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Abstract

The counting problem is investigated for the permutation triples of the first n

natural numbers with exactly k occurrences of simultaneous “rises”. Their recur-
rence relations and bivariate generating functions are established.

1 Introduction and Motivation

Let [n] stand for the first n natural numbers {1, 2, · · · , n} and Sn for the permutations
of [n]. Given a permutation π = (a1, a2, · · · , an) ∈ Sn, a rise (shortly as “R”) at the kth
position refers to ak < ak+1, while a fall (shortly as “F”) at the same position refers to
ak > ak+1, where the position index k runs from 1 to n − 1. It is classically well–known
(cf. Comtet [2, §6.5]) that the number of the permutations of [n] with exactly k − 1 rises
is equal to the Eulerian number A(n, k), which admits the following bivariate generating
function

1 +
∑

16k6n

A(n, k)
yn

n!
xk =

1 − x

1 − xe(1−x)y
. (1)
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When [n] is replaced by multiset, the corresponding counting question is called “the
problem of Simon Newcomb”, which can be found in Riordan [3, Chapter 8].

Carlitz [1] examined permutation pairs {π, σ} of Sn with σ = (b1, b2, · · · , bn). Then
at the kth position, there are four possibilities “RR”, “FF”, “RF” and “FR”. Denote by
B(n, k) the number of the permutations pairs of [n] with exactly k occurrences of “RR”.
Then Carlitz found the following beautiful result

∑

06k6n

B(n, k)
yn

(n!)2
xk =

1 − x

f((1 − x)y) − x
where f(y) =

∞
∑

n=0

(−y)n

(n!)2
. (2)

In the last double sum, the summation indices n and k run over the triangular domain
0 6 k 6 n < ∞, even though B(n, n) = 0 for all the natural numbers n = 1, 2, · · · , except
for B(0, 0) = 1. The same fact will be assumed also for other two sequences C(n, k) and
D(n, k).

In particular, letting x = 0 in this equality leads to the generating function for the
number of permutation pairs of [n] with “RR” forbidden

∑

n>0

Bn

yn

(n!)2
=

1

f(y)
where Bn := B(n, 0). (3)

Reading carefully Carlitz’ article [1], we notice that Carlitz’ approach can further be
employed to investigate permutation triples {π, σ, τ} of Sn with τ = (c1, c2, · · · , cn). In
this case, there are eight possibilities “RRR”, “RRF” “RFR”, “FRR”, “FFR”, “FRF”,
“RFF” and “FFF” at the kth position. Let C(n, k) be the number of the permutations
triples of [n] with exactly k occurrences of “RRR”. Then we shall prove the following
analogous formula.

Theorem 1 (Bivariate generating function).

∑

06k6n

C(n, k)
yn

(n!)3
xk =

1 − x

g
(

(1 − x)y
)

− x
where g(y) =

∞
∑

n=0

(−y)n

(n!)3
.

When x = 0, the last expression becomes the generating function for the number Cn

of permutation triples of Sn with “RRR” forbidden.

Corollary 2 (Univariate generating function).

∑

n>0

Cn

yn

(n!)3
=

1

g(y)
where Cn := C(n, 0).

Applying the inverse transformation to a given θ = (d1, d2, · · · , dn) ∈ Sn

d′

k = n − dk + 1 with k = 1, 2, · · · , n

we get another permutation θ′ = (d′

1, d
′

2, · · · , d′

n) ∈ Sn. Then “R” (rise) or “F” (fall) in
each position in θ will be inverted in θ′. Thus the preceding results about permutation
triples {π, σ, τ} with “RRR” forbidden hold also for each of the other seven cases.
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2 Proof of the Theorem

In general, a permutation triple {π, σ, τ} of Sn can be represented by

π = (a1, a2, · · · , an),
σ = (b1, b2, · · · , bn),
τ = (c1, c2, · · · , cn).

Following Carlitz’ approach, denote by Ca,b,c(n, k) the number of permutation triples
{π, σ, τ} with exactly k occurrences of “RRR” and the initials a1 = a, b1 = b and c1 = c.
The classification according to the initial letters yields the equation

C(n, k) =

n
∑

a,b,c=1

Ca,b,c(n, k). (4)

For θ = (d1, d2, · · · , dn) ∈ Sn, define the map φ from Sn onto Sn−1 by

φ(θ) = θ′′ = (d′′

1, d
′′

2, · · · , d′′

n−1) : d′′

k−1 =

{

dk, dk < d1;

dk − 1, dk > d1.

Comparing the first two initial letters of permutation triples and then taking into account
of the map φ, we have

Ca,b,c(n, k) =
∑

α<a

∑

β<b

∑

γ<c

Cα,β,γ(n − 1, k) +
∑

α<a

∑

β<b

∑

γ>c

Cα,β,γ(n − 1, k)

+
∑

α<a

∑

β>b

∑

γ<c

Cα,β,γ(n − 1, k) +
∑

α<a

∑

β>b

∑

γ>c

Cα,β,γ(n − 1, k)

+
∑

α>a

∑

β<b

∑

γ<c

Cα,β,γ(n − 1, k) +
∑

α>a

∑

β<b

∑

γ>c

Cα,β,γ(n − 1, k)

+
∑

α>a

∑

β>b

∑

γ<c

Cα,β,γ(n − 1, k) +
∑

α>a

∑

β>b

∑

γ>c

Cα,β,γ(n − 1, k − 1)

which can further be simplified into the following interesting relation

Ca,b,c(n, k) = C(n − 1, k) −
∑

α>a

∑

β>b

∑

γ>c

{

Cα,β,γ(n − 1, k) − Cα,β,γ(n − 1, k − 1)
}

. (5)

Summing over a, b, c from 1 to n across this equation, we get the equality

C(n, k) = n3C(n − 1, k) −
∑

α,β,γ

αβγ
{

Cα,β,γ(n − 1, k) − Cα,β,γ(n − 1, k − 1)
}

. (6)

Similarly, multiplying across (5) by abc and then summing over a, b, c, we have another
equality

∑

a,b,c

abc Ca,b,c(n, k) =

(

n + 1

2

)3

C(n − 1, k) −
∑

α,β,γ

(

α + 1

2

)(

β + 1

2

)(

γ + 1

2

)

×
{

Cα,β,γ(n − 1, k) − Cα,β,γ(n − 1, k − 1)
}

.

(7)
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For ℓ ∈ N0, define the triple sum

C(ℓ)(n, k) =
∑

a,b,c

(

a + ℓ − 1
ℓ

)(

b + ℓ − 1
ℓ

)(

c + ℓ − 1
ℓ

)

Ca,b,c(n, k)

which reduces, for ℓ = 0, to

C(n, k) = C(0)(n, k) =
∑

a,b,c

Ca,b,c(n, k).

Then (6) and (7) can be restated respectively as

C(n, k) = n3C(n − 1, k) − C(1)(n − 1, k) + C(1)(n − 1, k − 1),

C(1)(n, k) =

(

n + 1

2

)3

C(n − 1, k) − C(2)(n − 1, k) + C(2)(n − 1, k − 1).

Recall the binomial identity

∑

b6β

(

b + ℓ − 1

ℓ

)

=

(

β + ℓ

1 + ℓ

)

.

Multiplying across (5) further by
(

a+ℓ−1
ℓ

)(

b+ℓ−1
ℓ

)(

c+ℓ−1
ℓ

)

and then summing over a, b, c, we
find the following general relation

C(ℓ)(n, k) =

(

n + ℓ

ℓ + 1

)3

C(n − 1, k) − C(ℓ+1)(n − 1, k) + C(ℓ+1)(n − 1, k − 1). (8)

By introducing further the polynomials

C(ℓ)
n (x) =

∑

k

C(ℓ)(n, k)xk and Cn(x) =
∑

k

C(n, k)xk

we can translate (8) into the relation

C(ℓ)
n (x) =

(

n + ℓ

ℓ + 1

)3

Cn−1(x) + (x − 1)C
(ℓ+1)
n−1 (x). (9)

In particular for the first few values of ℓ, this reads as

Cn(x) = n3Cn−1(x) + (x − 1)C
(1)
n−1(x),

C
(1)
n−1(x) =

(

n

2

)3

Cn−2(x) + (x − 1)C
(2)
n−2(x),

C
(2)
n−2(x) =

(

n

3

)3

Cn−3(x) + (x − 1)C
(3)
n−3(x).
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Iterating (9) n-times and keeping in mind the initial condition

C0(x) = C1(x) = 1

we get the equation

Cn(x) =
n

∑

k=1

(x − 1)k−1

(

n

k

)3

Cn−k(x)

which is equivalent to the recurrence relation

xCn(x) =
n

∑

k=0

(x − 1)k

(

n

k

)3

Cn−k(x) for n > 0. (10)

Finally, we are now ready to compute the bivariate generating function

Ω(x, y) :=
∑

06k6n

C(n, k)
yn

(n!)3
xk = 1 +

∞
∑

n=1

yn

(n!)3
Cn(x)

= 1 −
1

x
+

1

x

∞
∑

n=0

yn

(n!)3

n
∑

k=0

(x − 1)k

(

n

k

)3

Cn−k(x)

= 1 −
1

x
+

1

x

∞
∑

k=0

(x − 1)kyk

(k!)3

∞
∑

n=k

yn−kCn−k(x)

{(n − k)!}3

which simplifies into the relation

Ω(x, y) = 1 −
1

x
+

1

x
g
(

(1 − x)y
)

Ω(x, y).

By resolving this equation, we get an expression of Ω in terms of g, which turns to be the
generating function displayed in the theorem.

Furthermore, letting x = 0 in (10), we deduce that the number of permutation triples
of Sn with “RRR” forbidden satisfies the following binomial relation

n
∑

k=0

(−1)k
(

n

k

)3

Ck = 0 with n > 0. (11)

3 Enumeration of m-tuples of Permutations

More generally, we may consider the m-tuples of permutations of Sn with exactly k

occurrences of “Rm”. Denote by D(n, k) the number of such multiple permutations.
Then the same approach can further be carried out to establish the following bivariate
generating function

∑

06k6n

D(n, k)
yn

(n!)m
xk =

1 − x

h
(

(1 − x)y
)

− x
where h(y) =

∞
∑

n=0

(−y)n

(n!)m
. (12)
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When x = 0, it gives rise to the generating function for the number Dn of m-tuples of Sn

with “Rm” forbidden

∑

n>0

Dn

yn

(n!)m
=

1

h(y)
where Dn := D(n, 0) (13)

which is equivalent to the following recurrence relation

n
∑

k=0

(−1)k
(

n

k

)m

Dk = 0 with n > 0. (14)

The details are not produced and left to the interested reader.
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