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Abstract

In this paper we study pattern avoidance for affine permutations. In particular,

we show that for a given pattern p, there are only finitely many affine permutations

in S̃n that avoid p if and only if p avoids the pattern 321. We then count the number

of affine permutations that avoid a given pattern p for each p in S3, as well as give

some conjectures for the patterns in S4.

1 Introduction

Given a property Q, it is a natural question to ask if there is a simple characterization of
all permutations with property Q. For example, it is shown in Lakshmibai and Sandhya
[1990] that the permutations corresponding to smooth Schubert varieties are exactly the
permutations that avoid the two patterns 3412 and 4231. In Tenner [2007] it was shown
that the permutations with Boolean order ideals are exactly the ones that avoid the two
patterns 321 and 3412. For more examples, a searchable database listing which classes
of permutations avoid certain patterns can be found at Tenner [2009]. Since we know
pattern avoidance can be used to describe useful sets of permutations, we might ask if we
can enumerate the permutations avoiding a given pattern or set of patterns. The goal of
this paper is to carry out this enumeration for affine permutations.

We can express elements of the affine symmetric group, S̃n, as an infinite sequence of
integers, and it is still natural to ask if there exists a subsequence with a given relative
order. Thus we can extend the notion of pattern avoidance to these affine permutations
and we can try to count how many ω ∈ S̃n avoid a given pattern.
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For p ∈ Sm, let

f p
n = #

{
ω ∈ S̃n : ω avoids p

}
(1)

and consider the generating function

f p(t) =
∞∑

n=2

f p
ntn. (2)

For a given pattern p there could be infinitely many ω ∈ S̃n that avoid p. In this case,
the generating function in (2) is not even defined. As a first step towards understanding
f p(t), we will prove the following theorem.

Theorem 1. Let p ∈ Sm. For any n > 2 there exist only finitely many ω ∈ S̃n that avoid

p if and only if p avoids the pattern 321.

It is worth noting that 321-avoiding permutations and 321-avoiding affine permutations
appear as an interesting class of permutations in their own right. In [Billey et al., 1993,
Theorem 2.1] it was shown that a permutation is fully commutative if and only if it is
321-avoiding. This means that every reduced expression for ω may be obtained from any
other reduced expression using only relations of the form sisj = sjsi with |i − j| > 1.
Moreover, a proof that this result can be extended to affine permutations as well appears
in [Green, 2002, Theorem 2.7]. For a detailed discussion of fully commutative elements in
other Coxeter groups, see Stembridge [1996].

Even in the case where there might be infinitely many ω ∈ S̃n that avoid a pattern p,
we can always construct the following generating function. Let

gp
m,n = #

{
ω ∈ S̃n : ω avoids p and ℓ(ω) = m

}
. (3)

Then set

gp(x, y) =

∞∑

n=2

∞∑

m=0

gp
m,nx

myn. (4)

Since there are only finitely many elements in S̃n of a given length, we always have
gp

m,n < ∞. The generating function g321(x, y) is computed in [Hanusa and Jones, 2009,
Theorem 3.2].

The outline of this paper is as follows. In Section 2 we will review the definition of
the affine symmetric group and list several of its useful properties. In Section 3 we will
prove Theorem 1, which will follow immediately from combining Propositions 4 and 5. In
Section 4 we will compute f p(t) for all of the patterns in S3. Finally, in Section 5 we will
give some basic results and conjectures for f p(t) for the patterns in S4.
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2 Background

Let S̃n denote of the set of all bijections ω : Z → Z with ω(i + n) = ω(i) + n for all i ∈ Z

and
n∑

i=1

ω(i) =

(
n + 1

2

)
. (5)

S̃n is called the affine symmetric group, and the elements of S̃n are called affine permu-

tations. This definition of affine permutations first appeared in [Lusztig, 1983, §3.6] and

was then developed in Shi [1986]. Note that S̃n also occurs as the affine Weyl group of

type Ãn.
We can view an affine permutation in its one-line notation as the infinite string of

integers
· · ·ω−1ω0ω1 · · ·ωnωn+1 · · · ,

where, for simplicity of notation, we write ωi = ω(i). An affine permutation is completely
determined by its action on [n] := {1, . . . , n}. Thus we only need to record the base
window [ω1, . . . , ωn] to capture all of the information about ω. Sometimes, however, it
will be useful to write down a larger section of the one-line notation.

Given i 6≡ j mod n, let tij denote the affine transposition that interchanges i + mn
and j +mn for all m ∈ Z and leaves all k not congruent to i or j fixed. Since tij = ti+n,j+n

in S̃n, it suffices to assume 1 6 i 6 n and i < j. Note that if we restrict to the affine
permutations with {ω1, . . . , ωn} = [n], then we get a subgroup of S̃n isomorphic to Sn, the
group of permutations of [n]. Hence if 1 6 i < j 6 n, the above notion of transposition
is the same as for the symmetric group.

Given a permutation p ∈ Sk and an affine permutation ω ∈ S̃n, we say that ω avoids

the pattern p if there is no subsequence of integers i1 < · · · < ik such that the subword
ωi1 · · ·ωik of ω has the same relative order as the elements of p. Otherwise, we say that

ω contains p. For example, if ω = [8, 1, 3, 5, 4, 0] ∈ S̃6, then 8,1,5,0 is an occurrence of
the pattern 4231 in ω. However, ω avoids the pattern 3412. A pattern can also come
from terms outside of the base window [ω1, . . . , ωn]. In the previous example, ω also has
2,8,6 as an occurrence of the pattern 132. Choosing a subword ωi1 · · ·ωik with the same
relative order as p will be referred to as placing p in ω.

2.1 Coxeter Groups

For a general reference on the basics of Coxeter groups, see Björner and Brenti [2005] or
Humphreys [1990]. Let S = {s1, . . . , sn} be a finite set, and let F denote the free group
on the set S. Here the group operation is concatenation of words, so that the empty word
is the identity element. Let M = (mij)

n

i,j=1 be any symmetric n× n matrix whose entries
come from Z>0 ∪ {∞} with 1’s on the diagonal and mij > 1 if i 6= j. Then let N be the
normal subgroup of F generated by the relations

R = {(sisj)
mij = 1}n

i,j=1 .
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If mij = ∞, then there is no relationship between si and sj. The Coxeter group corre-
sponding to S and M is the quotient group W = F/N .

Any w ∈ W can be written as a product of elements from S in infinitely many ways.
Every such word will be called an expression for w. Any expression of minimal length will
be called a reduced expression, and the number of letters in such an expression will be
denoted ℓ(w), the length of w. Call any element of S a simple reflection and any element
conjugate to a simple reflection, a reflection.

We graphically encode the relations in a Coxeter group via its Coxeter graph. This is
the labeled graph whose vertices are the elements of S. We place an edge between two
vertices si and sj if mij > 2 and we label the edge mij whenever mij > 3. The Coxeter
graphs of all the finite Coxeter groups have been classified. See, for example, [Humphreys,
1990, §2].

In [Björner and Brenti, 2005, §8.3] it was shown that S̃n is the Coxeter group with
generating set S = {s0, s1, . . . , sn−1}, and relations

R =






s2
i = 1,

(sisj)
2 = 1, if |i − j| > 2,

(sisi+1)
3 = 1, for 0 6 i 6 n − 1,

where all of the subscripts are taken mod n. Thus the Coxeter graph for S̃n is an n-cycle,
where every edge is unlabeled.

s0

s1 s2
· · ·

sn−2 sn−1

Figure 1: Coxeter graph for S̃n.

If J ( S is a proper subset of S, then we call the subgroup of W generated by just the
elements of J a parabolic subgroup. Denote this subgroup by WJ . In the case of the affine
symmetric group we have the following characterization of parabolic subgroups, which
follows easily from the fact that, when J = S\{si}, (S̃n)J = Stab([i, i + n − 1]) [Björner
and Brenti, 2005, Proposition 8.3.4].

Proposition 2. Let J = S\{si}. Then ω ∈ S̃n is in the parabolic subgroup (S̃n)J if and

only if there exists some integer i 6 j 6 i + n − 1 such that ωj 6 ωk < ωj + n for all

i 6 k 6 i + n − 1.
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2.2 Length Function for S̃n

For ω ∈ S̃n, let ℓ(ω) denote the length of ω when S̃n is viewed as a Coxeter group. Recall
that for a non-affine permutation π ∈ Sn we can define an inversion as a pair (i, j) such
that i < j and πi > πj. For an affine permutation, if ωi > ωj for some i < j, then we also
have ωi+kn > ωj+kn for all k ∈ Z. Hence any affine permutation with a single inversion
has infinitely many inversions. Thus we standardize each inversion as follows. Define an
affine inversion as a pair (i, j) such that 1 6 i 6 n, i < j, and ωi > ωj. If we let InveSn

(ω)
denote the set of all affine inversions in ω, then ℓ(ω) = #InveSn

(ω), [Björner and Brenti,
2005, Proposition 8.3.1].

We also have the following characterization of the length of an affine permutation,
which will be useful later.

Theorem 3. [Shi, 1986, Lemma 4.2.2] Let ω ∈ S̃n. Then

ℓ(ω) =
∑

16i<j6n

∣∣∣∣
⌊

ωj − ωi

n

⌋∣∣∣∣ = inv(ω1, . . . , ωn) +
∑

16i<j6n

⌊
|ωj − ωi|

n

⌋
, (6)

where inv(ω1, . . . , ωn) = #{1 6 i < j 6 n : ωi > ωj}.

For 1 6 i 6 n define Invi(ω) = #{j ∈ N : i < j, ωi > ωj}. Now let Inv(ω) =
(Inv1(ω), . . . , Invn(ω)), which will be called the affine inversion table of ω. In [Björner

and Brenti, 1996, Theorem 4.6] it was shown that there is a bijection between S̃n and
elements of Zn

>0 containing at least one zero entry.

3 Proof of Theorem 1

We start with the proof of one direction of Theorem 1. Proposition 5 will complete the
proof.

Proposition 4. If p ∈ Sm contains the pattern 321, then there are infinitely many ω ∈ S̃n

that avoid p.

Proof. For k ∈ N, let ω(k) ∈ S̃n be the affine permutation whose reduced expression,
when read right to left, is obtained as follows. Starting at s0, proceed clockwise around
the Coxeter diagram in Figure 1 k(n − 1) steps, appending each vertex as you go. The
base window of the one-line notation of these elements has the form

ω(k) = [1 − k, 2 − k, . . . , n − 1 − k, n + k(n − 1)].

Note these elements correspond with the spiral varieties in the affine Grassmannian from
Billey and Mitchell [2009].

As an example, in S̃4 we have the following:

s2s1s0 = ω(1) = [0, 1, 2, 7]
s1s0s3s2s1s0 = ω(2) = [−1, 0, 1, 10]

s0s3s2s1s0s3s2s1s0 = ω(3) = [−2,−1, 0, 13].
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The infinite string in the one-line notation of ω(k) is a shuffle of two increasing se-
quences. Hence every ω(k) avoids the pattern 321. Thus there are infinitely many per-
mutations in S̃n avoiding the pattern 321, and hence avoiding any pattern p containing
321.

Call a permutation p ∈ Sm decomposable if p is contained in a proper parabolic sub-
group of Sm. Note this is also called sum decomposable by other authors. In other words,
there exists some 1 6 j 6 m − 1 such that {p1, . . . , pj} = {1, . . . , j}. We also have
{pj+1, . . . , pm} = {j +1, . . . , m}, so that we can view q = p1 · · · pj as an element of Sj and
r = pj+1 · · · pm as an element of Sm−j . In this case, write p = q ⊕ r.

Proposition 5. Let p ∈ Sm and ω ∈ S̃n. If p avoids the pattern 321, then there exists

some constant L such that if ℓ(ω) > L, then ω contains the pattern p. Hence there are

only finitely many ω ∈ S̃n that avoid p.

Proof. If p is decomposable, then we can write p = q1 ⊕ · · · ⊕ qk, where each qi is not
decomposable. Suppose that for each 1 6 i 6 k, there exists an Li such that, if ℓ(ω) > Li,
then ω contains qi. Set L = max{L1, . . . , Lk}. If ℓ(ω) > L, then ω contains each of the
qi. By the periodicity property of ω, we may translate the occurrence of each qi in ω to
the right, so that it lies strictly between the occurrence of qi−1 and qi+1. Since the values
of qi lie between the values of qi−1 and qi+1, this gives an occurrence of p in ω. Hence, it
suffices to assume p is not decomposable.

Let a = a1 · · ·aℓ be the subsequence of p consisting of all pj such that pi < pj for all
i < j. Here a is just the sequence of left-to-right maxima. Let b be the subsequence of
p consisting of all pi not in a. By its construction, a must be increasing. Furthermore,
since p avoids the pattern 321, b must also be increasing. To see this, note that if there
is some ps, pt in b with s < t and ps > pt, then there is some r < s with pr > ps, since ps

is not in a. But then prpspt forms a 321 pattern in p.
Let ω ∈ S̃n and suppose that for some 1 6 α < β 6 n, we have

⌊
|ωβ − ωα|

n

⌋
> mℓ+1 + 1.

If ωα < ωβ, set ω′

α = ωβ and ω′

β = ωα + n. Then we will have ω′

α > ω′

β and

⌊
|ω′

β − ω′

α|

n

⌋
> mℓ+1.

So in what follows we will assume ωα > ωβ and

⌊
|ωβ − ωα|

n

⌋
> mℓ+1. (7)

We can now construct the occurrence of p in ω. Our iterative algorithm will complete
in ℓ steps, where ℓ is the length of the subsequence a described above. We will be using
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a1

a2

as

b1

b2

bt

Figure 2: First place all values of p to the left of bt.

translates ωα+kn to place the terms of p in the a sequence and translates ωβ+kn to place
the terms of p in the b sequence.

Since p is not decomposable, a1 6= 1. Hence there is some t such that bt = a1 − 1.
Suppose bt = pi. Let s be the largest index such that as lies to the left of bt in p. Note that
1 < s < m or else p is decomposable. Let y be the largest integer such that ωβ+yn < ωα

and let z =
⌊

y

s

⌋
. Since ωα − ωβ > nmℓ+1, we have y > mℓ+1 and hence z > mℓ. For

each 1 6 k 6 s, use ωα+(k−1)zn to place ak in ω. Then if ωu corresponds to ak and ωv

corresponds to ak+1, we will have

|ωu − ωv| = |u − v| = nz > nmℓ. (8)

Finally, use translates of ωβ to place b1, . . . , bt in ω in such a way that bt is placed at
ωβ+yn and for any 1 6 x < t, if bx lies between ak and ak+1 in p, then bx is placed at a
translate of ωβ between ωα+(k−1)zn and ωα+kzn. By (8) there are at least mℓ translates of
ωβ in this interval, so there is enough space to place all of the bx’s that lie between ak and
ak+1 using translates of ωβ. Thus after the first iteration we have placed p1 · · · pi in ω.

Now suppose we have placed every term in the a sequence up to ar for some 1 < r < ℓ.
If we have placed ar, then we have also placed some additional terms from the b sequence.
Again, fix t so that bt is the largest element in p to the right of ar satisfying bt < ar. We
may assume such a bt exists, or else p is decomposable. If bt = pi, then we have actually
placed p1 · · · pi. Moreover, suppose that the terms from the a sequence among p1 · · · pi

have been placed so that if ωu corresponds to ak and ωv corresponds to ak+1 for some
1 6 k 6 r, then

|ωu − ωv| = |u − v| > nmℓ−r+1. (9)

Note we must have also already placed ar+1, or else ar+1 = pi+1 and hence p is decompos-
able.

We will now show how to place all terms in p from the b sequence whose values are
between ar and ar+1, thus completing the (r+1)st step of our algorithm. Note that in the
process of placing these terms, we will also possibly be placing some additional terms from
the a sequence. Let ωu correspond to ar and ωv correspond to ar+1. Then we have at least
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ar

ar+1

ar+2

as

bt = pi

pj

Figure 3: The (r + 1)st iteration will place all elements of p between pi+1 and pj .

mℓ−r+1 translates of ωα and ωβ falling between ωu and ωv. So if pj is the largest entry
of p to the left of ar+1 satisfying pj < ar+1, as in the first step of our algorithm, we may
place pi+1, . . . , pj in such a way that any of the terms corresponding to the subsequence
a are placed at least mℓ−r translates apart.

Iterating this algorithm ℓ times will place all of p in ω. Hence if ω is to avoid p, then
we must have ⌊

|ωβ − ωα|

n

⌋
6 mℓ+1 + 1 for all 1 6 α < β 6 n.

Since inv(ω1, . . . , ωn) 6
(

n

2

)
, we conclude by (6) that

ℓ(ω) 6

(
n

2

)
+
(
mℓ+1 + 1

)(n

2

)
=
(
mℓ+1 + 2

)(n

2

)
. (10)

In other words, if ℓ(ω) >
(
mℓ+1 + 2

) (
n

2

)
, then ω will contain p.

For any k, the set of all affine permutations in S̃n of length at most k is finite. Hence
there can be only finitely many elements in S̃n that avoid p.

Note that in general, the length bound ℓ(ω) 6 (mℓ+1 + 2)
(

n

2

)
is much larger than

needed. For the proof of Theorem 1 though, any upper bound on ℓ(ω) will suffice. Given
a specific pattern p, we can tighten the bounds in the above algorithm, and thus obtain
better upper bounds on the maximal length for pattern avoidance.

For example, let p = 3412 ∈ S4. By (10), if ω ∈ S̃n avoids p, then ℓ(ω) 6 66
(

n

2

)
.

Here the algorithm is completed on the first iteration and we can actually prove a tighter
bound ℓ(ω) 6 3

(
n

2

)
for this particular pattern.

4 Generating Functions for Patterns in S3

Let f p
n and f p(t) be as in (1) and (2) in Section 1. Then by Theorem 1 we have f 321

n = ∞
for all n. However, for all of the other patterns p ∈ S3 we can still compute f p(t).
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Theorem 6. Let f p(t) be as above. Then

f 123(t) = 0, (11)

f 132(t) = f 213(t) =
∞∑

n=2

tn, (12)

f 231(t) = f 312(t) =

∞∑

n=2

(
2n − 1

n

)
tn. (13)

To make the proof easier, we first study a few operations on S̃n that interact with
pattern avoidance in a predictable way.

Lemma 7. Let ω ∈ S̃n and p ∈ Sm. Then ω avoids p if and only if ω−1 avoids p−1.

Proof. The proof is the same as the one for non-affine permutations given in [West, 1990,
Lemma 1.2.4]. Suppose ω contains p, so that ωi1ωi2 · · ·ωim is an occurrence of p in ω. Let
jk = ωik for 1 6 k 6 m. Then ω−1

j1
· · ·ω−1

jm
will give an occurrence of p−1 in ω−1.

Now define a map σr : S̃n → S̃n by setting

σr(ω)i =

{
ωi−1 + 1, if 2 6 i 6 n,

ωn − n + 1, if i = 1.

This has the effect of shifting the base window of ω one space to the right, while preserving
the relative order of the elements. The affine inversion table of σr(ω) is a barrel shift of
the affine inversion table of ω one space to the right. Similarly, define σℓ = σ−1

r , which will
perform a barrel shift one space to the left. Thus σr is the length-preserving automorphism
of S̃n of order n obtained by rotating the Coxeter graph one space clockwise.

For example, if ω = [5,−4, 6, 3] ∈ S̃4, which has affine inversion table (4, 0, 3, 1), then
σr(ω) = [0, 6,−3, 7], which has affine inversion table (1, 4, 0, 3).

Lemma 8. Let ω ∈ S̃n and p ∈ Sm. The following are equivalent.

1. ω avoids p.

2. σr(ω) avoids p.

3. σℓ(ω) avoids p.

Proof. The relative order of elements in ω is unchanged after applying σr or σℓ. Hence if
ωi1 · · ·ωim is an occurrence of p in ω, then ωi1+1 · · ·ωim+1 is an occurrence of p in σr(ω)
and ωi1−1 · · ·ωim−1 is an occurrence of p in σℓ(ω).

We are now ready to enumerate the affine permutations that avoid a given pattern in
S3.
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Proof of Theorem 6. For any ω ∈ S̃n, the entries ω1ω1+nω1+2n are always an occurrence
of 123 in ω. Hence f 123

n = 0 for all n. If ω has a descent at ωi so that ωi > ωi+1, then
there is some translate i− sn such that ωi−sn < ωi+1. Hence ωi−snωiωi+1 is an occurrence
of 132 in ω. Also, ωi+n > ωi+1 so that ωiωi+1ωi+n is an occurrence of 213 in ω. Thus the
only affine permutation that can avoid 132 or 213 is the identity. Hence f 132

n = f 213
n = 1.

By Lemma 7 we have f 231
n = f 312

n . Thus it remains to compute f 231
n . So suppose

ω avoids 231. We first show ω is in a proper parabolic subgroup that depends on the
position and value of the maximal element of the base window.

Let α be the index such that ωα = max{ω1, . . . , ωn}. First suppose ωα > n + α − 1.
Shift ω to the left α − 1 times, setting ν = σα−1

ℓ (ω). Then ν1 = ωα − α + 1 > n. Since
ν must satisfy (5), there must exist some 1 < j 6 n with νj 6 0. Then ν1−nν1νj is an
occurrence of 231 in ν. By Lemma 8, ω contains 231, which is a contradiction. So we
must have n 6 ωα 6 n + α − 1.

Now let u = σωα−n
ℓ (ω). Set i = α − ωα + n so that ui = n. If {u1, . . . , un} 6= [n], then

since u must satisfy (5), there is some 1 6 j, k 6 n such that uj < 0 and uk > n. Since ωα

was chosen to be maximal, we must have i < k. Then uiukuj+n will give an occurrence

of 231 in u and hence also in ω by Lemma 8, giving a contradiction. Hence u ∈ Sn ⊂ S̃n.
Let Cn = 1

n+1

(
2n

n

)
be the nth Catalan number. Recall from Knuth [1973] that there

are Cn 231-avoiding permutations in Sn. Again, suppose ωα = max{ω1, . . . , ωn} and
ωα = n + α − i, for some 1 6 i 6 α. Then u = σωα−n

ℓ (ω) is an element in Sn with
ui = n. Furthermore, we have uh < uj for every pair h < i < j. There are Ci−1Cn−i such
permutations. Summing over all possible values of i gives

α∑

i=1

Ci−1Cn−i =
α−1∑

i=0

CiCn−1−i

many 231-avoiding affine permutations whose maximal value in the base window occurs
at index α. Summing over all 1 6 α 6 n then gives

f 231
n 6

n∑

α=1

(
α−1∑

i=0

CiCn−1−i

)
. (14)

Using the defining recurrence,

Cn =

n−1∑

i=0

CiCn−1−i, (15)

for the Catalan numbers, (14) simplifies to

f 231
n 6

(n + 1)

2
Cn =

(
2n − 1

n

)
. (16)

Conversely, if u ∈ Sn ⊂ S̃n is a 231-avoiding permutation with ui = n, then σj
r(u)

will be a 231-avoiding affine permutation for any 0 6 j 6 n − i. Thus we actually have
equality in (16), completing the proof.
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5 Generating Functions for Patterns in S4

We now look at pattern avoidance for patterns in S4. There are 24 patterns to consider,
although for all but three patterns, f p(t) is easy to compute. First let

P = {1432, 2431, 3214, 3241, 3421, 4132, 4213, 4231, 4312, 4321}.

By Theorem 1, if p ∈ P , then f p
n = ∞, so f p(t) is not defined.

Theorem 9. We have

f 1234(t) = 0, (17)

f 1243(t) = f 1324(t) = f 2134(t) = f 2143(t) =

∞∑

n=2

tn, (18)

f 1342(t) = f 1423(t) = f 2314(t) = f 3124(t) =

∞∑

n=2

(
2n − 1

n

)
tn. (19)

Proof. As in Theorem 6 there are no affine permutations avoiding 1234, and only the
identity permutation avoids 1243, 1324, 2134, or 2143. If ωi1ωi2ωi3 is an occurrence of 231
in ω, then there is some translate i1 − sn such that ωi1−sn < ωi3 . Hence ωi1−snωi1ωi2ωi3

is an occurrence of 1342 in ω. Conversely, if ω avoids 231, then it must also avoid any
pattern containing 231, namely 1342. This shows f 1342

n = f 231
n . Similarly, we also have

f 1423
n = f 2314

n = f 3124
n = f 231

n .

Based on some initial calculations, we also have the following conjectures for the
remaining patterns in S4.

Conjecture 1. The following equalities hold:

f 3142
n = f 2413

n =

n−1∑

k=0

(n − k)

n

(
n − 1 + k

k

)
2k (20)

f 3412
n = f 4123

n = f 2341
n =

1

3

n∑

k=0

(
n

k

)2(
2k

k

)
. (21)

Note that (20) is sequence A064062 and (21) is sequence A087457 in Sloane [2009].
It is also worth comparing (21) to the number of 3412-avoiding, non-affine permutations
given in [Gessel, 1990, §7] as

u3(n) = 2
n∑

k=0

(
n

k

)2(
2k

k

)
3k2 + 2k + 1 − n − 2kn

(k + 1)2(k + 2)(n − k + 1)
. (22)
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