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Abstract

J.H. Koolen and J. Park proved a lower bound for the intersection number c2

of a distance-regular graph Γ. Moreover, they showed that a graph Γ, for which
equality is attained in this bound, is a Terwilliger graph. We prove that Γ is the
icosahedron, the Doro graph or the Conway–Smith graph if equality is attained and
c2 > 2.

1 Introduction

Let Γ be a distance-regular graph with degree k and diameter at least 2. Let c be maximal
such that, for each vertex x ∈ Γ and every pair of nonadjacent vertices y, z of Γ1(x), there
exists a c-coclique in Γ1(x) containing y, z. In [1], J.H. Koolen and J. Park showed that
the following bound holds:

c2 − 1 > max{
c′(a1 + 1) − k

(

c′

2

) | 2 6 c′ 6 c}, (1)

and equality implies that Γ is a Terwilliger graph. (For definitions see Sections 2 and 3.)
A similar inequality for a distance-regular graph with a c-claw was proved by C.D.

Godsil, see [2]. J.H. Koolen and J. Park [1] noted that the bound (1) is met for the three
known examples of Terwilliger graphs with c2 > 2. We recall that only three examples
of distance-regular Terwilliger graphs with c2 > 2 are known: the icosahedron, the Doro
graph and the Conway–Smith graph.

In this paper, we will show that a distance-regular graph Γ with c2 > 2, for which
equality is attained in (1), is a known Terwilliger graph.
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2 Definitions and preliminaries

We consider only finite undirected graphs without loops or multiple edges. Let Γ be a
connected graph. The distance d(u, w) between any two vertices u and w of Γ is the
length of a shortest path from u to w in Γ. The diameter diam(Γ) of Γ is the maximal
distance occurring in Γ.

For a subset A of the vertex set of Γ, we will also write A for the subgraph of Γ induced
by A. For a vertex u of Γ, define Γi(u) to be the set of vertices that are at distance i from
u (0 6 i 6 diam(Γ)). The subgraph Γ1(u) is called the local graph of a vertex u and the
degree of u is the number of neighbors of u, i.e., |Γ1(u)|.

For two vertices u, w ∈ Γ with d(u, w) = 2, the subgraph Γ1(u)∩Γ1(w) is called the µ-
subgraph of vertices u, w. We say that the number µ(Γ) is well-defined if each µ-subgraph
occurring in Γ contains the same number of vertices and this number is equal to µ(Γ).

Let ∆ be a graph. A graph Γ is locally ∆ if, for all u ∈ Γ, the subgraph Γ1(u) is
isomorphic to ∆. A graph is regular with degree k if the degree of each of its vertices is
k.

A connected graph Γ with diameter d = diam(Γ) is distance-regular if there are integers
bi, ci (0 6 i 6 d) such that, for any two vertices u, w ∈ Γ with d(u, w) = i, there are
exactly ci neighbors of w in Γi−1(u) and bi neighbors of w in Γi+1(u) (we assume that
Γ−1(u) and Γd+1(u) are empty sets). In particular, a distance-regular graph Γ is regular
with degree b0, c1 = 1 and c2 = µ(Γ). For each vertex u ∈ Γ and 0 6 i 6 d, the subgraph
Γi(u) is regular with degree ai = b0 − bi − ci. The numbers ai, bi, ci (0 6 i 6 d) are
called the intersection numbers and the array {b0, b1, . . . , bd−1; c1, c2, . . . , cd}, is called the
intersection array of the distance-regular graph Γ.

A graph Γ is amply regular with parameters (v, k, λ, µ) if Γ has v vertices, is regular
with degree k and satisfies the following two conditions:

i) for each pair of adjacent vertices u, w ∈ Γ, the subgraph Γ1(u) ∩ Γ1(w) contains
exactly λ vertices;

ii) µ = µ(Γ) is well-defined.

An amply regular graph with diameter 2 is called a strongly regular graph and is a
distance-regular graph. A distance-regular graph is an amply regular graph with param-
eters k = b0, λ = b0 − b1 − 1 and µ = c2.

A c-clique C of Γ is a complete subgraph (i.e., every two vertices of C are adjacent)
of Γ with exactly c vertices. We say that C is a clique if it is a c-clique for certain c. A
coclique C of Γ is an induced subgraph of Γ with empty edge set. We say a coclique is a
c-coclique if it has exactly c vertices.

Let Γ be a strongly regular graph with parameters (v, k, λ, 1). There are integers r
and s such that the local graph of each vertex of Γ is the disjoint union of r copies of the
s-clique. Furthermore, v = 1 + rs + s2r(r − 1), k = rs and λ = s− 1. The set of strongly
regular graph with parameters (1 + rs + s2r(r − 1), rs, s − 1, 1) is denoted by F(s, r).
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Any graph of F(1, r), i.e., a strongly regular graph with λ = 0 and µ = 1, is called a
Moore strongly regular graph. It is well known (see Ch. 1 [3]) that any Moore strongly
regular graph has degree 2, 3, 7 or possibly 57. The graphs with degree 2, 3 and 7 are the
pentagon, the Petersen graph and the Hoffman–Singleton graph, respectively. It is still
unknown whether there exists a Moore graph with degree 57.

Lemma 2.1 If F(s, r) is a nonempty set of graphs, then s + 1 6 r.

Proof. Let Γ be a graph of F(s, r). We can choose vertices u and w from Γ with d(u, w) = 2.
Let x be a vertex of Γ1(u) ∩ Γ1(w). Then the subgraph Γ1(w) − (Γ1(x) ∪ {x}) contains
a coclique of size at most r − 1. Let us consider an s-clique of Γ1(u) − Γ1(w) on vertices
y1, y2, .., ys. The subgraph Γ1(w) ∩ Γ1(yi) (1 6 i 6 s) contains a single vertex zi. The
vertices z1, z2, .., zs are mutually nonadjacent and distinct. Hence, s 6 r − 1. The lemma
is proved.

3 Terwilliger graphs

In this section we give a definition of Terwilliger graphs and some useful facts concerning
them.

A Terwilliger graph is a connected non-complete graph Γ such that µ(Γ) is well-defined
and each µ-subgraph occurring in Γ is a complete graph (hence, there are no induced
quadrangles in Γ). If µ(Γ) > 1, then, for each vertex u ∈ Γ, the local graph of u is also a
Terwilliger graph with diameter 2 and µ(Γ1(u)) = µ(Γ) − 1.

For an integer α > 1, the α-clique extension of a graph Γ̄ is the graph Γ obtained from
Γ̄ by replacing each vertex ū ∈ Γ̄ by a clique U with α vertices, where, for any ū, w̄ ∈ Γ̄,
u ∈ U and w ∈ W , ū and w̄ are adjacent if and only if u and w are adjacent.

Lemma 3.1 Let Γ be an amply regular Terwilliger graph with parameters (v, k, λ, µ),
where µ > 1. Then there is a number α such that the local graph of each vertex of Γ is

the α-clique extension of a strongly regular Terwilliger graph with parameters (v̄, k̄, λ̄, µ̄),
where

v̄ = k/α, k̄ = (λ − α + 1)/α, µ̄ = (µ − 1)/α,

and α 6 λ̄ + 1. In particular, if λ̄ = 0, then α = 1.

Proof. The result follows from [3, Theorem 1.16.3].

There are only three amply regular Terwilliger graphs known with µ > 2. All of
them are distance-regular and are characterized by theirs intersection arrays. The three
examples are:

(1) the icosahedron with intersection array {5, 2, 1; 1, 2, 5} is locally pentagon graph;
(2) the Doro graph with intersection array {10, 6, 4; 1, 2, 5} is locally Petersen graph;
(3) the Conway–Smith graph with intersection array {10, 6, 4, 1; 1, 2, 6, 10} is locally

Petersen graph.
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In [4], A. Gavrilyuk and A. Makhnev showed that a distance-regular locally Hoffman–
Singleton graph has intersection array {50, 42, 9; 1, 2, 42} or {50, 42, 1; 1, 2, 50} and hence
it is a Terwilliger graph. Whether there exist graphs with these intersection arrays is an
open question.

Lemma 3.2 Let Γ be a Terwilliger graph. Suppose that, for an integer α > 1, the local

graph of each vertex of Γ is the α-clique extension of a Moore strongly regular graph ∆.

Then α = 1 and one of the following holds:
(1) ∆ is the pentagon and Γ is the icosahedron;
(2) ∆ is the Petersen graph and Γ is the Doro graph or the Conway–Smith graph;
(3) ∆ is the Hoffman–Singleton graph or a Moore graph with degree 57; in both cases,

the diameter of Γ is at least 3.

Proof. It is easy to see that the graph Γ is amply regular. By Lemma 3.1, we have
α = 1. Statements (1) and (2) follow from [3, Proposition 1.1.4] and [3, Theorem 1.16.5],
respectively.

If the graph ∆ is the Hoffman–Singleton graph and the diameter of Γ is 2, then Γ
is strongly regular with parameters (v, k, λ, µ), where k = 50, λ = 7 and µ = 2. By
[3, Theorem 1.3.1], the eigenvalues of Γ are k and the roots of the quadratic equation
x2 +(µ−λ)x+(µ−k) = 0. The roots of the equation x2−5x−48 = 0 are not integers, a
contradiction. In the remaining case, when ∆ is regular with degree 57, we get the same
contradiction. The lemma is proved.

The next lemma will be used in the proof of Theorem 4.2 (see Section 4).

Lemma 3.3 Let Γ be a strongly regular Terwilliger graph with parameters (v, k, λ, µ).
Suppose that, for an integer α > 1, the local graph of each vertex of Γ is the α-clique

extension of a strongly regular graph with parameters (v̄, k̄, λ̄, µ̄). Then the inequality

k̄ − λ̄ − µ̄ > 1 implies that k − λ − µ > 1.

Proof. We have k = α(1+k̄+k̄(k̄−λ̄−1)/µ̄), λ = αk̄+α−1 and µ = αµ̄+1. If k̄−λ̄−µ̄ > 1,
then k̄(k̄ − λ̄ − 1)/µ̄ > k̄ and this implies that k − λ − µ = α(k̄(k̄ − λ̄ − 1)/µ̄ − µ̄) >
α(k̄ − µ̄) > α(λ̄ + 1) > 1.

4 The Koolen–Park inequality

In this section, we consider bound (1) and classify distance-regular graphs with c2 > 2,
for which this bound is attained.

The next statement is a slight generalization of Proposition 3 from [1], which was
formulated by J.H. Koolen and J. Park for distance-regular graphs. We generalize it to
amply regular graphs. (Our proof is similar to the proof in [1], but we give it for the
convenience of the reader.)
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Proposition 4.1 Let Γ be an amply regular graph with parameters (v, k, λ, µ), and let

c > 2 be maximal such that, for each vertex x ∈ Γ and every pair of nonadjacent vertices

y, z of Γ1(x), there exists a c-coclique in Γ1(x) containing y, z. Then

µ − 1 > max{
c′(λ + 1) − k

(

c′

2

) | 2 6 c′ 6 c},

and, if equality is attained, then Γ is a Terwilliger graph.

Proof. Let Γ1(x) contain a coclique C ′ on vertices y1, y2, . . . , yc′, c′ > 2. Since d(yi, yj) = 2,
it follows that |Γ1(x)∩Γ1(yi)∩Γ1(yj)| 6 µ−1 holds for all i 6= j. Then, by the inclusion–
exclusion principle,

k = |Γ1(x)| > | ∪c′

i=1 (Γ1(x) ∩ (Γ1(yi) ∪ {yi}))|

>

c′
∑

i=1

|Γ1(x) ∩ (Γ1(yi) ∪ {yi})| −
∑

16i<j6c′

|Γ1(x) ∩ Γ1(yi) ∩ Γ1(yj)|

> c′(λ + 1) −

(

c′

2

)

(µ − 1).

So,

µ − 1 >
c′(λ + 1) − k

(

c′

2

) . (2)

Note that equality in (2) implies that the inclusion Γ1(x) ⊆ ∪c′

i=1(Γ1(yi) ∪ {yi}) holds
and we have |Γ1(x) ∩ Γ1(yi) ∩ Γ1(yj)| = µ − 1 for all i 6= j.

Let c be the maximal number satisfying the condition of Proposition 4.1. Then

µ − 1 > max{
c′(λ + 1) − k

(

c′

2

) | 2 6 c′ 6 c}. (3)

We may assume that for an integer c′′, where 2 6 c′′ 6 c, (3) turns into equality, i.e.,

µ − 1 =
c′′(λ + 1) − k

(

c′′

2

) = max{
c′(λ + 1) − k

(

c′

2

) | 2 6 c′ 6 c}. (4)

We will show that c = c′′. For a vertex x ∈ Γ and nonadjacent vertices y, z ∈ Γ1(x),
there exists a c-coclique C in Γ1(x) containing y, z. Equality (4) implies that, for any
subset of vertices {y1, y2, . . . , yc′′} ⊆ C, we have Γ1(x) ⊆ ∪c′′

i=1(Γ1(yi) ∪ {yi}). However, if
c′′ < c, then C 6⊂ ∪c′′

i=1(Γ1(yi) ∪ {yi}), a contradiction.
Hence, c = c′′ and we have |Γ1(x)∩Γ1(y)∩Γ1(z)| = µ−1 for every pair of nonadjacent

vertices y, z ∈ Γ1(x) and for all x ∈ Γ. This implies that each µ-subgraph in Γ is a clique
of size µ and Γ is a Terwilliger graph.

We call inequality (3) the µ-bound.

It is easy to check that the three known Terwillger graphs with µ > 2 (see Section 3)
have equality in the µ-bound.

Our main theorem is to show that the only Terwilliger graphs with µ > 2 and equality
in the µ-bound are the three known examples (of Section 3).
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Theorem 4.2 Let Γ be an amply regular graph with parameters (v, k, λ, µ), and let µ > 1.
If the µ-bound is attained, then µ = 2 and Γ is the icosahedron, the Doro graph or the

Conway–Smith graph.

Proof. By Proposition 4.1, the graph Γ is a Terwilliger graph and, by Lemma 3.1, there is
an integer α > 1 such that the local graph of each vertex of Γ is the α-clique extension of
a strongly regular Terwilliger graph with parameters (v̄, k̄, λ̄, µ̄). By Lemma 3.1, we have
k = αv̄, λ = αk̄ + (α − 1) and µ = αµ̄ + 1.

By the assumption on Γ, for a vertex u ∈ Γ, the local graph of u contains a c-coclique,
for which equality is attained in the µ-bound, i.e.,

µ − 1 = αµ̄ =
c(λ + 1) − k

(

c

2

) =
c(αk̄ + (α − 1) + 1) − αv̄

(

c

2

) = α
c(k̄ + 1) − v̄

(

c

2

)

and

µ̄ =
c(k̄ + 1) − v̄

(

c

2

) .

Hence, c satisfies the following quadratic equation:

c2µ̄ − c(µ̄ + 2(k̄ + 1)) + 2v̄ = 0,

in other words,

c =
(µ̄ + 2(k̄ + 1)) ±

√

(µ̄ + 2(k̄ + 1))2 − 8v̄µ̄

2µ̄
.

This implies that
(µ̄ + 2(k̄ + 1))2

> 8v̄µ̄.

Let the subgraph Γ1(u) be isomorphic to the α-clique extension of a strongly regular
Terwilliger graph with parameters (v̄, k̄, λ̄, µ̄), say ∆. The cardinality of the vertex set of
∆ is v̄ = 1 + k̄ + k̄(k̄ − λ̄ − 1)/µ̄, hence

(µ̄ + 2(k̄ + 1))2
> 8(µ̄ + k̄µ̄ + k̄(k̄ − λ̄ − 1)),

µ̄2 + 4 > 4µ̄ + 4k̄µ̄ + 4k̄2 − 8k̄λ̄ − 16k̄.

Further,
(µ̄/2)2 + 1 > µ̄ + k̄µ̄ + k̄2 − 2k̄λ̄ − 4k̄,

((µ̄/2) − (k̄ + 1))2
> 2k̄(k̄ − λ̄ − 1). (5)

Let us first consider the case µ̄ = 1. There are integers s, r such that ∆ ∈ F(s, r) and
k̄ = rs, λ̄ = s − 1. If k̄ − λ̄ − 1 > k̄/2 + 1, then 2k̄(k̄ − λ̄ − 1) > 2k̄(k̄/2 + 1) = k̄2 + 2k̄.
It follows from (5) that (k̄ + 1/2)2 > k̄2 + 2k̄ and hence 1/4 > k̄, which is impossible.
Therefore, k̄ − λ̄− 1 < k̄/2 + 1, i.e., k̄ < 2(λ̄ + 2). Substituting the expressions for k̄ and
λ̄ into the previous inequality, we get rs < 2(s + 1). By Lemma 2.1, we have s + 1 6 r.
Hence, s + 1 6 r < 2(s + 1)/s and it follows that s = 1, r ∈ {2, 3} and ∆ is the pentagon
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or the Petersen graph. As we already checked that the three examples in Lemma 3.2 (i)
and (ii) satisfy equality in the µ-bound, Theorem 4.2 follows in this case from Lemma
3.2.

Now we may assume µ̄ > 1. Since µ̄ < k̄, the left-hand side of (5) is at most k̄2.
On the other hand, if k̄ − λ̄ − 1 > k̄/2, then the right-hand side of (5) is greater than
2k̄k̄/2 = k̄2, which is impossible. Hence, we have k̄ − λ̄ − 1 6 k̄/2, i.e., k̄ 6 2(λ̄ + 1).

Since µ̄ > 1, there is an integer α1 > 1 such that, for a vertex w ∈ ∆, the subgraph
∆1(w) is the α1-clique extension of a strongly regular Terwilliger graph, say Σ, with

parameters (v1, k1, λ1, µ1), where v1 =
k̄

α1

, k1 =
λ̄ − (α1 − 1)

α1

, µ1 =
µ̄ − 1

α1

. Then the

inequality k̄ 6 2(λ̄ + 1) is equivalent to the inequality v1 6 2(k1 + 1) and the cardinality
of the vertex set of Σ is

v1 = 1 + k1 + k1

(k1 − λ1 − 1)

µ1

.

Further, v1 6 2(k1 + 1) implies that

k1(k1 − λ1 − 1)

µ1

6 k1 + 1,

so
k1 − λ1 − 1 6 µ1(1 + 1/k1) < µ1 + 1

and
k1 < λ1 + µ1 + 2. (6)

If µ1 = 1, then, for certain s1, r1, we have k1 = r1s1 and λ1 = s1 − 1. It follows from
(6) that r1s1 < s1 −1+1+2 = s1 +2, r1 < 1+2/s1 and s1 = 1, r1 = 2. Hence, the graph
∆1(w) is the α1-clique extension of the pentagon. By Lemma 3.2, the graph ∆ is the
icosahedron and the diameter of Γ1(u) is 3, which is impossible because Γ is a Terwilliger
graph.

Hence, µ1 > 1. Let us consider a sequence of strongly regular graphs Σ1 = Σ,
Σ2, . . . , Σh, h > 2, such that, for an integer αi+1 > 1, the local graph of a vertex in
Σi is the αi+1-clique extension of a strongly regular Terwilliger graph Σi+1 with parame-
ters (vi+1, ki+1, λi+1, µi+1), 1 6 i < h and µ(Σh) = 1, i.e., Σh ∈ F(sh, rh) for certain sh, rh.
Such a sequence exists by Lemma 3.1.

Assuming sh > 1, we get kh−λh−µh = rhsh−(sh−1)−1 = sh(rh−1) > 1. According
to Lemma 3.3, we have ki − λi − µi > 1 for all 1 6 i 6 h − 1, which contradicts (6).
Hence, sh = 1 and Σh is a Moore strongly regular graph. By Lemma 3.2, the diameter of
Σh−1 is at least 3, and this contradiction completes the proof.
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