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Abstract

Let H be a hypergraph and let Lv : v ∈ V (H) be sets; we refer to these sets
as lists and their elements as colors. A list coloring of H is an assignment of a
color from Lv to each v ∈ V (H) in such a way that every edge of H contains a
pair of vertices of different colors. The hypergraph H is k-list-colorable if it has
a list coloring from any collection of lists of size k. The list chromatic number of
H is the minimum k such that H is k-list-colorable. In this paper we prove that
every d-regular three-uniform linear hypergraph has list chromatic number at least
( log d
5 log log d)1/2 provided d is large enough. On the other hand there exist d-regular

three-uniform linear hypergraphs with list chromatic number at most log3 d + 3.
This leaves the question open as to the existence of such hypergraphs with list
chromatic number o(log d) as d → ∞.

1 Introduction

A hypergraph H is k-uniform if every edge of H has size k, and d-regular if every vertex
of H is in exactly d edges of H . A hypergraph is linear if any pair of distinct edges of the
hypergraph intersect in at most one vertex. Let H be a hypergraph and let Lv : v ∈ V (H)
be sets; we refer to these sets as lists. A list coloring of H is an assignment of an element
of Lv to each v ∈ V (H) in such a way that every edge of H contains a pair of vertices
assigned different elements. The hypergraph H is called k-list-colorable if it has a list
coloring from any collection of lists of size k. The list chromatic number χℓ(H) of H , also
called the choice number of H , is the minimum k such that H is k-list-colorable. In this
paper, we study the list chromatic number of linear uniform regular hypergraphs.

∗Partially supported by NSERC
†Research supported by an Alfred P. Sloan Research Fellowship and NSF Grant DMS-0800704

the electronic journal of combinatorics 17 (2010), #R129 1



1.1 List coloring graphs

The notion of list-coloring is a generalization of the notion of proper coloring, and has
been studied extensively for graphs. In particular, Alon [1] showed that every bipartite
graph of minimum degree at least d has list chromatic number at least 1

2
log2 d, improving

a preceding lower bound of order log d
log log d

as d → ∞ in [2]. On the other hand it is known [9]

that the complete bipartite graph Kd,d with d vertices in each part satisfies χ(Kd,d) =
(1 + o(1)) log2 d. It has been asked whether every bipartite graph with maximum degree
d has list chromatic number O(log d) (see Alon and Krivelevich [4]) but this tantalizing
problem remains open. Here and in what follows, the logarithm is taken to be the natural
logarithm unless a base is explicitly displayed.

1.2 List coloring hypergraphs

There seem to be very few results on list colorings of hypergraphs. Perhaps the most fa-
mous question on colorings of hypergraphs is the Erdős-Faber-Lovász conjecture (see [6]):
given an n-uniform linear hypergraph consisting of n edges, there is vertex-coloring of the
hypergraph for which every edge receives all n colors. Equivalently, the conjecture states
that any graph comprising the union of n edge-disjoint cliques of size n has chromatic
number n. Via a more general result on coloring linear hypergraphs, Kahn [11] showed
that that an n-uniform linear hypergraph can be vertex-colored with n + o(n) colors in
such a way that the vertices in each edge all receive different colors. Recently, a simple
proof of the Erdős-Faber-Lovász conjecture was announced. For Steiner triple systems
with n vertices – three-uniform hypergraphs in which every pair of vertices is covered
exactly once – a lower bound of order log n/ log log n for the list chromatic number was
shown in [10]. In this paper, we concentrate on giving bounds on the list chromatic num-
ber of all linear regular three-uniform hypergraphs, which we refer to as triple systems.
We shall check in this paper that the complete r-partite r-uniform hypergraph Kr×n with
parts of size n has list chromatic number asymptotic to logr n as n → ∞.

1.3 Main Theorem

The main result of this paper shows that every d-regular linear triple system has large
list chromatic number:

Theorem 1 There exists a constant d0 such that for d > d0, every d-regular linear triple

system H has

χℓ(H) >
( log d

5 log log d

)1/2

.

On the other hand, there exists a d-regular linear triple system with list chromatic number

at most log3 d + 3.

The requirement of linearity in this theorem is necessary. Consider the triple system
consisting of vertex set V = V1 ∪ · · · ∪ Vn ∪ W with |Vi| = 2 and |W | = n and where
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the edge set E consists of {e ⊂ V : |e ∩ W | = 1, ∃i : Vi ⊂ e}. This is an n-regular triple
system whose list chromatic number is two, since for any assignment of lists we can choose
different colors for the two vertices inside each Vi.

Relative to the theorem above, the most relevant open question is the existence of
d-regular linear triple systems with list chromatic number o(log d) as d → ∞. We leave
this as an open problem.

Problem. Do there exist three-uniform d-regular linear hypergraphs of list chromatic
number o(log d) as d → ∞?

2 List coloring complete r-partite hypergraphs

In this section, we show that for infinitely many d, there exists a linear d-regular triple
system with list chromatic number at most log3 d+3. The example is the following three-
partite triple system K3×d(L): if L is any d×d latin square, then we create a linear triple
system with three parts as follows. We index the rows of L by a set R of size d, the
columns by a set C of size d, and then let R, C, [d] denote the parts of K3×d(L). Then
the edges of K3×d(L) are all triples {r, c, i} with r ∈ R, c ∈ C, and such that i is in
position (r, c) in L. Note that by definition of a latin square there are no repeated entries
in any row or column of L, so the triple system K3×d(L) is d-regular and linear. We will
show that it has list chromatic number at most log3 d + 3 by showing that the complete
r-partite hypergraph Kr×d – which contains K3×d(L) when r = 3 – has list chromatic
number at most logr d + 3. We will also show that Kr×d has list chromatic number at
least logr d − O(log log d) as d → ∞. Our argument is based on that of [9]. We define
a hypergraph H to be r-colorable if the list assignment in which all lists are {1, . . . , r}
admits a list coloring of H . The following lemma will be used:

Lemma 2 Let mr(k) denote the minimum number of edges in a k-uniform hypergraph

which is not r-colorable. Then as k → ∞,

rk−1
6 mr(k) 6 Or(k

2rk).

Proof ⊲ A random r-coloring of a hypergraph consists in choosing uniformly at random
a color from [r] independently for each vertex in the hypergraph. The lower bound of rk−1

in the lemma follows from the fact that in a random r-coloring of a k-uniform hypergraph
with m edges, the expected number of edges whose vertices are all assigned the same
color is r1−km, so if m < rk−1, then the hypergraph is r-colorable. In fact, this is all we
shall need to prove χℓ(Kr×n) 6 logr n + 3. The upper bound on mr(k) also follows from
probabilistic methods; we sketch the proof for r > 2, since it is very similar to the proof
for r = 2 given in [7] (see also Alon and Spencer [5], Page 9). We consider a hypergraph
H with vertex set [rk2] constructed by randomly and uniformly selecting sets of size k in
T independent rounds from [rk2]. We shall take

T = ⌈2k2(er)k log r⌉.
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An r-coloring of H is a partition (X1, X2, . . . , Xr) of the vertex set [rk2] of H . An edge
of H is monochromatic if it lies entirely in some Xi. We say that an r-coloring of H fails

in round i if in the ith round, the chosen set of size k is monochromatic. The aim is to
show that the expected number of r-colorings which do not fail in any round is less than
one, and we follow the computation of Erdős [7]. The probability that the edge chosen at
round i is monochromatic for a given coloring (X1, X2, . . . , Xr) is exactly

(

rk2

k

)−1 r
∑

i=1

(|Xi|
k

)

.

By convexity of binomial coefficients, the sum is a minimum when |X1| = |X2| = · · · =
|Xr| = k2:

r
∑

i=1

(|Xi|
k

)

> r

(

k2

k

)

.

Using the standard bounds
(

rk2

k

)

6 (erk)k and
(

k2

k

)

> kk, the probability that an edge
chosen at round i is monochromatic is at least r/(er)k. It follows that the probability
that a given coloring (X1, X2, . . . , Xr) does not fail at any round is at most

(

1 − r

(er)k

)T

since the rounds are independent. Now T was chosen so that this quantity is less than
r−rk2

. Since the number of r-colorings of [rk2] is rrk2

, we conclude that the expected
number of r-colorings which do not fail at any round is less than one. In particular,
there is a witness H to this event. This hypergraph H has exactly T edges and is not
r-colorable, as required.

We use the bounds on mr(k) in the above lemma to give bounds on χℓ(Kr×m) as
follows:

Theorem 3 For all r > 2 and as m → ∞,

χℓ(Kr×m) = (1 + o(1)) logr m.

Proof ⊲ If we can show χℓ(Kr×m) 6 k when rm = mr(k) − 1 and χℓ(Kr×m) > k + 1
when m = mr(k), then we are done using the bounds in the last lemma, since rm+1 > rk−1

implies k 6 logr m + 3 and m 6 Ck2rk implies k > logr m − 2 logr logr m − O(1) when
m → ∞, as required. First we show that for m = mr(k), we have χℓ(Kr×m) > k. By
definition of mr(k) = m, there is a k-uniform hypergraph F with m edges such that F is
not r-colorable. We let the lists in the ith part Vi of Kr×m be exactly the edges of F , for
1 6 i 6 r. We claim there is no coloring of Kr×m from this list assignment. Suppose, for
a contradiction, that there is a list coloring of Kr×m from these lists, and let S1, S2, . . . , Sr

be the sets of colors used on the vertices of V1, V2, . . . , Vr, respectively. Note that each Si

is actually a set of vertices of F . We observe that

r
⋂

i=1

Si = ∅
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otherwise a certain color appears on a vertex vi ∈ Vi for 1 6 i 6 r, in which case
{v1, v2, . . . , vr} is a monochromatic edge of Kr×m. Since each Si is a transversal of the
edges in F , Ti = V (F )\Si does not contain any edges of F for 1 6 i 6 r. Since

⋂

Si = ∅,
every vertex of F is in the complement of some Si and therefore T1 ∪ · · · ∪ Tr = V (F ).
This contradicts that F is not r-colorable, and hence χℓ(Kr,m) > k when m = mr(k).

Conversely we show χℓ(Kr×m) 6 k when rm = mr(k) − 1. Consider an assignment
of lists of size k to the rm vertices of Kr×m, and let F be the k-uniform hypergraph of
all those lists. Then F has an r-coloring since |F | < mr(k). Fix an r-coloring of F , say
V (F ) = T1∪T2∪· · ·∪Tr. The list Lv at a vertex v ∈ Vi must contain an element not in Ti,
otherwise Lv would be monochromatic under the coloring T1 ∪T2 ∪ · · · ∪Tr of F . To each
v ∈ Vi we assign an arbitrary element of Lv\Ti, for 1 6 i 6 r. We claim this is a proper
coloring of Kr×m. If not, then there is an edge {v1, v2, . . . , vr} in Kr×m where vi ∈ Vi,
and such that every vi : 1 6 i 6 r receives the same color, which is an element of Tj for
some j ∈ [r]. However, vj was assigned an element of Lvj

\Tj , which is a contradiction.
Therefore χℓ(Kr×m) 6 k. This completes the proof.

It appears to be an interesting question to determine f(d) = minL χℓ(K3×d(L)) where
the minimum is over all d × d latin squares. In particular, it would be interesting to
determine whether f(d) = o(log d) as d → ∞.

3 Lemmas

The probabilistic lemmas we use to prove Theorem 1 are given here. The first lemma
is the Chernoff bound, one of the basic tools in probabilistic methods – see for example
Alon and Spencer [5].

Lemma 4 Let Z1, Z2, . . . , Zn be identically distributed independent random variables

where P (Zi = 1) = p and P (Zi = 0) = 1 − p, and let S be their sum. Then for any

ǫ ∈ (0, 1],
P (|S − E(S)| > ǫE(S)) 6 2 exp(−ǫ2E(S)/2).

We also require the Lovász Local Lemma [8] in the following form. Here and in what
follows, Ac denotes the complement of an event A.

Lemma 5 Let A1, A2, . . . , An be events in a probability space, such that each Ai is mu-

tually independent of any subset of events indexed by the set [n]\Ji for some dependency

set Ji ⊂ [n] where max |Ji| = △. Suppose that

P (Ai) 6
1

4△
for all i ∈ [n]. Then

P (

n
⋂

i=1

Ac
i) > exp

(

− n

△
)

.
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4 Proof of Theorem 1

We are given a d-regular linear triple system H , and we want to come up with a collection
of lists on the vertices from which no coloring is possible and where the lists are as large
as possible. The idea of the proof is to show that if we assign random lists of length s in
[t] := {1, 2, . . . , t} to the vertices of H , for some carefully chosen values of s and t, then
with positive probability there is no proper coloring of H from these lists. We will choose
s = (log d)1/2(5 log log d)−1/2 and t = (8s)s(s+4) and put p := 1/(8s)3t. If d is a large
enough constant, then it is straightforward to check that the parameters p, s, t satisfy (for
completeness a verification is written in the appendix):

t exp(−s2p3d/4t2) < 1/64d2 (1)

exp(−n/(8s)2t) < s−3pn (2)

exp(−p2n/8) < exp(−n/d2). (3)

For any K 6 (8s)s, we record that standard bounds on binomial coefficients (see Appendix
: Lemma 6) give

(

t/K

s

)

> (2K)−s

(

t

s

)

. (4)

4.1 Preprocessing

Define random sets X ⊂ V (H) and Y ⊂ V (H) by independently placing each vertex of
V (H) into X with probability p2 and into Y with probability p and into Z = V (H)\(X∪Y )
with probability 1 − p − p2. Let H ′ denote the three-partite hypergraph consisting of all
{x, y, z} ∈ H such that x ∈ X, y ∈ Y and z ∈ Z. We write d(x, y) > 2 to denote that
in H ′ every edge on x is disjoint from every edge on y – in other words x and y are at
distance more than two. For y ∈ Y let ΓX(y) = {x ∈ X : {x, y, z} ∈ H ′ for some z} and
for z ∈ Z let ΓXY (z) = {(x, y) ∈ X × Y : {x, y, z} ∈ H ′}. Define dX(y) = |ΓX(y)| and
dXY (z) = |ΓXY (z)|. Since H is a d-regular linear hypergraph, we have for y ∈ Y and
z ∈ Z,

E(dX(y)) = 2p2(1 − p − p2)d and E(dXY (z)) = 2p3d.

Let Ay : y ∈ Y be the events p2d < dX(y) < 4p2d and let Az : z ∈ Z be the event
p3d < dXY (z) < 4p3d.

Claim 1. With positive probability, each event AX = {1
2
p2n < |X| < 2p2n} and

AY = {1
2
pn < |Y | < 2pn} and every Ay : y ∈ Y and every Az : z ∈ Z occurs.

Proof. We shall apply the Chernoff Bound with ǫ = 1/
√

8. The event Ay contains the
event |dX(y)−E(dX(y))| < ǫE(dX(y)), since p < 1/83, and clearly Az contains the event
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|dXY (z) − E(dXY (z))| < ǫE(dXY (z)). Since vertices are placed independently in the sets
X and Y , Lemma 4 shows

P (Ac
y) 6 2 exp

(

−p2d

8

)

and P (Ac
z) 6 2 exp

(

−p3d

8

)

(5)

and similarly P (Ac
X) 6 2 exp(−p2n/8) and P (Ac

y) 6 2 exp(−pn/8). A dependency graph
of the events Ay : y ∈ Y and Az : z ∈ Z has maximum degree at most △ = 4d2, since
any single event Ac

v is mutually independent of any set of events Ac
w : d(v, w) > 2. By

(1), both the bounds in (5) are easily less than 1/4△. By Lemma 5, with probability at
least exp(−n/4d2) every Ay : y ∈ Y and every Az : z ∈ Z occurs. By (3), exp(−n/4d2) >
P (Ac

X∪Ac
Y ), and so with positive probability, the events AX and AY and every Ay : y ∈ Y

and Az : z ∈ Z occurs. This proves the claim. �

For the remainder of the proof, we work in a subhypergraph H ′ for which all the events
in Claim 1 hold, and we assume that X, Y and Z are the parts of H ′.

4.2 Choice of lists in X

First we assign lists to X. We choose uniformly and independently random lists of size
s from [t] for the vertices of X. For y ∈ Y , let By be the event that no color appears
in more than 2sdX(y)/t lists in ΓX(y) and for z ∈ Z let Bz be the event that no color
appears in more than 2sdXY (z)/t lists in

ΓX(z) :=
⋃

{x ∈ X : ∃y ∈ Y, (x, y) ∈ ΓXY (z)}.

Claim 2. With positive probability, every By : y ∈ Y and every Bz : z ∈ Z occurs.

Proof. Since H ′ is linear, note that |ΓX(z)| = dXY (z). The expected number of times
a particular color appears in lists in ΓX(y) is exactly sdX(y)/t and the expected number
of times a particular color appears in ΓX(z) is sdXY (z)/t. Since the lists are chosen
independently, the probability that a particular color appears in more than 2sdX(y)/t
lists in ΓX(y) is at most 2 exp(−sdX(y)/2t), by the Chernoff Bound with ǫ = 1. A similar
statement holds for the colors in ΓX(z), and since there are at most t colors, we deduce
from the union bound that

P (Bc
y) < 2t exp(−sdX(y)/2t) < 2t exp(−sp2d/2t)

P (Bc
z) < 2t exp(−sdXY (z)/2t) < 2t exp(−sp3d/2t).

A dependency graph of the events Bc
v has maximum degree at most △ = 4d2, since

Bc
v is mutually independent of any events Bc

w : d(v, w) > 2. By (1), we easily have
P (Bc

y) < 1/4△ and P (Bc
z) < 1/4△, and so Lemma 5 completes the proof of Claim 2. �

From now on we fix an assignment of lists L∗ of size s from [t] to the vertices of X,
such that every By : y ∈ Y and every Bz : z ∈ Z occurs. Let ρy be the number of colors
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used at least dX(y)/2t times on ΓX(y). Since By occurs,

(t − ρy)
dX(y)

2t
+ ρy

2sdX(y)

t
> dX(y)

and it follows that ρy > t/4s. Since every By occurs, we have that for each y ∈ Y and
each coloring of X from L∗ there exists a set Sy of ⌈t/4s⌉ colors each appearing at least
p2d/2t times in ΓX(y).

4.3 Choice of lists in Y

Now we independently and randomly assign lists Ly of size s from [t] to the y ∈ Y . For
a fixed coloring of X from L∗, if Ly ⊂ Sy, then any color selected from Ly results in at
least p2d/2t vertices x ∈ ΓX(y) of the same color as y. Let Bχ be the event that under a
coloring χ of X, Ly ⊂ Sy for at least 1

2
(8s)−s|Y | vertices y ∈ Y , and let B =

⋂

χ Bχ where
the intersection is over all colorings of X from L∗. For z ∈ Z, let Cz be the event that no
color appears on the list at x and at y for at least 4s2dXY (z)/t2 pairs (x, y) ∈ ΓXY (z).

Claim 3. With positive probability, B as well as every Cz : z ∈ Z occurs.

Proof. We observe that for every χ and every y,

P (Ly ⊂ Sy) >

(

t/4s

s

)

/

(

t

s

)

> (8s)−s

using (4) with K = 4s. Therefore the expected number of events Ly ⊂ Sy is at least
(8s)−s|Y |. Since the Ly are chosen independently, the Chernoff Bound with ǫ = 1/2
shows that for a fixed coloring χ of X,

P (Bc
χ) < 2 exp

(

− |Y |
8(8s)s

)

.

Since there are at most s|X| colorings of X, and since by Claim 1 |Y | > pn/2 and |X| 6

2p2n, the expected number of colorings χ of X for which Bc
χ occurs is at most

2 exp
(

− |Y |
8(8s)s

)

· s|X| < 2 exp
(

− pn

16(8s)s
+ 2p2n log s

)

< exp
(

− pn

20(8s)s

)

.

By (2), with room to spare, this is less than exp(−n/d2), and so Markov’s Inequality
gives P (Bc) < exp(−n/2d2). For x ∈ ΓX(z), there is a unique y ∈ ΓY (z) such that
(x, y) ∈ ΓXY (z), since H is linear. The chance that y is assigned a list containing a
particular color in Lx is exactly s/t. Fix a color i, and let Ci

z be the event that color i
appears on the list at x and at y for at least 4s2dXY (z)/t2 pairs (x, y) ∈ ΓXY (z). Recall
that since every Bz occurs, color i appears at most 2sdXY (z)/t times in ΓX(z). The
expected number of (x, y) ∈ ΓXY (z) such that i ∈ Lx ∩Ly is at most 2s2dXY (z)/t2. Since
lists are assigned independently, we may apply the Chernoff Bound with ǫ = 1 to obtain

P (Ci
z) < 2 exp(−s2dXY (z)/t2).
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Since there are t colors in total, the union bound shows

P (Cc
z) < 2t exp(−s2dXY (z)/t2).

By Claim 1, this is at most
t exp(−s2p3d/2t2).

Now Cc
z is mutually independent of any events Cc

w : d(w, z) > 2, so a dependency graph of
events Cc

z has maximum degree at most △ = 4d2. By (1), P (Cc
z) < 1/4△ and so Lemma

5 shows that with probability at least exp(−n/4d2), every Cz occurs. Using the preceding
bound on P (Bc), we see that with positive probability every Cz : z ∈ Z and B occurs. �

Let us now extend our list assignment L∗ to include a list assignment of s elements
from [t] to each y ∈ Y , such that B and each Cz : z ∈ Z occurs.

4.4 Choice of lists for Z

We have assigned lists L∗ to the vertices of X and Y in such a way that in every coloring
of X, there is a set S ⊂ Y of size at least pn/4(8s)s with the property that for y ∈ S,
Ly ⊂ Sy (this is the event B), and for every z ∈ Z, every color appears on the list at x
and at y for at most 4s2dXY (z)/t2 pairs (x, y) ∈ ΓXY (z) (these are the events Cz). Now
we show that there exists an assignment of lists to Z from which no coloring of H ′ is
possible.

Let G denote the bipartite graph consisting of parts X and Y and edges
⋃

z∈Z ΓXY (z).
If κ is any fixed coloring of X ∪ Y , then since B occurs, whichever color from Ly that is
assigned to y by κ results in at least p2d/2t pairs (x, y) ∈ G such that x and y have the
same color. Therefore we have at least

∑

y∈S

p2d

2t
>

p3dn

8t(8s)s

pairs (x, y) ∈ G such that x and y are assigned the same color by κ. We call these
monochromatic edges of G. Let T denote the set of z ∈ Z such that ΓXY (z) contains at
least p3d/t(8s)s+1 monochromatic edges under κ. Since every Cz occurs, no ΓXY (z) can
contain more than t · 4s2dXY (z)/t2 6 16s2p3d/t monochromatic edges under κ. Therefore

|T | · 16s2p3d

t
+ (n − |T |) · p3d

t(8s)s+1
>

p3dn

4t(8s)s
.

From this it follows that |T | > n/(8s)s+2. Since every Cz occurs, for every z ∈ T , ΓXY (z)
contains monochromatic edges of at least

p3d

t(8s)s+1
· t2

16s2p3d
>

2t

(8s)s+3

different colors under κ. Let Tz,κ be this set of colors on monochromatic edges of ΓXY (z).
We assign random lists to Z of size s from [t]. In order for H ′, and therefore H , to have
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a list coloring extending κ, it cannot be that some list at a vertex z ∈ T is contained in
the set Tz,κ. Let Cκ be the event that no list at any vertex z ∈ T is contained in Tz,κ. By
(4) with K = (8s)s+3/2,

(

2t/(8s)s+3

s

)

>
1

(2K)s

(

t

s

)

and therefore

P (Cκ) <

(

1 −
(

2t/(8s)s+3

s

)

(

t
s

)

)|T |

< exp
(

− |T |
(2K)s

)

< exp
(

− n

(8s)2t

)

using that |T | > n/(8s)s+2. By (2), P (Cκ) < s−3pn, and since there are at most s|X∪Y | 6

s3pn colorings κ of X ∪ Y , we deduce that there exists a list assignment to the vertices of
Z for which no Cκ occurs. In words, there is an assignment of lists to the vertices of Z
such that for any coloring κ of X ∪ Y , some z ∈ Z cannot be properly colored from its
list. For this list assignment, no coloring of H ′ exists. This completes the proof.

5 Note added in proof

We have learned that the list coloring problem for linear and uniform hypergraphs has
been studied independently by Alon and Kostochka [3]. They prove a more general
version of Theorem 1, in that they consider r-uniform hypergraphs for r > 3, and they
do not restrict to d-regular hypergraphs but give bounds in terms of the average degree
d. When specialised to the setting of Theorem 1, their results give similar bounds, and in
particular we still do not know whether there exist 3-uniform d-regular hypergraphs with
list chromatic number o(log d) as d → ∞.

6 Appendix

We chose s = (log d)1/2(5 log log d)−1/2 and t = (8s)s(s+4) and put p := 1/(8s)3t. If d is a
large enough constant, we claim that the following three inequalities hold:

t exp(−s2p3d/4t2) < 1/64d2 (6)

exp(−n/(8s)2t) < s−3pn (7)

exp(−p2n/8) < exp(−n/d2). (8)

To verify the inequalities (6), (7), (8) we first observe that with the given definitions we
have s2s2

< d1/5 and so ss2

< d1/10. Thus when d is large enough we find t = (8s)s(s+4) <
d1/9. Therefore to prove (6) we note that for large enough d,

t exp(−s2p3d/4t2) < d1/9 exp(−s2d/4(8s)9t5) < d1/9 exp(−d1/3) < 1/64d2.

For (7) it suffices to show 3p log s < 1/64s2t, which is immediate from the definition of p.
Finally for (8) we want 1/d2 < p2/8, so since p2 = 1/(8s)6t2 > 1/d1/3 the inequality holds
provided d5/3 > 8.
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Lemma 6 Let s, t be positive integers and suppose that t/K > 2s. Then

(

t/K

s

)

> (2K)−s

(

t

s

)

.

Proof ⊲ By definition we have

(

t/K

s

)

>
(t/K − s)s

s!
>

1

s!

( t

2K

)s

.

On the other hand
(

t

s

)

6
ts

s!

and the result follows.
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