p* is prime and *n* is a power of *p* (and n > p). Moreover, any *p*-complementing permutation is cyclic.

1 Preliminaries and results

Throughout the paper we will write $V_n = \{1, \ldots, n\}$. For a set X we denote by $\binom{X}{k}$ the set of all k-subsets of X. A hypergraph H = (V; E) is said to be k-uniform if $E \subset \binom{V}{k}$ (the cardinality of any edge is equal to k). We shall always assume that the set of vertices V of a hypergraph of order n is equal to V_n . The complete k-uniform hypergraph of order n is denoted by $K_n^{(k)}$, hence $K_n^{(k)} = (V_n; \binom{V_n}{k})$. Let σ be a permutation of the set V_n , let q be a positive integer, and let $E \subset \binom{V_n}{k}$. If $\{E, \sigma(E), \sigma^2(E), \ldots, \sigma^{q-1}(E)\}$ is a partition of $\binom{V_n}{k}$ we call it a **cyclic** q-partition and σ is said to be (q, k)-complementing. It is

^{*}The research of APW was partially sponsored by polish Ministry of Science and Higher Education.

very easy to prove that then $\sigma^q(E) = E$. Write $E_i = \sigma^i(E)$ for i = 0, ..., q - 1. It follows easily that $\sigma^t(E_i) = E_{i+t \pmod{q}}$, for every integer t.

If there is a cyclic 2-partition $\{E, \sigma(E)\}$ of $K_n^{(k)}$, we say that the hypergraph $H = (V_n; E)$ is **self-complementary** and every (2, k)-complementing permutation of $K_n^{(k)}$ is called **self-complementing**. In [16] we have given the characterization of self-complementing permutations which, as it turns out, is exactly Theorem 2 of this paper for $p = 2, \alpha = 1$. Self-complementary k-uniform hypergraphs generalize the self-complementary k-uniform hypergraphs are the subject of the paper [11] by Potŏcnik and Šajna. Gosselin gave an algorithm to construct some special self-complementary k-uniform hypergraphs in [3]. In [6] and [10] Knor, Potŏcnik and Šajna study the existence of regular self-complementary k-uniform hypergraphs.

The main result of this paper is a necessary and sufficient condition for a permutation σ of V_n to be (q, k)-complementing, where q is a positive integer (Theorem 3). In Theorem 5 we characterize integers n, k, α and primes p such that there exists a cyclic p^{α} -partition of $K_n^{(k)}$.

Section 2 contains the proofs of Theorems 1, 2 and 3 given below. Section 3 is devoted to cyclic partitions of complete hypergraph $\tilde{K}_n = (V_n; 2^{V_n} - \{\emptyset, V_n\})$ (we call \tilde{K}_n the **general** complete hypergraph of order *n*, to stress the distinction between complete uniform and complete hypergraphs).

Theorem 1 Let n and k be integers, 0 < k < n, let p_1 and p_2 be two relatively prime integers. A permutation σ on the set V_n is (p_1p_2, k) -complementing if and only if σ is a (p_j, k) -complementing for j = 1, 2.

For integers n and d, d > 0, by r(n, d) we denote the reminder when n is divided by d. So we have $n \equiv r(n, d) \pmod{d}$.

For a positive integer k by $C_p(k)$ we denote the maximum integer c such that $k = p^c a$, where $a \in \mathbf{N}$ (**N** stands for the sets of naturals, i.e. nonnegative integers). In other words, if $k = \sum_{i \ge 0} k_i p^i$, where $0 \le k_i < p$ for every $i \in \{0, 1, ...\}$ (k_i are digits with respect to basis p), then $C_p(k) = \min\{i : k_i \ne 0\}$. If A is a finite set, we write $C_p(A)$ instead of $C_p(|A|)$, for short.

Theorem 2 Let n, p, k and α be positive integers, such that k < n and p is prime. A permutation σ of the set V_n with orbits O_1, \ldots, O_m is (p^{α}, k) -complementing if and only if there is a non negative integer l such that the following two conditions hold:

- (i) $r(n, p^{l+\alpha}) < r(k, p^{l+1})$, and
- (*ii*) $\sum_{i:C_p(O_i) < l+\alpha} |O_i| = r(n, p^{l+\alpha}).$

A condition slightly different from the above has been given (and proved by different method, independently) in [4].

The electronic journal of combinatorics $\mathbf{17}$ (2010), $\#\mathrm{R118}$

Observe that for any permutation σ of V_n with orbits $O_1, ..., O_m$ we have $\sum_{i:C_p(O_i) < l+\alpha} |O_i| \equiv r(n, p^{l+\alpha}) \pmod{p^{l+\alpha}}$, since $\sum_{i=1}^m |O_i| = n$ and $\sum_{i:C_p(O_i) \ge l+\alpha} |O_i| \equiv 0 \pmod{p^{l+\alpha}}$. Hence the condition *(ii)* of Theorem 2 could be written equivalently: $\sum_{i:C_p(O_i) < l+\alpha} |O_i| \le r(n, p^{l+\alpha})$.

Theorem 3 Let $q = p_1^{\alpha_1} p_2^{\alpha_2} \cdot \ldots \cdot p_u^{\alpha_u}$, where p_1, \ldots, p_u are mutually different primes and $\alpha_1, \ldots, \alpha_u$ positive integers. A permutation σ of the set V_n with orbits O_1, \ldots, O_m is (q, k)-complementing if and only if for every $j \in \{1, \ldots, u\}$ there is a positive integer l_j such that the following two conditions hold:

- (i) $r(n, p_i^{l_j + \alpha_j}) < r(k, p_i^{l_j + 1})$, and
- (*ii*) $\sum_{i:C_{p_j}(O_i) < l_j + \alpha_j} |O_i| = r(n, p_j^{l_j + \alpha_j}).$

For the special case of graphs (i.e. 2-uniform hypergraphs) Theorem 2 has been proved in [1].

One may apply Theorem 2 to check that every permutation of V_{89} consisting of two orbits: one of cardinality 64 and the second of cardinality 25 is (2, 40)-complementing. Every permutation of V_{89} consisting of orbits O_1 and O_2 such that $|O_1| = 81$ and $|O_2| = 8$ is (9, 40)-complementing. But it is easily seen (applying either Theorem 2 or Theorem 3) that there is no (18, 40)-complementing permutation of $K_{89}^{(40)}$.

It has been proved in [15] that for given n and k there is a self-complementary k-uniform hypergraph of order n if and only if $\binom{n}{k}$ is even (the corresponding result for graphs was proved first in [13] and [14], independently). The natural question arises: is it true, that if $\binom{n}{k}$ is divisible by q then there is a cyclic q-partition of $K_n^{(k)}$?

The problem of divisibility of $\binom{n}{k}$ was considered in the literature many times, independently. The theorem we give below has been proved in 1852 by Kummer [8], it was rediscovered by Lucas [9] in 1878, then by Glaisher [2] in 1899 and finally, for p = 2 and $\alpha = 1$ only, by Kimball et al. [5] (for an elegant proof of Kummer's result and its connections with Last Fermat Theorem see [12]).

Theorem 4 (Kummer) Let p be a prime and let (n_i) and (k_i) denote the sequences of digits of n and k in base p, so that $n = \sum_{i \ge 0} n_i p^i$ and $k = \sum_{i \ge 0} k_i p^i$ $(0 \le n_i, k_i \le p - 1$ for every i). $C_p(\binom{n}{k})$ is equal to the number of indices i such that either $k_i > n_i$, or there exists an index j < i with $k_j > n_j$ and $k_{j+1} = n_{j+1}, ..., k_i = n_i$.

Let p be a prime integer, 0 < k < n, $k = \sum_{i \ge 0} k_i p^i$, $n = \sum_{i \ge 0} n_i p^i$, where k_i and n_i are digits with respect to the basis p. Note that, by Theorem 2, if there is a cyclic p^{α} -partition of $K_n^{(k)}$ then there are integers l and m, $0 \le m \le l$, such that $n_m < k_m$, and $n_{l+\alpha-1} = n_{l+\alpha-2} = \ldots = n_{l+1} = 0$ (if $\alpha > 1$), and $n_i = k_i$ for $m < i \le l$ (if m < l). Conversely, if for indices l and m we have $n_{l+\alpha-1} = n_{l+\alpha-2} = \ldots = n_{l+1} = 0$ (for $\alpha > 1$), $n_l = k_l, n_{l-1} = k_{l-1}, \ldots, n_{m+1} = k_{m+1}$ (if m < l), and $n_m < k_m$, then any permutation of V_n which has two orbits O_1 and O_2 such that $|O_1| = \sum_{i \ge l+\alpha} n_i p^i$ and $|O_2| = \sum_{i=0}^{l+\alpha-1} n_i p^i = \sum_{i=0}^{l} n_i p^i$ is, by Theorem 2, (p^{α}, k) -complementing. We are thus led to the following corollary of Theorem 2.

Theorem 5 Let n, k, p and α be positive integers such that k < n and p is prime. Suppose that $k = \sum_{i \ge 0} k_i p^i$, $n = \sum_{i \ge 0} n_i p^i$, where k_i and n_i are digits with respect to the basis p. The complete k-uniform hypergraph $K_n^{(k)}$ has a cyclic p^{α} -partition if and only if there exist nonnegative integers l and $m, m \le l$, such that $n_m < k_m$, $n_i = k_i$ for $m < i \le l$, and $n_{l+1} = n_{l+2} = \ldots = n_{l+\alpha-1} = 0$ (if $\alpha > 1$).

It is clear that for $\alpha > 1$ it may happen that n, k and a prime p satisfy the assumption of Theorem 4, but violate the condition (i) of Theorem 2. Hence, in general, it is not true that if p^{α} divides $\binom{n}{k}$ then there is a cyclic p^{α} -partition of $K_n^{(k)}$. However, it is very easy to observe that Theorem 4 and Theorem 5 imply the following.

Corollary 6 Let n, k and p be positive integers such that k < n and p is prime. The complete k-uniform hypergraph $K_n^{(k)}$ has a cyclic p-partition if and only if $p|\binom{n}{k}$.

The problem whether for positive n, k and q there is a cyclic q-partition of $K_n^{(k)}$ is in general open (unless q is a power of a prime).

2 Proofs

2.1 Lemmas

Lemma 1 Let k, n, q be positive integers, k < n. A permutation σ of the set V_n is (q,k)-complementing if and only if $\sigma^s(e) \neq e$ for any subset $e \subset V_n$ of cardinality k and $s \not\equiv 0 \pmod{q}$.

Proof. If σ is (q, k)-complementing, then there is a partition $E_0 \cup ... \cup E_{q-1}$ of $\binom{V_n}{k}$ such that $E_i = \sigma(E_{i-1})$ for i = 0, ..., q-1 (considered mod q). Since the sets $E_0, ..., E_{q-1}$ are mutually disjoint, for every $e \in \binom{V_n}{k}$ if $\sigma^s(e) = e$ then $s \equiv 0 \pmod{q}$.

Let us now sppose that σ is a permutation of V_n such that $\sigma^s(e) \neq e$ for $s \not\equiv 0$ (mod q). We may apply the following simple algorithm of coloring the edges of $K_n^{(k)}$ with q colors. Suppose that an edge $e \in \binom{V_n}{k}$ is not yet colored. We color e with arbitrary color $i_0 \in \{0, 1, ..., q-1\}$ and for every l we color $\sigma^l(e)$ with the color $i_0 + l \pmod{q}$. When all the edges are colored, denote by E_i the set of edges colored with the color i. It is clear that $E_0 \cup ... \cup E_{q-1}$ is a partition of $\binom{V_n}{k}$ and that $\sigma(E_{i-1}) = E_i$ for i = 0, 1, ..., q-1.

Note that by the algorithm given in the proof of Lemma 1 we may obtain all cyclic *p*-partitions of $K_n^{(k)}$ generated by σ .

The proof of Theorem 1 follows immediately by Lemma 1 and the fact that for relatively prime integers p_1 and p_2 we have $l \equiv 0 \pmod{p_1 p_2}$ if and only if $l \equiv 0 \pmod{p_1}$ and $l \equiv p_2 \pmod{p_2}$.

Lemma 2 Let n, k, p and α be positive integers such that k < n and p is prime. The cyclic permutation $\sigma = (1, 2, ..., n)$ is (p^{α}, k) -complementing if and only if $C_p(n) \ge C_p(k) + \alpha$.

Proof. Assume first that $C_p(n) - C_p(k) \ge \alpha$. We shall prove that then the permutation $\sigma = (1, 2, ..., n)$ is (p^{α}, k) -complementing.

Observe that for any postive integer s every orbit of the permutation σ^s has the same cardinality.

By Lemma 1 it is sufficient to prove that for any edge $e \in \binom{V_n}{k}$ if $\sigma^s(e) = e$ then $s \equiv 0 \pmod{p^{\alpha}}$. So let us suppose that $\sigma^s(e) = e$, write $\tau = \sigma^s$ and denote by β the cardinality of any orbit of τ . Note that $\tau^{\beta} = id_{V_n}$ (where id_{V_n} is the identity of the set V_n).

For every vertex $v \in e$ we have clearly $\tau(v) \in e$, hence every orbit of τ containing a vertex of e is contained in e. Therefore $\beta|k$. So there is an integer γ such that $k = \beta\gamma$. We have $\tau^k = (\tau^\beta)^\gamma = id_{V_n}$, hence $\sigma^{sk} = id_{V_n}$ and therefore $sk \equiv 0 \pmod{n}$. This means that there is an integer δ such that $sk = \delta n$, so $sp^{C_p(k)}k' = \delta p^{C_p(n)}n'$ where $p \nmid k'$ and $p \nmid n'$. Since $C_p(n) - C_p(k) \ge \alpha$ the equality $sk' = \delta p^{\alpha} p^{C_p(n) - C_p(k) - \alpha}n'$ implies $s \equiv 0 \pmod{p^{\alpha}}$.

Let now suppose $C_p(n) < C_p(k) + \alpha$. Using once more Lemma 1, we shall prove that the cyclic permutation $\sigma = (1, 2, ..., n)$ is not (p^{α}, k) -complementing. We shall consider two cases, in each indicating an edge $e \in \binom{V_n}{k}$ and $s \not\equiv 0 \pmod{p^{\alpha}}$ such that $\sigma^s(e) = e$.

Let n' and k' be such that $n = p^{C_p(n)}n'$ and $k = p^{C_p(k)}k'$. Note that n' and k' are integers and $k', n' \neq 0 \pmod{p}$.

Case 1: $C_p(n) < C_p(k)$. Since $k = p^{C_p(n)}(p^{C_p(k)-C_p(n)}k') < p^{C_p(n)}n' = n$ we have $p^{C_p(k)-C_p(n)}k' < n'$ and thus we may define

$$e = \bigcup_{j=0}^{p^{C_p(n)}-1} \{jn'+1, ..., jn' + p^{C_p(k)-C_p(n)}k'\}$$

It is very easy to check that |e| = k and $\sigma^{n'}(e) = e$, but $n' \neq 0 \pmod{p^{\alpha}}$ since $n' \neq 0 \pmod{p}$.

Case 2: $C_p(n) \ge C_p(k)$. Since k < n we have $k' < p^{C_p(n) - C_p(k)}n'$ and we may define

$$e = \bigcup_{j=0}^{p^{C_p(k)}-1} \{ jp^{C_p(n)-C_p(k)} + 1, ..., jp^{C_p(n)-C_p(k)}n' + k' \}$$

Again, |e| = k and we have $\sigma^{p^{C_p(n)-C_p(k)}n'}(e) = e$ while $p^{C_p(n)-C_p(k)}n' \not\equiv 0 \pmod{p^{\alpha}}$ (since $n' \not\equiv 0 \pmod{p}$ and $C_p(n) - C_p(k) < \alpha$). **Lemma 3** Let n, k, p, α be positive integers such that $k < n, \alpha \ge 1$ and p is prime. A permutation σ be of the set V_n with orbits O_1, O_2, \ldots, O_m is (p^{α}, k) -complementing if and only if for every decomposition of k in the form

$$k = h_1 + \ldots + h_m$$

such that $0 \leq h_j \leq |O_j|$ for j = 1, ..., m, there is an index $j_0, 1 \leq j_0 \leq m$, such that $h_{j_0} > 0$ and $C_p(O_{j_0}) \geq C_p(h_{j_0}) + \alpha$.

Proof.

1. Let us suppose that σ is a permutation of V_n with orbits $O_1, ..., O_m$ and k is an integer $1 \leq k < n$, such that for any decomposition $k = h_1 + ... + h_m$ of ksuch that $0 \leq h_j \leq |O_j|$ for j = 1, 2, ..., m there is an index j_0 with $h_{j_0} > 0$ and $C_p(O_{j_0}) \geq C_p(h_{j_0}) + \alpha$. We shall apply Lemmas 1 and 2 to prove that then σ is (p^{α}, k) -complementing.

Let $e \in \binom{V_n}{k}$ and suppose that $\sigma^s(e) = e$ for a positive integer s. Denote by e_j the set $e_j = O_j \cap e$ and by h_j the cardinality of e_j for j = 1, 2, ..., m. Let j_0 be such that $h_{j_0} > 0$ and $C_p(O_{j_0}) \ge C_p(h_{j_0}) + \alpha$.

By Lemma 2, σ_{j_0} is a (p^{α}, h_{j_0}) -complementing permutation of the complete h_{j_0} -uniform hypergraph of order $|O_{j_0}|$. Hence, by Lemma 1, we have $s \equiv 0 \pmod{p^{\alpha}}$ and, again by Lemma 2, σ is a (p^{α}, k) -complementing of $K_n^{(k)}$.

2. Let now suppose that σ is a (p^{α}, k) -complementing permutation of $K_n^{(k)}$. Let $O_1, ..., O_m$ be the orbits of σ and suppose that $k = h_1 + ... + h_m$, where $0 \leq h_j \leq |O_j|$ for j = 1, ..., m. Denote by $\sigma_1, ..., \sigma_m$ the cycles of σ corresponding to $O_1, ..., O_m$, respectively. We shall prove that there is $j_0 \in \{1, 2, ..., m\}$ such that $h_{j_0} > 0$ and $C_p(O_{j_0}) \geq C_p(h_{j_0}) + \alpha$.

Suppose, contrary to our claim, that we have $C_p(O_j) < C_p(h_j) + \alpha$ for all $j \in \{1, 2, ..., m\}$ such that $h_j > 0$. By Lemma 2, for every $j \in \{1, 2, ..., m\}$ the cyclic permutation σ_j is not (p^{α}, k_j) -complementing permutation of the complete k_j -uniform hypergraph of order $|O_{j_0}|$. Hence, by Lemma 1, for every $j \in \{1, 2, ..., m\}$ such that $h_j > 0$ there is a set $e_j \in \binom{O_j}{h_j}$ and $s_j \not\equiv 0 \pmod{p^{\alpha}}$, such that $\sigma_j^{s_j}(e_j) = e_j$. Let $e = e_1 \cup ... \cup e_m$. We have |e| = k. Denote by $l = \operatorname{lcm}(s_1, ..., s_m)$ (the least common multiple of $s_1, ..., s_m$). It is clear that $\sigma^l(e) = e$ and $l \not\equiv 0 \pmod{p^{\alpha}}$. Hence, by Lemma 1, σ is not (p^{α}, k) -comlementing, a contradiction.

2.2 Proof of Theorem 2

Proof of sufficiency. Let us suppose that a permutation σ of V_n verifies the conditions (i) and (ii) of the theorem, but it is not (p^{α}, k) -complementing. By Lemma 3, there is a decomposition $k = h_1 + \ldots + h_m$ of k such that $0 \leq h_i \leq |O_i|$ and $C_p(O_i) < C_p(h_i) + \alpha$ for every $i = 1, \ldots, m$ for which $h_i > 0$. Note that if, for an integer l and for an index $i \in \{1, \ldots, m\}$, we have $h_i > 0$ and $C_p(h_i) \leq l$, then $C_p(O_i) < C_p(h_i) + \alpha \leq l + \alpha$. Hence

$$r(k, p^{l+1}) \stackrel{(\text{mod } p^{l+1})}{\equiv} \sum_{i:C_p(h_i) \leqslant l} h_i \leqslant \sum_{i:C_p(O_i) < l+\alpha} |O_i| = r(n, p^{l+\alpha}) < r(k, p^{l+1}),$$

a contradiction.

Proof of necessity. Let us suppose now that the conditions of the theorem do not hold. Then, for any l such that $k_l \neq 0$ we have either

1. $r(n, p^{l+\alpha}) \ge r(k, p^{l+1})$, or 2. $r(n, p^{l+\alpha}) < r(k, p^{l+1})$ and $\sum_{i:C_p(O_i) < l+\alpha} |O_i| > r(n, p^{l+\alpha})$

We shall prove that σ is not a (p^{α}, k) -complementing permutation of $K_n^{(k)}$. We begin by proving three claims.

Claim 1 For every l such that $k_l \neq 0$ we have

$$\sum_{i:C_p(O_i) < l + \alpha} |O_i| \ge r(k, p^{l+1})$$

Proof of Claim 1.

Case 1: $r(n, p^{l+\alpha}) \ge r(k, p^{l+1})$. By the definition of $r(n, p^{l+\alpha})$ we know that there is an integer *b* such that $n = bp^{l+\alpha} + r(n, p^{l+\alpha})$. Hence $\sum_{i:C_p(O_i) \ge l+\alpha} |O_i| \le bp^{l+\alpha}$, and therefore

$$\sum_{i:C_p(O_i) < l+\alpha} |O_i| \ge r(n, p^{l+\alpha}) \ge r(k, p^{l+1})$$

Case 2: $r(n, p^{l+\alpha}) < r(k, p^{l+1})$ and $\sum_{i:C_p(O_i) < l+\alpha} |O_i| > r(n, p^{l+\alpha})$. Since $\sum_{i:C_p(O_i) \ge l+\alpha} |O_i| \equiv 0 \pmod{p^{l+\alpha}}$, we have

$$n = \sum_{i:C_p(O_i) \ge l+\alpha} |O_i| + \sum_{C_p(O_i) < l+\alpha} |O_i| \stackrel{(\text{mod } p^{l+\alpha})}{\equiv}$$
$$\stackrel{(\text{mod } p^{l+\alpha})}{\equiv} \sum_{C_p(O_i) < l+\alpha} |O_i| > r(n, p^{l+\alpha}) \equiv n \pmod{p^{l+\alpha}}$$

Hence there is a positive integer d such that

$$\sum_{C_p(O_i) < l+\alpha} |O_i| = dp^{l+\alpha} + r(n, p^{l+\alpha}) \ge p^{l+1} > r(k, p^{l+1})$$

This completes the proof of the claim.

To see that the next claim is true it is sufficient to represent $x \in \mathbf{N}$ in basis p.

The electronic journal of combinatorics $\mathbf{17}$ (2010), $\#\mathrm{R118}$

Claim 2 For any nonnegative integers l, l', x and a, such that $l' \leq l, x < ap^l, C_p(x) \geq l'$ and $1 \leq a < p$ we have $x + p^{l'} \leq ap^l$. \Box

Claim 3 Let $u_1, ..., u_q$ be positive integers such that $C_p(u_i) \leq l + \alpha - 1$ and $\sum_{i=1}^q u_i \geq ap^l$, $(0 \leq a < p)$. Then there exist $v_1, ..., v_q$ such that

- (1) For every $i \in \{1, ..., q\}$ $v_i \leq u_i$,
- (2) For every $i \in \{1, ..., q\}$ either $C_p(u_i) \leq C_p(v_i) + \alpha 1$ or $v_i = 0$,

(3) $\sum_{i=1}^{q} v_i = ap^l$.

Proof of Claim 3.

Without loss of generality we may suppose that

$$C_p(u_1) \ge C_p(u_2) \ge \dots \ge C_p(u_q)$$

For every i = 1, ..., q denote by $l_i = \min\{C_p(u_i), l\}$. The conditions (1)-(3) are satisfied by the following sequence $(v_i)_{i=1}^q$.

$$v_1 = c_1 p^{l_1} \text{ where } c_1 = \max\{c \in \mathbf{N} : cp^{l_1} \leqslant u_1 \text{ and } cp^{l_1} \leqslant ap^l\}$$
$$v_2 = c_2 p^{l_2} \text{ where } c_2 = \max\{c \in \mathbf{N} : cp^{l_2} \leqslant u_2 \text{ and } v_1 + cp^{l_2} \leqslant ap^l\}$$
$$\dots$$
$$v_i = c_i p^{l_i} \text{ where } c_i = \max\{c \in \mathbf{N} : cp^{l_i} \leqslant u_i \text{ and } v_1 + \dots + v_{i-1} + cp^{l_i} \leqslant ap^l\}$$

. . .

In fact,

- 1. $v_i \leq u_i$ by the definition of c_i .
- 2. Since $l \ge C_p(u_i) \alpha + 1$ we have $C_p(v_i) \ge l_i = \min\{C_p(u_i), l\} \ge C_p(u_i) \alpha + 1$, whenever $v_i \ne 0$, thus (2).
- 3. Suppose that the sequence $(v_i)_{i=1,...,q}$ violates the condition (3) of the claim. Then $\sum_{i=1}^{q} v_i < ap^l$ and by consequence there is $j \in \{1,...,q\}$ such that $v_j < u_j$. By Claim 2 we have $v_j + p^{l_j} = (c_j + 1)p^{l_j} \leq u_j$ and $v_1 + ... + (c_j + 1)p^{l_j} \leq ap^l$, contrary to the choise of c_j .

The claim is proved.

We shall indicate now such a decomposition of k in the form $k = h_1 + ... + h_m$ that

- (1) $h_1, ..., h_m$ are non negative integers,
- (2) $h_i \leq |O_i|$ for every i = 1, ..., m.

(3) $C_p(O_i) \leq C_p(h_i) + \alpha - 1$ or $h_i = 0$ for every i = 1, ..., m.

By Lemma 3, this means that σ is not (p^{α}, k) -complementing. Let $k = k_{l_t} p^{l_t} + k_{l_{t-1}} p^{l_{t-1}} + \ldots + k_{l_0} p^{l_0}$, where $0 < k_{l_j} < p$ for $j = 0, \ldots, t$ and $l_0 < l_1 < \ldots < l_t$, By Claim 1 we have $\sum_{i:C_p(O_i) \leq l_0+\alpha-1} |O_i| \geq k_{l_0} p^{l_0}$. Now apply Claim 3 to construct $h_1^{(0)}, \ldots, h_m^{(0)}$ such that

(1₀)
$$h_i^{(0)} \leq |O_i|$$
 for $i = 1, ..., m$,

- (2₀) $h_i^{(0)} = 0$ if $C_p(O_i) \ge l_0 + \alpha, i = 1, ..., m$,
- $(3_0) \ C_p(O_i) \leqslant C_p(h_i^{(0)}) + \alpha 1 \text{ for } i \text{ such that } h_i^{(0)} > 0 \text{ and } C_p(O_i) < l_0 + \alpha, i = 1, ..., m,$
- $(4_0) \ \sum_{i=1}^m h_i^{(0)} = k_{l_0} p^{l_0}.$

If t = 0 set $h_i = h_i^{(0)}$ for i = 1, ..., m and the proof is finished. So we assume that $t \ge 1$.

Suppose we have constructed the sequences of non negative integers $(h_i^{(j)})_{i=1,\dots,m}$ for $j = 0, \dots, s-1, 1 \leq s \leq t$, such that

$$(1_{s-1}) \quad h_i^{(0)} + h_i^{(1)} + \dots + h_i^{(s-1)} \leq |O_i| \text{ for } i = 1, \dots, m,$$

$$(2_{s-1}) \quad h_i^{(0)} + h_i^{(1)} + \dots + h_i^{(s-1)} = 0 \text{ if } C_p(O_i) \geq l_{s-1} + \alpha, \ i = 1, \dots, m,$$

$$(3_{s-1}) \quad C_p(O_i) \leq C_p(h_i^{(j)}) + \alpha - 1 \text{ if } h_i^{(j)} > 0, \ C_p(O_i) < l_j + \alpha, \ j = 0, \dots, s - 1$$

$$(4_{s-1}) \quad \sum_{i=1}^m h_i^{(j)} = k_{l_j} p^{l_j} \text{ for } j = 0, \dots, s - 1.$$

We shall apply Claims 1 and 3 to construct the sequence $h_1^{(s)}, ..., h_m^{(s)}$ such that

$$\begin{array}{ll} (1_s) \ h_i^{(0)} + h_i^{(1)} + \ldots + h_i^{(s)} \leqslant |O_i| \ \text{for } i = 1, \ldots, m, \\ (2_s) \ h_i^{(0)} + h_i^{(1)} + \ldots + h_i^{(s)} = 0 \ \text{if } C_p(O_i) \geqslant l_s + \alpha, \ i = 1, \ldots, m, \\ (3_s) \ C_p(O_i) \leqslant C_p(h_i^{(s)}) + \alpha - 1 \ \text{whenever } C_p(O_i) < l_s + \alpha \ \text{and } h_i^{(s)} > 0, \ i = 1, \ldots, m, \\ (4_s) \ \sum_{i=1}^m h_i^{(s)} = k_{l_s} p^{l_s}. \end{array}$$

By Claim 1, we have $\sum_{i:C_p(O_i) \leq l_s + \alpha - 1} |O_i| \geq r(k, p^{l_s+1}) = k_{l_s} p^{l_s} + k_{l_{s-1}} p^{l_{s-1}} + \ldots + k_{l_s} p^{l_s}$. Write $\lambda_i = \min\{C_p(h_i^{(j)}) : h_i^{(j)} > 0, j = 1, \ldots, s - 1\}$, for $i = 1, \ldots, m$. We have $h_i^{(0)} + h_i^{(1)} + \ldots + h_i^{(s-1)} = p^{\lambda_i} a$, where a is an integer, hence

$$C_p(O_i) \leq \lambda_i + \alpha - 1 \leq C_p(h_i^{(0)} + h_i^{(1)} + \dots + h_i^{(s-1)}) + \alpha - 1$$

Set $u_i = |O_i| - \sum_{j=0}^{s-1} h_i^{(j)}$ for i = 1, ..., m. We have $\sum_{i=1}^m u_i \ge k_{l_s} p^{l_s}$ so, by Claim 3, there exist non negative integers $h_1^{(s)}, ..., h_m^{(s)}$ with desired properties (1_s) - (4_s) .

The electronic journal of combinatorics ${\bf 17}$ (2010), $\#{\rm R118}$

For every i = 1, ..., m write $h_i = \sum_{j=0}^t h_i^{(j)}$. It is clear that $h_i \leq |O_i|$ for i = 1, ..., m and $\sum_{i=1}^m h_i = k$.

Repeating the argument applied above we prove easily the inequalities

$$C_p(O_i) \leqslant C_p(h_i) + \alpha - 1$$

whenever $h_i \neq 0, i = 1, ..., m$. This proves that the sequence $(h_i)_{i=1}^m$ gives the desired decomposition of k.

2.3 Proof of Theorem 3

The proof of Theorem 3 follows by Theorem 2 and the following lemma.

Lemma 4 Let $k, n, p_1, ..., p_u, \alpha_1, ..., \alpha_u$ be positive integers such that k < n and $p_1, ..., p_u$ are primes. Write $q = p_1^{\alpha_1} \cdot ... \cdot p_u^{\alpha_u}$. A permutation σ of V_n is (q, k)-complementing if and only if σ is $(p_i^{\alpha_i}, k)$ -complementing for i = 1, ..., u.

Proof. By Lemma 1, a permutation $\sigma : V_n \to V_n$ is (q, k)-complementing if and only if for every $e \in \binom{V_n}{k} \sigma^s(e) = e$ implies $s \equiv 0 \pmod{q}$. But $s \equiv 0 \pmod{q}$ if and only if $s \equiv 0 \pmod{p_i^{\alpha_i}}$ for every $i \in \{1, ..., u\}$. The lemma follows.

3 Cyclic partitions of general complete hypergraphs

By \tilde{K}_n we denote the **complete hypergraph** on the set of vertices V_n , i.e. the hypergraph with the set of edges consisting of all non trivial subsets of V_n ($\tilde{K}_n = (V_n; 2^{V_n} - \{\emptyset, V_n\})$). To stress the distinction between \tilde{K}_n and $K_n^{(k)}$ we shall call \tilde{K}_n the **general complete hypergraph**. Let σ be a permutation of V_n . If there is a *p*-partition $\{E, \sigma(E), ..., \sigma^{p-1}(E)\}$ of $2^{V_n} - \{\emptyset, V_n\}$ then we call it **cyclic** *p***-partition of** \tilde{K}_n and permutation σ is then called *p*-complementing. In [18] Zwonek proved that a cyclic 2-partition of the complete general hypergraph \tilde{K}_n exists if and only if *n* is a power of 2 and every 2-complementing permutation is cyclic (i.e. has exactly one orbit). Note that every partition of \tilde{K}_n (and of $K_n^{(k)}$ as well) into two isomorphic parts is necessarily *cyclic* 2-partition.

Theorem 7 The general complete hypergraph \tilde{K}_n has a cyclic p-partition if and only if p is prime and n is a power of p (p < n). Moreover, every p-complementing permutation is cyclic.

Proof. Note first that the general complete hypergraph \tilde{K}_n has a cyclic *p*-partition if and only if every *k*-uniform complete hypergraph $K_n^{(k)}$ has a cyclic *p*-partition for $1 \leq k \leq n-1$. Let us suppose first that \tilde{K}_n has a cyclic *p*-partition and σ is its *p*-complementing permutation.

The permutation σ is cyclic. In fact, suppose that $(a_{i_1}, ..., a_{i_k})$ is a cycle of σ , where $1 \leq k \leq n-1$. Then $\sigma(\{a_{i_1}, ..., a_{i_k}\}) = \{a_{i_1}, ..., a_{i_k}\}$, which is impossible.

Suppose now that p_1 is a prime divisor of p. Let us denote $k = \frac{p}{p_1}$ and $e = \{p_1, 2p_1, ..., kp_1\}$. We have $\sigma^{p_1}(e) = e$ hence, by Lemma 1, $p_1 \equiv 0 \pmod{p}$. Since p_1 is a divisor of p we obtain $p = p_1$. It remains to prove that n is a power of p. Write $\beta = \max\{\gamma \in \mathbf{N} : p^{\gamma} \leq n\}$. Suppose that $p^{\beta} < n$. We shall apply Theorem 2 to prove that there is no cyclic p-partition of $K_n^{(p^{\beta})}$. Since $p^{\beta+1} > n$ we have $r(n, p^{\beta+1}) = n > r(p^{\beta}, p^{\beta+1}) = p^{\beta}$ contradicting the condition (i)

Let us suppose now that p is prime, $n = p^{\beta}$ where β is a positive integer. We shall prove that for any integer k, 0 < k < n, the permutation $\sigma = (1, 2, ..., n)$ is (p, k)-complementing. Let us write $k = k_l p^l + k_{l-1} p^{l-1} + ... + k_o$, where $0 \leq k_i < p$ and $k_l \neq 0$. We shall again apply Theorem 2, for $\alpha = 1$. In fact, note that since $r(k, p^{l+1}) = k > r(p^{\beta}, p^{l+1}) = 0$ and $C_p(n) = \beta \geq l+1$ there is no orbit O_i of σ with $C_p(O_i) < l+1$. Hence the both conditions of Theorem 2 are verified and the proof is complete.

Acknowledgement. The authors would like to thank the anonymous referee for the thorough reading of the manuscript and helpful comments.

References

in Theorem 2 (for $\alpha = 1$ and $k = p^{\beta}$).

- L. Adamus, B. Orchel, A. Szymański, A.P. Wojda and M. Zwonek, A note on tcomplementing permutations for graphs, Information Processing Letters 110 (2009) 44-45.
- [2] J.W.L. Glaisher, On the residue of a binomial coefficient with respect to a prime modulus, Quarterly Journal of Mathematics 30 (1899) 150-156.
- [3] S. Gosselin, Generating self-complementary uniform hypergraphs, Discrete Math. 301 (2010) 1366-1372.
- [4] S. Gosselin, Cyclically *t*-complementary uniform hypergraphs, to appear in the European Journal of Combinatorics.
- [5] S.H. Kimball, T.R. Hatcher, J.A. Riley and L. Moser, Solution to problem E1288: Odd binomial coefficients. Amer. Math. Monthly 65 (1958) 368-369.
- [6] M. Knor and P. Potočnik, A note on 2-subset-regular self-complementary 3-uniform hypergraphs, preprint.
- [7] W. Kocay, Reconstructing graphs as subsumed graphs of hypergraphs, and some selfcomplementary triple systems. Graphs and Combinatorics 8 (1992) 259-276.
- [8] E.E. Kummer, Über die Ergrentzungssätze zu den allgemeinen Reziprozitätsgesetzen,
 J. Reine Angew. Math., 44 (1852) 93-146.
- [9] E. Lucas, Sur les congruences des nombres eulériens et des coefficients differentiels, Bull. Soc. Math. France 6 (1878) 49-54.
- [10] P. Potočnik and M. Sajna, Regular self-comlementary uniform hypergraphs, preprint.

- [11] P. Potŏcnik and Šajna, Vertex-transitive self-complementary uniform hypergraphs, European J. Combin. 30 (2009) 327-337.
- [12] P. Ribenboim, Fermat's Last Theorem for Amateurs, Springer Verlag 1999.
- [13] G. Ringel, Selbstkomplementäre Graphen, Arch. Math. 14 (1963) 354-358.
- [14] H. Sachs, Über selbstkomplementäre Graphen. Publ. Math. Debrecen 9 (1962) 270-288.
- [15] A. Szymański and A.P. Wojda, A note on k-uniform self-complementary hypergraphs of given order, Discuss. Math. Graph Theory 29 (2009) 199-202.
- [16] A. Szymański and A.P. Wojda, Self-complementing permutations of k-uniform hypergraphs, Discrete Mathematics and Theoretical Computer Science 11:1 (2009) 117-124.
- [17] A.P. Wojda, Self-complementary hypergraphs, Discuss. Math. Graph Theory 26 (2006) 217-224.
- [18] M. Zwonek, A note on self-complementary hypergraphs, Opuscula Mathematica 25/2 (2005) 351-354.