Enumeration of Restricted Permutation Triples

Xiaojing Chen
School of Mathematics and Computational Science
China University of Petroleum
Dongying 257061, P. R. China
chenxiaojing1982@yahoo.com.cn
Wenchang Chu*
Institute of Combinatorial Mathematics
Hangzhou Normal University
Hangzhou 310036, P. R. China
chu.wenchang@unisalento.it

Submitted: Aug 22, 2010; Accepted: Sep 20, 2010; Published: Oct 5, 2010
Mathematics Subject Classifications: 05A05, 05A15

Abstract

The counting problem is investigated for the permutation triples of the first n natural numbers with exactly k occurrences of simultaneous "rises". Their recurrence relations and bivariate generating functions are established.

1 Introduction and Motivation

Let $[n]$ stand for the first n natural numbers $\{1,2, \cdots, n\}$ and \mathfrak{S}_{n} for the permutations of $[n]$. Given a permutation $\pi=\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in \mathfrak{S}_{n}$, a rise (shortly as "R") at the k th position refers to $a_{k}<a_{k+1}$, while a fall (shortly as " F ") at the same position refers to $a_{k}>a_{k+1}$, where the position index k runs from 1 to $n-1$. It is classically well-known (cf. Comtet $[2, \S 6.5]$) that the number of the permutations of [n] with exactly $k-1$ rises is equal to the Eulerian number $A(n, k)$, which admits the following bivariate generating function

$$
\begin{equation*}
1+\sum_{1 \leqslant k \leqslant n} A(n, k) \frac{y^{n}}{n!} x^{k}=\frac{1-x}{1-x e^{(1-x) y}} . \tag{1}
\end{equation*}
$$

[^0]When $[n]$ is replaced by multiset, the corresponding counting question is called "the problem of Simon Newcomb", which can be found in Riordan [3, Chapter 8].

Carlitz [1] examined permutation pairs $\{\pi, \sigma\}$ of \mathfrak{S}_{n} with $\sigma=\left(b_{1}, b_{2}, \cdots, b_{n}\right)$. Then at the k th position, there are four possibilities "RR", "FF", "RF" and "FR". Denote by $B(n, k)$ the number of the permutations pairs of $[n]$ with exactly k occurrences of " RR ". Then Carlitz found the following beautiful result

$$
\begin{equation*}
\sum_{0 \leqslant k \leqslant n} B(n, k) \frac{y^{n}}{(n!)^{2}} x^{k}=\frac{1-x}{f((1-x) y)-x} \quad \text { where } \quad f(y)=\sum_{n=0}^{\infty} \frac{(-y)^{n}}{(n!)^{2}} \tag{2}
\end{equation*}
$$

In the last double sum, the summation indices n and k run over the triangular domain $0 \leqslant k \leqslant n<\infty$, even though $B(n, n)=0$ for all the natural numbers $n=1,2, \cdots$, except for $B(0,0)=1$. The same fact will be assumed also for other two sequences $C(n, k)$ and $D(n, k)$.

In particular, letting $x=0$ in this equality leads to the generating function for the number of permutation pairs of $[n]$ with "RR" forbidden

$$
\begin{equation*}
\sum_{n \geqslant 0} \mathcal{B}_{n} \frac{y^{n}}{(n!)^{2}}=\frac{1}{f(y)} \quad \text { where } \quad \mathcal{B}_{n}:=B(n, 0) \tag{3}
\end{equation*}
$$

Reading carefully Carlitz' article [1], we notice that Carlitz' approach can further be employed to investigate permutation triples $\{\pi, \sigma, \tau\}$ of \mathfrak{S}_{n} with $\tau=\left(c_{1}, c_{2}, \cdots, c_{n}\right)$. In this case, there are eight possibilities "RRR", "RRF" "RFR", "FRR", "FFR", "FRF", "RFF" and "FFF" at the k th position. Let $C(n, k)$ be the number of the permutations triples of $[n]$ with exactly k occurrences of "RRR". Then we shall prove the following analogous formula.

Theorem 1 (Bivariate generating function).

$$
\sum_{0 \leqslant k \leqslant n} C(n, k) \frac{y^{n}}{(n!)^{3}} x^{k}=\frac{1-x}{g((1-x) y)-x} \quad \text { where } \quad g(y)=\sum_{n=0}^{\infty} \frac{(-y)^{n}}{(n!)^{3}}
$$

When $x=0$, the last expression becomes the generating function for the number \mathcal{C}_{n} of permutation triples of \mathfrak{S}_{n} with "RRR" forbidden.

Corollary 2 (Univariate generating function).

$$
\sum_{n \geqslant 0} \mathcal{C}_{n} \frac{y^{n}}{(n!)^{3}}=\frac{1}{g(y)} \quad \text { where } \quad \mathcal{C}_{n}:=C(n, 0)
$$

Applying the inverse transformation to a given $\theta=\left(d_{1}, d_{2}, \cdots, d_{n}\right) \in \mathfrak{S}_{n}$

$$
d_{k}^{\prime}=n-d_{k}+1 \quad \text { with } \quad k=1,2, \cdots, n
$$

we get another permutation $\theta^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, \cdots, d_{n}^{\prime}\right) \in \mathfrak{S}_{n}$. Then " R " (rise) or " F " (fall) in each position in θ will be inverted in θ^{\prime}. Thus the preceding results about permutation triples $\{\pi, \sigma, \tau\}$ with "RRR" forbidden hold also for each of the other seven cases.

2 Proof of the Theorem

In general, a permutation triple $\{\pi, \sigma, \tau\}$ of \mathfrak{S}_{n} can be represented by

$$
\begin{aligned}
\pi & =\left(a_{1}, a_{2}, \cdots, a_{n}\right) \\
\sigma & =\left(b_{1}, b_{2}, \cdots, b_{n}\right) \\
\tau & =\left(c_{1}, c_{2}, \cdots, c_{n}\right)
\end{aligned}
$$

Following Carlitz' approach, denote by $C_{a, b, c}(n, k)$ the number of permutation triples $\{\pi, \sigma, \tau\}$ with exactly k occurrences of "RRR" and the initials $a_{1}=a, b_{1}=b$ and $c_{1}=c$. The classification according to the initial letters yields the equation

$$
\begin{equation*}
C(n, k)=\sum_{a, b, c=1}^{n} C_{a, b, c}(n, k) . \tag{4}
\end{equation*}
$$

For $\theta=\left(d_{1}, d_{2}, \cdots, d_{n}\right) \in \mathfrak{S}_{n}$, define the map ϕ from \mathfrak{S}_{n} onto \mathfrak{S}_{n-1} by

$$
\phi(\theta)=\theta^{\prime \prime}=\left(d_{1}^{\prime \prime}, d_{2}^{\prime \prime}, \cdots, d_{n-1}^{\prime \prime}\right): \quad d_{k-1}^{\prime \prime}= \begin{cases}d_{k}, & d_{k}<d_{1} \\ d_{k}-1, & d_{k}>d_{1}\end{cases}
$$

Comparing the first two initial letters of permutation triples and then taking into account of the map ϕ, we have

$$
\begin{aligned}
C_{a, b, c}(n, k) & =\sum_{\alpha<a} \sum_{\beta<b} \sum_{\gamma<c} C_{\alpha, \beta, \gamma}(n-1, k)+\sum_{\alpha<a} \sum_{\beta<b} \sum_{\gamma \geqslant c} C_{\alpha, \beta, \gamma}(n-1, k) \\
& +\sum_{\alpha<a} \sum_{\beta \geqslant b} \sum_{\gamma<c} C_{\alpha, \beta, \gamma}(n-1, k)+\sum_{\alpha<a} \sum_{\beta \geqslant b} \sum_{\gamma \geqslant c} C_{\alpha, \beta, \gamma}(n-1, k) \\
& +\sum_{\alpha \geqslant a} \sum_{\beta<b} \sum_{\gamma<c} C_{\alpha, \beta, \gamma}(n-1, k)+\sum_{\alpha \geqslant a} \sum_{\beta<b} \sum_{\gamma \geqslant c} C_{\alpha, \beta, \gamma}(n-1, k) \\
& +\sum_{\alpha \geqslant a} \sum_{\beta \geqslant b} \sum_{\gamma<c} C_{\alpha, \beta, \gamma}(n-1, k)+\sum_{\alpha \geqslant a} \sum_{\beta \geqslant b} \sum_{\gamma \geqslant c} C_{\alpha, \beta, \gamma}(n-1, k-1)
\end{aligned}
$$

which can further be simplified into the following interesting relation

$$
\begin{equation*}
C_{a, b, c}(n, k)=C(n-1, k)-\sum_{\alpha \geqslant a} \sum_{\beta \geqslant b} \sum_{\gamma \geqslant c}\left\{C_{\alpha, \beta, \gamma}(n-1, k)-C_{\alpha, \beta, \gamma}(n-1, k-1)\right\} . \tag{5}
\end{equation*}
$$

Summing over a, b, c from 1 to n across this equation, we get the equality

$$
\begin{equation*}
C(n, k)=n^{3} C(n-1, k)-\sum_{\alpha, \beta, \gamma} \alpha \beta \gamma\left\{C_{\alpha, \beta, \gamma}(n-1, k)-C_{\alpha, \beta, \gamma}(n-1, k-1)\right\} . \tag{6}
\end{equation*}
$$

Similarly, multiplying across (5) by $a b c$ and then summing over a, b, c, we have another equality

$$
\begin{align*}
& \sum_{a, b, c} a b c C_{a, b, c}(n, k)=\binom{n+1}{2}^{3} C(n-1, k)-\sum_{\alpha, \beta, \gamma}\binom{\alpha+1}{2}\binom{\beta+1}{2}\binom{\gamma+1}{2} \tag{7}\\
& \times\left\{C_{\alpha, \beta, \gamma}(n-1, k)-C_{\alpha, \beta, \gamma}(n-1, k-1)\right\}
\end{align*}
$$

For $\ell \in \mathbb{N}_{0}$, define the triple sum

$$
C^{(\ell)}(n, k)=\sum_{a, b, c}\binom{a+\ell-1}{\ell}\binom{b+\ell-1}{\ell}\binom{c+\ell-1}{\ell} C_{a, b, c}(n, k)
$$

which reduces, for $\ell=0$, to

$$
C(n, k)=C^{(0)}(n, k)=\sum_{a, b, c} C_{a, b, c}(n, k) .
$$

Then (6) and (7) can be restated respectively as

$$
\begin{aligned}
C(n, k) & =n^{3} C(n-1, k)-C^{(1)}(n-1, k)+C^{(1)}(n-1, k-1), \\
C^{(1)}(n, k) & =\binom{n+1}{2}^{3} C(n-1, k)-C^{(2)}(n-1, k)+C^{(2)}(n-1, k-1) .
\end{aligned}
$$

Recall the binomial identity

$$
\sum_{b \leqslant \beta}\binom{b+\ell-1}{\ell}=\binom{\beta+\ell}{1+\ell}
$$

Multiplying across (5) further by $\binom{a+\ell-1}{\ell}\binom{b+\ell-1}{\ell}\binom{c+\ell-1}{\ell}$ and then summing over a, b, c, we find the following general relation

$$
\begin{equation*}
C^{(\ell)}(n, k)=\binom{n+\ell}{\ell+1}^{3} C(n-1, k)-C^{(\ell+1)}(n-1, k)+C^{(\ell+1)}(n-1, k-1) \tag{8}
\end{equation*}
$$

By introducing further the polynomials

$$
C_{n}^{(\ell)}(x)=\sum_{k} C^{(\ell)}(n, k) x^{k} \quad \text { and } \quad C_{n}(x)=\sum_{k} C(n, k) x^{k}
$$

we can translate (8) into the relation

$$
\begin{equation*}
C_{n}^{(\ell)}(x)=\binom{n+\ell}{\ell+1}^{3} C_{n-1}(x)+(x-1) C_{n-1}^{(\ell+1)}(x) \tag{9}
\end{equation*}
$$

In particular for the first few values of ℓ, this reads as

$$
\begin{aligned}
C_{n}(x) & =n^{3} C_{n-1}(x)+(x-1) C_{n-1}^{(1)}(x), \\
C_{n-1}^{(1)}(x) & =\binom{n}{2}^{3} C_{n-2}(x)+(x-1) C_{n-2}^{(2)}(x), \\
C_{n-2}^{(2)}(x) & =\binom{n}{3}^{3} C_{n-3}(x)+(x-1) C_{n-3}^{(3)}(x) .
\end{aligned}
$$

Iterating (9) n-times and keeping in mind the initial condition

$$
C_{0}(x)=C_{1}(x)=1
$$

we get the equation

$$
C_{n}(x)=\sum_{k=1}^{n}(x-1)^{k-1}\binom{n}{k}^{3} C_{n-k}(x)
$$

which is equivalent to the recurrence relation

$$
\begin{equation*}
x C_{n}(x)=\sum_{k=0}^{n}(x-1)^{k}\binom{n}{k}^{3} C_{n-k}(x) \quad \text { for } \quad n>0 . \tag{10}
\end{equation*}
$$

Finally, we are now ready to compute the bivariate generating function

$$
\begin{aligned}
\Omega(x, y) & :=\sum_{0 \leqslant k \leqslant n} C(n, k) \frac{y^{n}}{(n!)^{3}} x^{k}=1+\sum_{n=1}^{\infty} \frac{y^{n}}{(n!)^{3}} C_{n}(x) \\
& =1-\frac{1}{x}+\frac{1}{x} \sum_{n=0}^{\infty} \frac{y^{n}}{(n!)^{3}} \sum_{k=0}^{n}(x-1)^{k}\binom{n}{k}^{3} C_{n-k}(x) \\
& =1-\frac{1}{x}+\frac{1}{x} \sum_{k=0}^{\infty} \frac{(x-1)^{k} y^{k}}{(k!)^{3}} \sum_{n=k}^{\infty} \frac{y^{n-k} C_{n-k}(x)}{\{(n-k)!\}^{3}}
\end{aligned}
$$

which simplifies into the relation

$$
\Omega(x, y)=1-\frac{1}{x}+\frac{1}{x} g((1-x) y) \Omega(x, y) .
$$

By resolving this equation, we get an expression of Ω in terms of g, which turns to be the generating function displayed in the theorem.

Furthermore, letting $x=0$ in (10), we deduce that the number of permutation triples of \mathfrak{S}_{n} with "RRR" forbidden satisfies the following binomial relation

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{3} \mathcal{C}_{k}=0 \quad \text { with } \quad n>0 \tag{11}
\end{equation*}
$$

3 Enumeration of m-tuples of Permutations

More generally, we may consider the m-tuples of permutations of \mathfrak{S}_{n} with exactly k occurrences of " $\mathrm{R}^{m "}$. Denote by $D(n, k)$ the number of such multiple permutations. Then the same approach can further be carried out to establish the following bivariate generating function

$$
\begin{equation*}
\sum_{0 \leqslant k \leqslant n} D(n, k) \frac{y^{n}}{(n!)^{m}} x^{k}=\frac{1-x}{h((1-x) y)-x} \quad \text { where } \quad h(y)=\sum_{n=0}^{\infty} \frac{(-y)^{n}}{(n!)^{m}} \tag{12}
\end{equation*}
$$

When $x=0$, it gives rise to the generating function for the number \mathcal{D}_{n} of m-tuples of \mathfrak{S}_{n} with " R^{m} " forbidden

$$
\begin{equation*}
\sum_{n \geqslant 0} \mathcal{D}_{n} \frac{y^{n}}{(n!)^{m}}=\frac{1}{h(y)} \quad \text { where } \quad \mathcal{D}_{n}:=D(n, 0) \tag{13}
\end{equation*}
$$

which is equivalent to the following recurrence relation

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{m} \mathcal{D}_{k}=0 \quad \text { with } \quad n>0 \tag{14}
\end{equation*}
$$

The details are not produced and left to the interested reader.

References

[1] L. Carlitz - R. Scoville - T. Vaughan, Enumeration of pairs of permutations, Discrete Math. 14 (1976), 215-239.
[2] L. Comtet, Advanced Combinatorics, Dordrecht-Holland, The Netherlands, 1974.
[3] J. Riordan, An Introduction to Combinatorial Analysis, John Wiley, New York, 1958.

[^0]: *The Corresponding author (Current address: Dipartimento di Matematica, Università del Salento, Lecce-Arnesano P. O. Box 193, 73100 Lecce, Italy)

