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Abstract

Let H be a k-uniform hypergraph, k > 2. By an Euler tour in H we mean an
alternating sequence v0, e1, v1, e2, v2, . . . , vm−1, em, vm = v0 of vertices and edges in
H such that each edge of H appears in this sequence exactly once and vi−1, vi ∈
ei, vi−1 6= vi, for every i = 1, 2, . . . ,m. This is an obvious generalization of the
graph theoretic concept of an Euler tour. A straightforward necessary condition for
existence of an Euler tour in a k-uniform hypergraph is |Vodd(H)| 6 (k − 2)|E(H)|,
where Vodd(H) is the set of vertices of odd degrees in H and E(H) is the set of edges
in H. In this paper we show that this condition is also sufficient for hypergraphs of a
broad class of k-uniform hypergraphs, that we call strongly connected hypergraphs.
This result reduces to the Euler theorem on existence of Euler tours, when k = 2,
i.e. for graphs, and is quite simple to prove for k > 3. Therefore, we concentrate
on the most interesting case of k = 3. In this case we further consider the problem
of existence of an Euler tour in a certain class of 3-uniform hypergraphs containing
the class of strongly connected hypergraphs as a proper subclass. For hypergraphs
in this class we give a sufficient condition for existence of an Euler tour and prove
intractability (NP-completeness) of the problem in this class in general.

Keywords: uniform hypergraphs, Euler tours, Euler walks

1 Introduction

In this paper we study some hypergraph generalization of the graph-theoretic concept of
an Euler tour. This concept has been extensively studied and is quite well-understood
in the case of graphs. Clearly, there are a few possible extensions of the definition of an
Euler tour for hypergraphs. The way we do it is motivated by some past research that
we shortly describe beneath.
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By a hypergraph we mean a pair H = (V, E), where V is a finite set and E is a
family of some subsets of V . The elements of the set V are called vertices of H and the
elements of E - its edges. We shall call a hypergraph k-uniform if all its edges have
exactly k elements. To avoid trivial cases, we assume in this paper that k > 2. Clearly,
2-uniform hypergraphs are just simple graphs.

By a walk (or a v0vℓ-walk) of length ℓ in a hypergraph H we mean an alternating
sequence (v0, e1, v1, e2, v2, ..., vℓ−1, eℓ, vℓ) of vertices and edges of this hypergraph satisfying
the following conditions:

(i) the edges e1, e2, . . . , eℓ are pairwise different,

(ii) vi−1, vi ∈ ei, for i = 1, ..., ℓ, and

(iii) vi−1 6= vi, for i = 1, ..., ℓ.

A walk is called a tour if

(iv) v0 = vℓ.

If, for some tour (or walk), e1, e2, . . . , eℓ are all the edges of a hypergraph H , then we call
such tour (or walk) an Euler tour (or walk) in H . Let us observe that if H is a 2-uniform
hypergraph (i.e. a graph), then the notions of an Euler walk and tour coincide with their
traditional meanings in graph theory. Although Euler tours and walks are investigated in
the case of multigraphs too, in the present paper we assume that our hypergraphs do not
have multiple edges.

It has to be pointed out that the graph-theoretic concepts of a cycle and a tour can
be extended to the case of hypergraphs in many possible ways. The tours we consider
in this paper are closely related to Berge-cycles (see Berge [6], p. 155). More precisely,
a tour defined in this paper in which all vertices v1, v2, . . . , vℓ are pairwise different is a
Berge-cycle.

The concepts of Euler tours and walks defined this way and some related topics have
been studied (however in a different setting) by Bartholdi and Goldsman in a series of
papers [2], [3], [4], and [5]. Their research, motivated by some applications in geographic
information systems, has been concentrated on so-called triangulated irregular networks.
Following terminology we use in this paper, a triangulated irregular network (or a
TIN) is a 3-uniform hypergraph whose edge set is the family of vertex sets of faces of some
planar graph in which all faces, except possibly the outerface, are triangles. The vertex
set of a TIN is just the union of all its edges. If we assume additionally that the TIN has
some property, that we call strong connectivity (the definition of this notion will be given
later), then the main result proved by Bartholdi and Goldsman (see [3], Corollary 3) says
that such TIN has an Euler tour, unless it belongs to a very special family of exceptions
(described in their paper). Moreover, they show that all strongly connected TINs have
an Euler walk.
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The same result on existence of an Euler walk in strongly connected TINs have been
independently proved by Wilson [14] who considered this problem in connection with
some issues appearing in integer programming.

The problems of existence and construction of Euler tours and walks in TINs have been
also studied in computer graphics where the TINs play an important role in optimizing
the processes of transmission and rendering of triangulation data representing large three-
dimensional graphics (see Arkin et al. [1] and Bartholdi and Goldsman [3]).

It is worth mentioning that a closely related problem of existence of a Hamilton cycle in
a hypergraph has been intensively studied recently, especially in the context of extension
of Dirac’s theorem to hypergraphs (e.g. Katona and Kierstead [9], Rödl, Ruciński and
Szemerédi [12] and [13], Kühn and Osthus [11], Keevash et al. [10], Gyárfás et al. [8]).
However, most of the results proved in these papers concern cycles (called tight or loose)
whose definitions are a bit different from the definition of a Berge-cycle (which is a special
kind of a tour defined in this paper).

It is natural to ask a question for which k-uniform hypergraphs an Euler tour or walk
exists. Unlike in the case of graphs, there is little hope to give a full characterization of
k-uniform hypergraphs, where k > 2, that have an Euler tour. Our first theorem supports
this claim.

Theorem 1 Let k > 2. The problem of determining if a given k-uniform hypergraph has

an Euler tour is NP-complete.

Nevertheless, we are able to give a full characterization of k-uniform hypergraphs that
have an Euler tour, when they belong to a certain broad class of hypergraphs, that we
call strongly connected. A k-uniform hypergraph H is strongly connected if it does not
have isolated vertices and the graph G(H), whose vertex set is the set E(H) of edges of H
and the edge set consists of pairs {e, f} ⊆ E(H) such that |e∩f | = k−1, is connected. We
call G(H) the strong connectivity graph of the hypergraph H . When k = 2, the notion
of strong connectivity coincides with the ordinary graph connectivity. By the degree of
a vertex v in a hypergraph H we mean the number dH(v) of the edges of H containing v,
i.e. dH(v) = |{e ∈ E(H) : v ∈ e}|. We sometimes write d(v) instead of dH(v) whenever it
does not lead to a confusion. The set of vertices of H of odd (respectively even) degrees
is denoted by Veven(H) (resp. Vodd(H)).

In the case of strongly connected hypergraphs we prove that a certain simple to prove
necessary condition for existence of an Euler tour is also sufficient. Here is our main result
included in Section 3.

Theorem 2 Let k > 2. A strongly connected k-uniform hypergraph H has an Euler tour

if and only if

|Vodd(H)| 6 (k − 2)|E(H)|. (1)

This result reduces to the Euler theorem on existence of Euler tours in connected
graphs, when k = 2, and is quite simple to prove for k > 3. Therefore, we treat the cases
of k = 3 and k > 3 separately. In the latter case strong connectivity implies the condition
(1) unless H has exactly one edge, so Theorem 2 reduces to the following theorem.
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Theorem 3 Let k > 3. A strongly connected k-uniform hypergraph H has an Euler tour

if and only if |E(H)| 6= 1.

In the most interesting case of k = 3 we show slightly more than Theorem 2, we addi-
tionally describe the strongly connected hypergraphs that satisfy the condition (1). To
formulate this result, we need to introduce a class of 3-uniform hypergraphs H which is
some kind of a hypergraph analogy of the class of trees in graph theory.

Let V (H) be the vertex set of a hypergraph H .

We define H to be the smallest class of 3-uniform hypergraphs such that

(i) the one-edge 3-uniform hypergraph belongs to H and

(ii) if H ∈ H and f is a 3-element set such that for some x ∈ f , x /∈ V (H) and f−{x} is
a subset of some edge in H , then the hypergraph H +f = (V (H)∪{x}, E(H)∪{f})
belongs to H.

Clearly, the class of trees consists of all connected graphs with the least possible
number of edges, for a fixed number of vertices. Analogously, as we prove in Lemmas 2
and 3, the family H consists of all strongly connected 3-uniform hypergraphs H with the
least possible number of edges (equal to |V (H)| − 2), for a fixed number of vertices. Here
is our theorem characterizing strongly connected 3-uniform hypergraphs with Euler tours
proved in Section 3.

Theorem 4 Let H be a strongly connected 3-uniform hypergraph. The following state-

ments are equivalent

(i) H has an Euler tour,

(ii) |Vodd(H)| 6 |E(H)|,

(iii) H 6∈ H or H has a vertex with even degree.

We conclude Section 3 with a result solving the problem of existence of an Euler walk
in strongly connected hypergraphs.

Theorem 5 Let k > 3. Every strongly connected k-uniform hypergraph has an Euler

walk.

Theorems 4 and 5 contain as a special cases the results of Bartholdi and Goldsman [3]
and Wilson [14] mentioned above concerning existence of Euler tours and walks in TINs.

Section 4 of this paper is devoted to the problem of existence of an Euler tour in a
certain class of 3-uniform hypergraphs containing the class of strongly connected hyper-
graphs as a proper subclass. To define this class and formulate the main results proved
in Section 4, we need to introduce a few notions.

By the skeleton S(H) of a 3-uniform hypergraph H we mean a graph whose edge set
is {e ∩ f : e, f ∈ E(H) and |e ∩ f | = 2}. The set of vertices of S(H) is the union of its
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edges. A strong component of a 3-uniform hypergraph H is a hypergraph whose edges
form a component in the strong connectivity graph G(H). Finally, a wheel Wℓ, where
ℓ > 3, is a 3-uniform hypergraph whose strong connectivity graph is an ℓ-edge cycle and
there is a vertex which belongs to all the edges of Wℓ.

We prove (see Lemma 8) that 3-uniform strongly connected hypergraphs have con-
nected skeletons. The class of 3-uniform hypergraphs with a connected skeleton is much
broader than the class of 3-uniform strongly connected hypergraphs. Here is the main
result of Section 4.

Theorem 6 Let H be a 3-uniform hypergraph whose skeleton is connected. If every strong

component of H is neither a member of H having all vertices of odd degree nor a wheel,

then H has an Euler tour.

We observe that the converse of Theorem 6 is not true. Wheels are counterexamples
to such implication. We conclude this paper with somewhat surprising negative result
showing that the problem to characterize 3-uniform hypergraphs with connected skeletons
which have an Euler tour is rather hopeless.

Theorem 7 The problem of determining if a given 3-uniform hypergraph with a connected

skeleton has an Euler tour is NP-complete.

2 Auxiliary terminology and notation

In this section we define terminology and notation that will be useful in the proofs of our
results.

By the order (respectively the size) of a hypergraph H we mean the number of
vertices (resp. edges) in H . If v is a vertex of H , e is its edge, and v ∈ e, then we say
that v and e are incident to each other. To simplify notation, we often write v1v2 . . . vk

instead of {v1, v2, . . . , vk} to denote an edge of a k-uniform hypergraph. We say that a
hypergraph is induced by a set of edges E if its edge set is E and its vertex set is the
union of the edges in E.

Let H and G be hypergraphs. We say that G is a subhypergraph of H if V (G) ⊆
V (H) and E(G) ⊆ E(H).

Two hypergraphs H and G are isomorphic if there exists a bijection ϕ : V (H) →
V (G) such that for every subset e ⊆ V (H), e ∈ E(H) if and only if ϕ(e) ∈ E(G).

Let H be a hypergraph and A ⊆ E(H). The hypergraph obtained from H by deleting
the edges of A and the isolated vertices that may occur is denoted by H − A. When A
contains one element only, we write H − e instead of H − {e} to simplify notation.

For the same reason, in the notation used for walks and tours, we often omit parenthesis
and comas. For example, instead of C = (v0, e1, v1, e2, v2, . . . , vℓ−1, eℓ, vℓ), we write C =
v0e1v1e2v2 . . . vℓ−1eℓvℓ. If C is a tour, then, for any i = 1, . . . , ℓ, the sequence

viei+1vi+1ei+2vi+2 . . . vℓ−1eℓvℓe1v1e2v2 . . . vi−1eivi
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is a tour as well, formally different from C. Nevertheless, we identify the tours without
stating it explicitly. We say that a walk (or a tour) C passes through a vertex vi if vi

is a vertex of this walk (or tour). Similarly, we say that a walk (or a tour) C traverses
an edge ei using vertices vi−1 and vi if the sequence vi−1eivi is a subsequence of C.
For a tour C, we sometimes write viCvi instead of C to indicate that C passes through
the vertex vi. Similarly, for a v0vℓ-walk P = v0e1v1e2v2 . . . vℓ−1eℓvℓ, we sometimes use
the notation v0Pvℓ to indicate its first and last vertex. For any 0 6 i < j 6 ℓ, the
sequence viei+1vi+1 . . . vj−1ejvj is a walk, which we call a subwalk of the walk P or, more
precisely, its vivj-subwalk. If P ′ is any vivj-subwalk of P , then we sometimes write
P = v0e1v1 . . . viP

′vj . . . vℓ−1eℓvℓ.

3 Euler tours in strongly connected hypergraphs

Let us start with the proof of the result demonstrating intractability of the general problem
of determining existence of an Euler tour in a k-uniform hypergraph, when k > 2.

Proof of Theorem 1. The problem is in the class NP because verification if a given
alternating sequence of vertices and edges of a hypergraph is an Euler tour can be done
in polynomial time.

We shall now show a reduction from the problem of determining if a given 3-regular
graph has a Hamilton cycle, which is NP-complete (see [7]), to our problem.

Let G be a 3-regular graph. We define a k-uniform hypergraph H . The vertex set
V (H) = E(G)∪

⋃

v∈V (G){w
1
v, ..., w

k−3
v }, where the sets {w1

v, ..., w
k−3
v } are pairwise disjoint

and disjoint from E(G). The edge set E(H) = {ev : v ∈ V (G)}, where ev is the set
consisting of the three edges of G incident to v and k − 3 vertices wi

v, for i = 1, ..., k − 3.
Clearly, the construction of H can be done in polynomial time.

Let us assume that G has a Hamilton cycle whose consecutive vertices are v1, v2, . . . ,
vm. Then the sequence (vmv1, ev1

, v1v2, ev2
, v2v3, ..., vm−2vm−1, evm−1

, vm−1vm, evm
, vmv1) is

an Euler tour in H .
Conversely, let (u0, ev1

, u1, ev2
, u2, . . . , um−1, evm

, u0) be an Euler tour in H . By the
definition of a tour, ui ∈ evi

∩ evi+1
, for i = 1, 2, . . . , m− 1, and u0 ∈ evm

∩ ev1
. Hence, by

the definition of the sets ev, ui = vivi+1, for i = 1, 2, . . . , m, and u0 = vmv1 are edges in
G. Therefore v1, v2, . . . , vm are consecutive vertices of a Hamilton cycle in G. �

Let us show now some necessary conditions for existence of Euler tours and Euler
walks in k-uniform hypergraphs.

Proposition 1 Let H be a k-uniform hypergraph, k > 2, and let a, b ∈ V (H), a 6= b.

(i) If H has an Euler tour, then

∑

v∈V (H)

⌊

d(v)

2

⌋

> |E(H)|. (2)

(ii) If H has an Euler ab-walk, then
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⌊

d(a) + 1

2

⌋

+

⌊

d(b) + 1

2

⌋

+
∑

v∈V (H)−{a,b}

⌊

d(v)

2

⌋

> |E(H)| + 1. (3)

(iii) The inequality (2) is equivalent to

|Vodd(H)| 6 (k − 2)|E(H)|. (4)

Proof. Let C be an Euler tour in a k-uniform hypergraph H . If vi and vj are two
occurrences of the same vertex v ∈ V (H) in C, then ei, ei+1, ej, ej+1 are pairwise different
edges of H incident to v. In other words, each occurrence of v uses up two edges incident
to it, so v can occur in C at most ⌊d(v)/2⌋ times. On the other hand, the total number
of occurrences of vertices in an Euler tour is |E(H)|, so the inequality (2) holds.

The proof of the inequality (3) is similar to the proof of (2).
The following argument proves (4)

∑

v∈V (H)

⌊

d(v)

2

⌋

=
∑

v∈Vodd(H)

⌊

d(v)

2

⌋

+
∑

v∈Veven(H)

⌊

d(v)

2

⌋

=
∑

v∈Vodd(H)

d(v) − 1

2
+

∑

v∈Veven(H)

d(v)

2
=

1

2

∑

v∈V (H)

d(v) −
1

2
|Vodd(H)|

=
k

2
|E(H)| −

1

2
|Vodd(H)|.

�

As it was mentioned in the Introduction (see Theorem 2), the condition (1) turns out
to be sufficient for existence of an Euler tour, when we restrict ourselves to the class of
strongly connected k-uniform hypergraphs. Clearly, we do not need to prove Theorem
2 for k = 2 because in this case the condition (1) reduces to Vodd = ∅ and we get the
celebrated Euler Theorem characterizing graphs with an Euler tour.

We shall show now that Theorems 3 and 4 imply Theorem 2.

Proof of Theorem 2. By Proposition 1, we need to show sufficiency only. Obviously,
Theorem 2 follows from Theorem 4 when k = 3. By Theorem 3, to prove Theorem 2 when
k > 3, it suffices to observe that the one-edge k-uniform hypergraph does not satisfy the
condition (1). �

As we have already mentioned, the proof of Theorem 3 is quite straightforward.

Proof of Theorem 3. As one-edge hypergraphs do not have Euler tours, we only need
to prove sufficiency. We apply induction on |E(H)|.

Let H be a strongly connected k-uniform hypergraph containing only the two edges
e and f . These edges have at least 3 vertices in common. Let u and v be two of them.
Then uevfu is an Euler tour in H .

Let us assume now that |E(H)| > 2. It follows easily from the definition of strong
connectivity that there is an edge e ∈ E(H) such that H ′ = H −e is a strongly connected

the electronic journal of combinatorics 17 (2010), #R144 7



hypergraph. Thus, by the induction hypothesis, there exists an Euler tour C in H ′. Let
f be an edge in H ′ which has k − 1 vertices in common with e. Let x denote the only
vertex of f which does not belong to e.

Suppose first that C traverses f using the vertex x and some vertex u. Let P be an
Euler xu-walk in H ′ − f obtained from C by deleting f and let v be any vertex in e ∩ f
different from u. Then xPuevfx is an Euler tour in H . Otherwise, when C traverses f
using vertices u and v different from x, we define P to be an Euler uv-walk in H ′ − f
obtained from C by deleting f . Let w be any vertex in e∩f different from u and v. Then
uPvewfu is an Euler tour in H . �

Proving Theorem 4 is much harder. However, this case is, in our opinion, the most
interesting one. The rest of this paper is devoted to studying Euler tours in 3-uniform
hypergraphs. The following concept will be very useful in studying strongly connected
hypergraphs.

An ordering e1, ..., em of the set of edges of a 3-uniform hypergraph H is called a tree-
like ordering if, for any i > 1, there is j < i such that |ei ∩ ej | = 2. Let us denote by Hi

the hypergraph induced by the edges e1, ..., ei, 1 6 i 6 m. Obviously, Hm = H .
Clearly, |V (H1)| − |E(H1)| = 2. Moreover, the hypergraph Hi+1 has one edge more

and at most one vertex more than Hi, so

|V (Hi+1)| − |E(Hi+1)| 6 |V (Hi)| − |E(Hi)|, (5)

for every i = 1, ..., m − 1.

Lemma 1 A 3-uniform hypergraph H has a tree-like ordering of the set of edges if and

only if H is strongly connected.

Proof. (⇒) Let e1, ..., em be a tree-like ordering of the set of edges of a 3-uniform
hypergraph H . We shall prove by induction on i that the hypergraph Hi is strongly
connected. This is obviously true for i = 1. Suppose the hypergraph Hi, i < m, is strongly
connected. We shall prove that Hi+1 is. By the definition of the tree-like ordering, the
edge ei+1 has 2 vertices in common with some edge ej , j 6 i. Thus, there is an edge in the
graph G(Hi+1) joining the vertices ei+1 and ej, so the graph G(Hi+1) is connected because,
by the induction hypothesis, the graph G(Hi) is connected. Hence, the hypergraph Hi+1

is strongly connected. Consequently, H = Hm is strongly connected.

(⇐) Let e1 be any of the edges of a strongly connected 3-uniform hypergraph H . We
construct a tree-like ordering of the set of edges of H inductively. Let us assume that
we have already chosen the edges e1, ..., ei, where i < m. We choose as ei+1 any of the
remaining edges which has 2 common vertices with at least one of the edges e1, ..., ei. Such
an edge must exist because otherwise there is a partition of the vertex set of the graph
G(H) into disjoint nonempty sets A and B, where A = {e1, ..., ei} and B = E(H) − A,
such that there are no edges in G(H) with one end in A and the other one in B. Thus,
the graph G(H) is disconnected which contradicts the strong connectivity of H . Hence
e1, . . . , em is as tree-like ordering of the set of edges of H . �
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Lemma 2 Let H be a strongly connected 3-uniform hypergraph. Then |V (H)| 6 |E(H)|+
2.

Proof. Let m be the number of edges of the hypergraph H and let e1, ..., em be a tree-like
ordering of the set of edges of H whose existence is guaranteed by Lemma 1. By the
inequalities (5),

|V (H)| − |E(H)| = |V (Hm)| − |E(Hm)| 6 |V (H1)| − |E(H1)| = 2.

�

In several next lemmas and propositions we prove a few properties of the family H
defined in the Introduction.

Lemma 3 Let H be a 3-uniform hypergraph. Then H is strongly connected and satisfies

the equality |V (H)| = |E(H)| + 2 if and only if H ∈ H.

Proof. We denote by m the number of edges of the hypergraph H .

(⇒) Let e1, ..., em be a tree-like ordering of the set of edges of H whose existence is
guaranteed by Lemma 1. We shall prove by induction on i that Hi ∈ H, for i = 1, 2, . . . , m.
This is obviously true for i = 1. Suppose Hi ∈ H, i < m. It follows from the definition
of a tree-like ordering that the edge ei+1 has 2 vertices in common with some edge ej ,
j < i + 1. By the definition of H, to prove that Hi+1 ∈ H it suffices to show that the
only vertex, say x, of ei+1 − ej is not a vertex of Hi. Applying our assumption and the
inequalities (5), we get

2 = |V (H)| − |E(H)| = |V (Hm)| − |E(Hm)| 6 |V (Hi+1)| − |E(Hi+1)|

6 |V (Hi)| − |E(Hi)| 6 |V (H1)| − |E(H1)| = 2,

so |V (Hi+1)| = |V (Hi)| + |E(Hi+1)| − |E(Hi)| = |V (Hi)| + 1. Hence, x 6∈ V (Hi) because
V (Hi+1) = V (Hi) ∪ {x}. Consequently, Hi+1 ∈ H.

We have shown that Hi ∈ H, for every i = 1, 2, . . . , m, so in particular H = Hm ∈ H.

(⇐) We apply induction on m.
The implication is obviously true for m = 1. Let us assume that m > 1. The

hypergraph H ∈ H originates from some hypergraph H ′ ∈ H by adding an edge and a
vertex in the way described in the definition of H. By the induction hypothesis, |V (H ′)| =
|E(H ′)| + 2 and H ′ is strongly connected. This implies immediately that H is strongly
connected because the strong connectivity graph G(H) originates from the connected
graph G(H ′) by adding a new vertex and joining it to at least one of the vertices of
G(H ′). Moreover, |V (H)| = |V (H ′)| + 1 = |E(H ′)| + 2 + 1 = |E(H)| + 2. �

An important property of hypergraphs H ∈ H with more than one edge is that they
contain a subhypergraph, of one of only three types, which is attached to the rest of the
hypergraph H in a very restricted way. We introduce now some basic definitions needed
to describe this property.
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Figure 1: The three types of subhypergraphs.

Let H be a 3-uniform hypergraph. A 2-edge subhypergraph of H induced by some
edges uvx and uvy is a subhypergraph of type I if dH(x) = dH(y) = 1. A 3-edge
subhypergraph of H induced by some edges uvz, uzx and vzy is a subhypergraph of
type II if dH(x) = dH(y) = 1 and dH(z) = 3. Finally, a 2-edge subhypergraph of H
induced by some edges uvt and vtx is a subhypergraph of type III if dH(x) = 1 and
dH(t) = 2. All three types of subhypergraphs are depicted in Figure 1. The vertices
of these subhypergraphs different from u and v will be called labeled vertices of the
subhypergraphs. The vertices u and v will be called connectors of the subhypergraphs.
We observe that if B is a subhypergraph of H of type I, II, or III, then each edge in H
containing a labeled vertex of B is an edge of B. We shall denote by ex the edge in a
subhypergraph of type I, II, or III incident with x, by ey the edge in a subhypergraph of
type I or II incident with y, by et the edge in a subhypergraph of type III incident with
t and different from ex, and by ez the edge in a subhypergraph of type II incident with z
and different from ex and ey.

The following proposition is a direct consequence of the definitions of the subhyper-
graphs of types I, II, and III, the definition of strong connectivity, and Lemma 3.

Proposition 2 Let H be a strongly connected 3-uniform hypergraph of size larger than

3, B a subhypergraph of H of type I, II, or III with connectors u and v, and H ′ = H −B.

(i) There is a vertex w ∈ V (H ′) such that uvw ∈ E(H ′).

(ii) If H ∈ H then H ′ ∈ H. �

Here is the lemma describing the property of the hypergraphs in H mentioned above.

Lemma 4 Every hypergraph H ∈ H with more than one edge contains a subhypergraph

of type I, II, or III.

Proof. We apply induction on |E(H)|.
One can readily verify that the Lemma is true for each of the three (up to isomorphism)

hypergraphs in H with 2 and 3 edges.
Let us assume that |E(H)| > 3. As H ∈ H, there exists H ′ ∈ H and an edge e in

H such that H = H ′ + e. By the induction hypothesis, H ′ has a subhypergraph, say
B′, of type I, II, or III. If the labeled vertices of B′ do not belong to e, then B′ is a
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subhypergraph of H of type I, II, or III. Assume it is not so and denote by a the vertex
of e such that a /∈ V (H ′). We shall consider several cases.
Case 1. B′ is of the type I.

Let uvx and uvy be the edges of B′. By symmetry, we can assume that e = uxa.
Then the edges uvx and uxa induce a subhypergraph of type III in H .
Case 2. B′ is of the type II.

Let uvz, uzx, and vzy be the edges of B′. By symmetry, it suffices to consider the
following three subcases.

• If e = uxa, then the edges uzx and uxa induce a subhypergraph of type III in H .

• If e = uza, then the edges uzx and uza induce a subhypergraph of type I in H .

• If e = zxa, then the edges uzx and zxa induce a subhypergraph of type III in H .

Case 3. B′ is of the type III.
Let uvt and vtx be the edges of B′. There are four subcases to be considered in this

case.

• If e = uta, then the edges uvt, uta, and vtx induce a subhypergraph of type II in
H .

• If e = vta, then the edges vtx and vta induce a subhypergraph of type I in H .

• If e = txa, then the edges vtx and txa induce a subhypergraph of type III in H .

• If e = vxa, then the edges vtx and vxa induce a subhypergraph of type III in H . �

The following simple observation will be used several times later. It is a direct conse-
quence of the definition of strong connectivity of a hypergraph.

Proposition 3 Let H be a strongly connected 3-uniform hypergraph and |E(H)| > 1.
Then there is no edge in H that contains two different vertices of degree 1. �

We shall define now a subclass of the class H consisting of some very special hyper-
graphs.

Let R be the smallest class of 3-uniform hypergraphs such that

(i) the 2-edge strongly connected 3-uniform hypergraph belongs to R and

(ii) if R ∈ R and f is a 3-element set such that, for some x, y ∈ f , x /∈ V (R), dR(y) = 1,
and f −{x} is a subset of some edge in R, then the hypergraph R+ f belongs to R.
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We observe that the way of constructing members of R described in part (ii) of the
definition above is a special case of the construction described in part (ii) of the definition
of H. In the definition of R we additionally require that one of the vertices (named y)
of the added edge f has the degree equal to 1 in the original hypergraph. Since the
hypergraph described in part (i) of the definition above is a member of H, the following
statement is true.

Proposition 4 The class R is a subclass of H. �

We shall call the members of R ribbons. Figures 2 and 3 show examples of hyper-
graphs in H that are and are not ribbons. (Formally, the edges of these hypergraphs are
the triangular faces of the planar graphs depicted in these figures.)

x x

x x

x x x x x x x

x

x x

x x x x x

Figure 2: Examples of ribbons.

x

x

x

x

x

xx

Figure 3: A hypergraph from the class H which is not a ribbon.

The next two lemmas describe some properties of ribbons.

Lemma 5 Every ribbon has exactly two vertices of degree 1 and at least one vertex with

even degree.

Proof. We apply induction on the size of the ribbon.
The unique, up to isomorphism, two-edge ribbon has exactly two vertices of degree 1

and two vertices of degree 2.
Let us assume now that a ribbon R has more than two edges. By the definition of R,

there exist a ribbon R′ and f ∈ E(R) such that R = R′ +f , for some x, y ∈ f , x 6∈ V (R′),
dR′(y) = 1, and f − {x} is a subset of some edge, say e, in R′. Obviously, dR(y) = 2, so
R has a vertex with even degree. Moreover, dR(x) = 1. By the induction hypothesis, R′

has exactly two vertices of degree 1. Clearly, y is one of them. Let a be the other one and
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let z be the vertex in f different from x and y. We observe that dR′(z) > 1 for otherwise
two vertices (y and z) of the edge e have their degrees equal to 1 in R′, contradicting to
Proposition 3. Thus, a 6= z and consequently, dR(a) = 1. As the degrees of the vertices
in R are not smaller than in R′, the vertices a and x are the only vertices of degree 1 in
R. �

The two vertices of degree 1 in a ribbon will be called the ends of the ribbon.
Let us observe that, unlike in the case of connected graphs, an Euler tour or walk

in a 3-uniform strongly connected hypergraph may not pass through every vertex of the
hypergraph.

Lemma 6 Let R be a ribbon and let a and b be its ends.

(i) There is no Euler ab-walk in R which passes through every vertex of R.

(ii) For every vertex v 6= a, b, there is an Euler ab-walk in R which passes through every

vertex of R except v.

Proof. Let m be the size of R. By Proposition 4 and Lemma 3, the order of R is equal
to m + 2.

An Euler walk in R is a sequence of m + 1 vertices and m edges. Therefore it can not
pass through all m + 2 vertices of R, which completes the proof of (i).

Part (ii) of the Lemma will be shown by induction on m. The statement is obviously
true for the 2-edge ribbon.

Let us assume now that m > 2. By the definition of R, the ribbon R is of the form
R′ + f , where R′ ∈ R, and f is a 3-element set such that for some x, y ∈ f , x /∈ V (R′),
dR′(y) = 1, and f − {x} is a subset of some edge e in R′. Clearly, y is one of the ends of
the ribbon R′. Let a be the other one. Then, by Lemma 5, a and x are the ends of the
ribbon R.

Let v 6= a, x. If v 6= y, then, by the induction hypothesis, there is an Euler ay-walk,
say P , passing through every vertex in R′ except v. The walk aPyfx is an Euler ax-walk
in R passing through every vertex in R except v, which completes the proof in this case.

Finally, we consider the case of v = y. Let z be the vertex in f different from x and y
and let e = yzw be an edge in R′ containing f − {x}. By the induction hypothesis, there
is an Euler ay-walk in R′ passing through every vertex in R′ except z. This walk has to
be of the form aP ′wey. The walk aP ′wezfx is an Euler ax-walk in R passing through
every vertex in R except y. �

The next technical lemma concerning Euler walks and tours in hypergraphs of the
class H has a bit tedious proof. We prove here some stronger statements than those
which are necessary to show Theorem 4. We do it because these stronger statements will
be used to show Theorem 6 which concerns existence of Euler tours in a more general
class of 3-uniform hypergraphs than the class of strongly connected hypergraphs. This is
the reason why we define and study what we call good walks and tours.

We say that an Euler tour (or walk) in a hypergraph H ∈ H is good if it passes
through all vertices of H of degrees greater than 1. It turns out that hypergraphs in H
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with some very special exceptions not only have Euler tours and walks but good tours
and walks as well.

Lemma 7 Let H ∈ H.

(i) If H has a vertex with even degree, then H has a good tour.

(ii) If a, b ∈ V (H), a 6= b, are not the only two vertices in H with even degrees and H
is not a ribbon with ends a and b, then there is a good ab-walk in H.

Proof. We shall prove both statements (i) and (ii) by induction on |E(H)|.
There are four hypergraphs (up to isomorphism) in H with at most 3 edges. It can

be easily checked that the Lemma is true for each of them.
Let us assume now that |E(H)| > 3 and the statements (i) and (ii) hold for hyper-

graphs in H with size smaller than |E(H)|. By Lemma 4, H contains a subhypergraph
B of type I, II, or III. Let u and v be the connectors of B. It follows from Proposition
2 that the hypergraph H ′ = H − B ∈ H and there is a vertex w ∈ V (H ′) such that
e = uvw ∈ E(H ′).

(i) If H has a vertex with even degree and B is of type I or II, then H ′ has a vertex with
even degree too because the degrees of the connectors in B are in this case equal to 2.
By the induction hypothesis, H ′ has a good tour, say C. This tour passes through u or
v because it contains the edge e. We can assume without loss of generality that C passes
through v. Then vexueyvCv is a good tour in H if B is of the type I and veyzexuezvCv
is a good tour in H if B is of the type II.

We assume now that B is of type III. If H ′ has a good uv-walk, say P , then uPvextetu
is a good tour in H . Thus, we assume that H ′ does not have a good uv-walk. Let H ′′ be
a hypergraph obtained from H ′ by adding an edge f = uvs, where s is a new vertex, i.e.
s 6∈ V (H ′). If H ′′ has a good tour, then it traverses the edge f using the vertices u and v.
Consequently, H ′ has a good uv-walk, a contradiction. Thus, H ′′ does not have a good
tour. By the induction hypothesis applied to H ′′, all vertices in H ′′ have odd degrees.
Therefore H ′ has two vertices u and v with even degrees. By the induction hypothesis
again, H ′ has a good tour, say C. As the degrees of u and v are even (so larger than 1),
C passes through both u and v. Hence, vCvextetv is a good tour in H . This completes
the inductive proof of (i).

(ii) Suppose that a, b ∈ V (H), a 6= b, are not the only two vertices in H with even degrees
and H is not a ribbon with ends a and b. We shall prove that H has a good ab-walk. We
consider two cases.

Case 1. B is of type I or II.

Subcase (i). a and b are not labeled vertices of B.
We observe that in this case the parities of all vertices in H ′ are the same as in H .

Hence, a and b are not the only two vertices in H ′ with even degrees. By the induction
hypothesis, there is a good ab-walk in H ′ or H ′ is a ribbon with ends a and b. In the
former case we define P to be this good ab-walk in H ′. It passes through at least one of
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the connectors u or v, say v, because it contains the edge e. In the latter case, i.e. when
H ′ is a ribbon with ends a and b, we observe that at least one of the connectors u or v
is not an end of the ribbon H ′ because otherwise, by the fact that u, v ∈ e ∈ E(H ′) and
|E(H ′)| > 1 (as H ′ is a ribbon), we get a contradiction with Proposition 3. Let, say u, be
a vertex in the ribbon H ′ which is not its end. We define in this case P to be an Euler
ab-walk in H ′ passing through all vertices of H ′ except u whose existence is guaranteed
by Lemma 6. In both cases let P ′ be the part of P from a to v and P ′′ the rest of the
walk P (from v to b). The walk aP ′vexueyvP ′′b is a good ab-walk in H if B is of the type
I and the walk aP ′veyzexuezvP ′′b is a good ab-walk in H if B is of the type II.

Subcase (ii). Exactly one of the vertices a or b is a labeled vertex of B.
We can assume without loss of generality that b is a labeled vertex of B and a is

not. We shall show first that there is a good au-walk or a good av-walk in H ′. If
a ∈ V (H ′)−{u, v}, then it follows by the induction hypothesis (it is also true when H ′ is
a ribbon because, by Lemma 5, at least one of the vertices a, u, or v is not an end of the
ribbon). If a ∈ {u, v} and a good uv-walk in H ′ does not exist, then, by the induction
hypothesis, u and v are the only two vertices in H ′ with even degrees or H ′ is a ribbon
with ends u and v. The latter case leads to a contradiction with Proposition 3 because
u and v are vertices of degree 1 in H ′ that belong to the same edge e ∈ E(H ′). In the
former case, by part (i) of Lemma 7, H ′ has a good tour. This tour must pass through
both u and v because these two vertices have even (so larger than 1) degrees. In other
words the tour is a good uu-walk and a good vv-walk. We have shown that there is a
good au-walk or a good av-walk P in H ′. We can assume without loss of generality that
P is a good av-walk in H ′.

One can readily verify that if the hypergraph B is of type I, then it admits good vx-
and vy-walks that pass through u. Similarly, if the hypergraph B is of type II, then it
admits good vx-, vy-, and vz-walks that pass through u and z. Extending the walk P by
one of these walks, we get a good ab-walk in H , for every labeled vertex b of B and not
labeled vertex a.

Subcase (iii). Both a and b are labeled vertices of B.
Suppose first that H ′ has a good uv-walk, say P . If B is of type I, then xexuPveyy is a

good xy-walk in H . If B is of type II, then xexuPvezzeyy is a good xy-walk, xexzezuPveyz
is a good xz-walk, and zexuPvezzeyy is a good zy-walk in H .

Assume now that H ′ does not have a good uv-walk. Let H ′′ be a hypergraph obtained
from H ′ by adding an edge f = uvs, where s is a new vertex, i.e. s 6∈ V (H ′). If H ′′ has
a good tour, then it traverses the edge f using the vertices u and v. Consequently, H ′

has a good uv-walk, a contradiction. Thus, H ′′ does not have a good tour. By part (i) of
Lemma 7, all vertices in H ′′ have odd degrees. Consequently, u and v are the only vertices
with even (so larger than 1) degree in H ′. By part (i) of Lemma 7 again, H ′ has a good
tour, say C. By the definition of a good walk, C passes through both u and v. If B is of
type I, then xexuCueyy is a good xy-walk in H . If B is of type II, then xexuCuezzeyy is
a good xy-walk, xexuCuezveyz is a good xz-walk, and zexuCuezveyy is a good zy-walk
in H .
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Case 2. B is of type III.

Subcase (i). a and b are not labeled vertices of B.
Suppose first that H ′ has a good ab-walk or H ′ is a ribbon with ends a and b. We

denote by P a good ab-walk in H ′ in the former case and an Euler ab-walk passing through
all vertices of H ′ except u or v in the latter case (such a walk must exist by Lemma 6
because at least one of the vertices u, v is not an end of the ribbon H ′, what follows from
Proposition 3). If P passes through both vertices u and v, then we denote by P ′ the part
of P from a to v and by P ′′ the rest of the walk P (from v to b). Then aP ′vettexvP ′′b
is a good ab-walk in H . If P does not pass through both vertices u and v, then it must
traverse the edge e using either w and u or w and v. We shall consider the former case
only because the latter one is very similar. We can assume without loss of generality that
w precedes e and u succeeds e in the ab-walk P . In other words, P = aP ′weuP ′′b, where
P ′ and P ′′ are appropriate parts of the walk P . Then aP ′wevextetuP ′′b is a good ab-walk
in H .

We assume now that there is no good ab-walk in H ′ and H ′ is not a ribbon with ends
a and b. By the induction hypothesis, a and b are the only vertices with even degrees in
H ′.

First we assume that v /∈ {a, b}. Then the vertex v has an odd degree in H ′, so it
has an even degree in H − ex ∈ H. Thus, there exists a good ab-walk P in H − ex, by
the induction hypothesis and the fact that t has degree 1 in H − ex (so, by Lemma 5,
H − ex is not a ribbon with ends a and b). This walk has to traverse the edge et using
the vertices u and v, say in this order. Hence, P = aP ′uetvP ′′b, where P ′ and P ′′ are
appropriate parts of the walk P . Then aP ′uettexvP ′′b is a good ab-walk in H .

We assume now that v ∈ {a, b}, say v = a. By the induction hypothesis, there exists
a good tb-walk P in H − ex or H − ex is a ribbon with ends t and b. In the latter case let
P be a tb-walk passing through all vertices of H − ex except v (it exists by Lemma 6, as
v 6= t, b). The walk vextP b is a good vb-walk in H .

Subcase (ii). Exactly one of the vertices a or b is a labeled vertex of B.
We can assume without loss of generality that b is a labeled vertex of B and a is not.
Let us start with the case of b = t and a 6= u. As a and b are not the only vertices with

even degrees in H , a and u are not the only vertices with even degrees in H ′. Thus, by
the induction hypothesis, there exists a good au-walk in H ′ or H ′ is a ribbon with ends a
and u. We define P to be a good au-walk in H ′ in the former case and an au-walk passing
through every vertex of H ′ except v in the latter case (such a walk exists by Lemma 6
because v 6= a, u, by Proposition 3). Then aPuetvext is a good at-walk in H .

Let now b = t and a = u. As a and b are not the only vertices with even degrees in H ,
some vertex in H ′ has an even degree. Thus, by part (i) of Lemma 7, there exists a good
tour C in H ′. It passes through u or v because it contains the edge e. Then uCuetvext
or uetvCvext, respectively, is a good ut-walk in H .

Finally, let us consider the case of b = x. We observe that H − ex is not a ribbon with
ends a and t because otherwise, by the definition of a ribbon, H is a ribbon with ends a
and b = x, contrary to our assumption. Thus, by the induction hypothesis, there exists
a good at-walk, say P , in H − ex ∈ H. As t, v ∈ et, by Proposition 3, the degree of v in
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H − ex is larger than 1. Hence the at-walk P passes through v, so the walk aP texx is a
good ax-walk in H .

Subcase (iii). Both a and b are labeled vertices of B.
We can assume without loss of generality that a = x and b = t. As t, v ∈ et and the

degree of b = t in H − ex ∈ H is 1, by Proposition 3, the degree of v in H − ex is larger
than 1. By the induction hypothesis, there exists a good vt-walk, say P , in H − ex. The
walk xexvP t is a good xt-walk in H . �

Lemma 7 allows us to characterize hypergraphs in H with Euler tours and walks quite
completely.

Corollary 1 Let H ∈ H. The following conditions are equivalent

(i) H has a good tour,

(ii) H has an Euler tour,

(iii) H has a vertex with even degree.

Proof. Since the implication (i) ⇒ (ii) is obvious by the definition of a good tour and
the implication (iii) ⇒ (i) has been shown in Lemma 7, it remains to prove that (ii) ⇒
(iii).

Suppose (ii) holds. By Lemma 3 and Proposition 1,

|E(H)| = |V (H)| − 2 = |Vodd(H)| + |Veven(H)| − 2 6 |E(H)| + |Veven(H)| − 2,

so
|Veven(H)| > 2,

which proves (iii). �

Corollary 2 Let H ∈ H and let a, b ∈ V (H), a 6= b. The following conditions are

equivalent

(i) there is a good ab-walk in H,

(ii) there is an Euler ab-walk in H and H is not a ribbon with ends a and b,

(iii) a and b are not the only two vertices in H with even degrees and H is not a ribbon

with ends a and b.

Proof. The implication (i) ⇒ (ii) follows from the definition of a good walk and Lemma
6. The implication (iii) ⇒ (i) has been shown in Lemma 7.

To show (ii) ⇒ (iii) suppose that a and b are the only two vertices in H with even
degrees. By Lemma 3,

⌊

d(a) + 1

2

⌋

+

⌊

d(b) + 1

2

⌋

+
∑

v∈V (H)−{a,b}

⌊

d(v)

2

⌋
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=
d(a)

2
+

d(b)

2
+

∑

v∈V (H)−{a,b}

d(v) − 1

2

=
3

2
|E(H)| −

1

2
|V (H)| + 1 = |E(H)| < |E(H)| + 1,

a contradiction with Proposition 1, so a and b are not the only two vertices in H with
even degrees. �

The next corollary follows directly from the implication (ii) ⇒ (iii) in Corollary 2 and
Lemma 6.

Corollary 3 Let H ∈ H and let a, b ∈ V (H), a 6= b. Then H has an Euler ab-walk if

and only if a and b are not the only two vertices in H with even degrees. �

Let H be a 3-uniform strongly connected hypergraph of size m. By Lemma 1, there
exists a tree-like ordering e1, ..., em of the set of edges of H , i.e. such an ordering that, for
each i = 2, ..., m, there is a j < i such that |ei ∩ ej | = 2. For such an ordering of the set
of edges of H , we construct a hypergraph T (H) ∈ H. The edges of this hypergraph are
e1, ..., em. The vertices of the hypergraph T (H) are denoted by u[i], where u is a vertex
of H and i is a nonnegative integer. For every edge ei = xyz, the edge ei is of the form
x[i1]y[i2]z[i3]. The values of i1, i2 and i3 will be specified later. Intuitively, the vertices
u[i] in T (H) emerge from the same vertex u in H . We define the edges and vertices
of T (H) recursively. Let e1 = uvw. Then e1 = u[0]v[0]w[0]. Suppose we have already
defined e1, ..., ei−1, 2 6 i 6 m. Let ei = xyz. We define j, j < i, to be the smallest
integer such that |ei ∩ ej | = 2. Let these vertices be x and y and let ej = xyt. Then
ej = x[j1]y[j2]t[j3], where j1, j2, j3 are nonnegative integers. We define ei = x[j1]y[j2]z[p],
where p is the smallest nonnegative integer such that z[p] is not a vertex of the edges
e1, ..., ei−1 yet. We observe that there is a one-to-one correspondence between the edges
of H and the edges of T (H). An example of the construction of T (H) is shown in Figure
4.

Clearly, for a 3-uniform strongly connected hypergraph H , the hypergraph T (H) may
not be unique. It depends on the choice of a tree-like ordering of the set of edges of H .

The next proposition follows directly from the definition of the hypergraph T (H).

Proposition 5 If H is a strongly connected hypergraph, then

(i) T (H) ∈ H,

(ii) |E(T (H))| = |E(H)|,

(iii) uvw ∈ E(H) if and only if u[i1]v[i2]w[i3] ∈ E(T (H)), for some i1, i2, i3 = 0, 1, . . .,

(iv) if P = (v0[i0], e1, v1[i1], e2, v2[i2], . . . , vℓ−1[iℓ−1], eℓ, vℓ[iℓ]) is a walk in T (H), then P =
(v0, e1, v1, e2, v2, . . . , vℓ−1, eℓ, vℓ) is a walk in H. �
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Figure 4: The construction of T (H).

Theorem 4 is now a simple consequence of Corollaries 1, 2, and Proposition 5.

Proof of Theorem 4. By Proposition 1, (i) ⇒ (ii).
To show the implication (ii) ⇒ (iii), we assume that H ∈ H is a hypergraph having

no vertex with even degree. Now, by Lemma 3,

|Vodd(H)| = |V (H)| = |E(H)| + 2 > |E(H)|,

a contradiction with (ii). Thus (ii) ⇒ (iii).
To prove the implication (iii) ⇒ (i), we assume first that H ∈ H. By condition (iii),

H has a vertex with even degree. We are done in this case by Corollary 1.
Let us assume now that H 6∈ H. Then, by Lemmas 2 and 3, |V (H)| 6 |E(H)|+1. We

consider the hypergraph T (H) defined for some tree-like ordering of the set of edges of H .
Suppose first T (H) has an Euler tour. By Proposition 5 (iv) and the definition of an Euler
tour, the hypergraph H has an Euler tour too. Thus, assume that T (H) does not have an
Euler tour. It follows from Proposition 5 (i) and Corollary 1 that all vertices of T (H) have
odd degrees. Since, by Proposition 5 (ii) and Lemma 3, |V (T (H))| = |E(T (H))| + 2 =
|E(H)| + 2 > |V (H)| + 1, there is a vertex v ∈ V (H) such that v[0], v[1] ∈ V (T (H)). By
Corollary 3, T (H) has an Euler v[0]v[1]-walk, say P . By Proposition 5 (iv), P is an Euler
tour in H . �

The results we have already proved allow us to solve the problem of existence of an
Euler walk in strongly connected hypergraphs.
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Figure 5: The figure on the left is a 3-uniform hypergraph, say H , in which the triangular
faces are the edges. The figure on the right is the skeleton S(H) of the hypergraph H .

Proof of Theorem 5. As every Euler tour is an Euler walk and the one-edge hypergraph
has an Euler walk, the theorem obviously follows from Theorem 3, when k > 3. For a
similar reason, when k = 3, the theorem is an easy consequence of Theorem 4 and
Corollary 3. �

4 Beyond the strong connectivity

In this section we study existence of Euler tours in the class of 3-uniform hypergraphs
with a connected skeleton. The class of strongly connected 3-uniform hypergraphs is a
proper subclass of this class.

An example of a 3-uniform hypergraph and its skeleton is shown in Figure 5. The
hypergraph depicted in this figure is an example of a 3-uniform hypergraph which is not
strongly connected, but has a connected skeleton.

Lemma 8 The skeleton of a strongly connected 3-uniform hypergraph H is a connected

graph.

Proof. We apply induction on the size of H .
If H is a one-edge hypergraph, then its skeleton is the graph induced by the empty

set of edges, so it is connected. If H has two edges, then its skeleton is a graph induced
by one edge which is connected too.

Let us assume now that H has at least three edges. We denote by e = uvw ∈ E(H)
such an edge that H − e is strongly connected. It exists by the definition of a strongly
connected hypergraph. Let f be an edge in H − e such that |f ∩ e| = 2. Without loss of
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generality we assume that f = uvx, for some vertex x in H − e. Since H − e is strongly
connected, f is an edge in H − e, and H has at least 3 edges, there is an edge, say g, in
H−e such that |g∩f | = 2. Thus, at least one of the vertices u or v belongs to the skeleton
of H − e, so to the skeleton of H as well. By the induction hypothesis, the skeleton of
H − e is connected. The skeleton of H consists of all the edges of the skeleton of H − e,
the edge uv, and, possibly, one or two of the edges uw, vw. In each case the skeleton of
H is connected because, as we have shown, at least one of the vertices u or v belongs to
the skeleton of H . �

In the most important step (see the proof of Lemma 17) of the reasoning, that leads
to the proof of the main result of this section (Theorem 6), we apply induction on s(H) =
|E(H)| − |V (H)| + 2. In the induction step we need, for a 3-uniform strongly connected
hypergraph H such that s(H) > 0, a construction of a strongly connected hypergraph
(that we denote by Hz

e ) such that s(Hz
e ) = s(H) − 1 and existence of an Euler tour in

Hz
e implies the existence of an Euler tour in H . We describe and study properties of this

construction below.
Let e be an edge in a strongly connected 3-uniform hypergraph H and let e1, e2, . . . , em

be a tree-like ordering of the set of edges of H such that e = ei. We call this tree-like
ordering (e, z)-ordering of the set of edges of H if

(i) z is a vertex of e such that e − {z} ⊆ ej, for some j < i,

(ii) all vertices of e belong to the vertex set of the hypergraph induced by the set of
edges {e1, e2, . . . , ei−1}, and

(iii) for every j > i, the ordering e1, e2, . . . , ei−1, ej , ei, ei+1, . . . , ej−1, ej+1, . . . , em is not a
tree-like ordering of the set of edges of H .

An example of an (e, z)-ordering of the set of edges of a hypergraph is shown in Figure
6.

Lemma 9 If H is a 3-uniform strongly connected hypergraph such that

|V (H)| < |E(H)| + 2,

then H has an (e, z)-ordering, for some edge e ∈ E(H) and vertex z ∈ e.

Proof. Let e1, e2, . . . , em be a tree-like ordering of the set of edges of H which exists
by virtue of Lemma 1. Suppose that the condition (ii) in the definition of an (e, z)-
ordering is not satisfied for any edge e for this tree-like ordering. Then, for every edge ei,
i = 2, 3, . . . , em, the edge ei contains a vertex which is in none of the edges e1, e2, . . . , ei−1.
Hence, |V (H)| = |e1| + m − 1 = m + 2 = |E(H)| + 2 > |V (H)|, a contradiction. Thus,
for every tree-like ordering e1, e2, . . . , em of the set of edges of H , there is an edge e = ei

such that the condition (ii) in the definition of an (e, z)-ordering is satisfied.
Let us consider a tree-like ordering e1, e2, . . . , em of the set of edges of H such that the

index i, for which the condition (ii) is satisfied for e = ei, is the largest. For this tree-like
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Figure 6: The sequence e1, e2, e3, e4, e5, e6 is an (e3, z)-ordering of the set of edges of H .

ordering the condition (iii) is satisfied too. By the definition of a tree-like ordering of the
set of edges, the edge e has two vertices in common with some edge ej , j < i. Let z be
the vertex of ei which is none of these two vertices. For such z the condition (i) in the
definition of an (e, z)-ordering is satisfied. We have shown existence of an (e, z)-ordering
of the set of edges of H . �

An (e, z)-ordering e1, e2, . . . , em is terminal if e is the last edge in this ordering, i.e.
e = em. An edge e ∈ E(H) is substantial if there is an (e, z)-ordering of the set of edges
of H , for some vertex z ∈ e.

The following simple observation will be used several times in the sequel.

Lemma 10 If e1, e2, . . . em is an (e, z)-ordering of the set of edges of a 3-uniform strongly

connected hypergraph H, where e = ei, then |eℓ ∩ ej | 6= 2, for every ℓ < i and j > i.

Proof. Suppose |eℓ ∩ ej | = 2, for some ℓ < i and j > i. Then the ordering

e1, e2, . . . , ei−1, ej , ei, ei+1, . . . , ej−1, ej+1, . . . , em

is a tree-like ordering of the set of edges of H contradicting the condition (iii) in the
definition of an (e, z)-ordering of the set of edges of a hypergraph. �

Let e1, e2, . . . , em be an (ei, z)-ordering of the set of edges of a strongly connected
3-uniform hypergraph H and let z′ 6∈ V (H). We define

e′j =







ej if j < i or z 6∈ ej

(ej − {z}) ∪ {z′} if j > i and z ∈ ej.

We denote by Hz
e the hypergraph induced by the edges e′1, e

′
2, . . . , e

′
m.

An example of a hypergraph Hz
e constructed for some (e, z)-ordering of the set of edges

of a hypergraph H is shown in Figure 6.
In the next three lemmas we assume that the hypergraph Hz

e is defined for some
(e, z)-ordering of the set of edges of a strongly connected 3-uniform hypergraph H .

Lemma 11 The hypergraph Hz
e is strongly connected.
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Proof. Let e1, e2, . . . , em be an (e, z)-ordering of the set of edges of H and let e = ei.
Hence, by the definition of a tree-like ordering of the set of edges, for every j > 1, there
is ℓ < j such that |eℓ ∩ ej| = 2. By Lemma 1, to show that the hypergraph Hz

e is strongly
connected, it suffices to prove that e′1, e

′
2, . . . , e

′
m is a tree-like ordering of the set of edges

of Hz
e .

We shall show first that, for every 1 < j 6= i, |e′j ∩ e′ℓ| = 2. This is obviously true
for j < i. If z 6∈ ej , then z 6∈ ej ∩ eℓ, so e′j ∩ e′ℓ = ej ∩ e′ℓ = ej ∩ eℓ and, consequently,
|e′j ∩ e′ℓ| = 2.

Let us now assume that j > i and z ∈ ej . By Lemma 10, ℓ > i. If z ∈ eℓ, then
e′j ∩ e′ℓ = ((ej −{z})∪{z′})∩ ((eℓ −{z})∪{z′}) = ((ej ∩ eℓ)−{z})∪{z′}, so |e′j ∩ e′ℓ| = 2.
If z 6∈ eℓ, then e′j ∩ e′ℓ = ((ej − {z}) ∪ {z′}) ∩ eℓ = ej ∩ eℓ, so we are done too.

Finally, let j = i. By the definition of an (e, z)-ordering, ei −{z} ⊆ eℓ, for some ℓ < i.
Hence e′i ∩ e′ℓ = ((ei − {z}) ∪ {z′}) ∩ eℓ = ei − {z}, so |e′i ∩ e′ℓ| = 2. �

Lemma 12 Let P ′ be a walk in Hz
e and let the sequence P be obtained from P ′ by replacing

every occurrence of an edge e′i ∈ E(Hz
e ) by the edge ei ∈ E(H) and every occurrence of

the vertex z′ by the vertex z. Now

(i) P is a walk in H,

(ii) if P ′ passes through a vertex v 6= z′ in Hz
e , then P passes through

v in H and if P ′ passes through the vertex z′ in Hz
e , then P passes

through z in H.

Proof. We check that the sequence P satisfies the conditions (i)-(iii) in the definition
of a walk in a hypergraph. The condition (i) is satisfied because there is a one-to-one
correspondence between the edges ei in H and the edges e′i in Hz

e . The condition (ii) in the
definition of a walk and the condition (ii) of this Lemma hold because, by the definition
of Hz

e , if v ∈ e′i, v 6= z′, then v ∈ ei and if z′ ∈ e′i, then z ∈ ei. Finally, the condition (iii)
in the definition of a walk is satisfied because no edge in Hz

e contains both z and z′. �

We shall call the walk P in H , obtained from a walk P ′ in Hz
e in the way described

in Lemma 12, the walk derived from P ′. Let us make a few observations on the derived
walks. First, if a walk P ′ is a tour (resp. Euler tour) in Hz

e , then the derived walk is a
tour (resp. Euler tour) in H . Second, if P ′ is a zz′-walk (resp. Euler zz′-walk) in Hz

e ,
then the derived walk is a tour (resp. Euler tour) in H . Third, if a walk P ′ passes through
at least one of the vertices z or z′ in Hz

e , then the derived walk passes through the vertex
z in H .

In the next three lemmas we study the relationship between the skeletons of hyper-
graphs H and Hz

e . Let us recall that by S(H) we denote the skeleton of H .

Lemma 13

V (S(H)) − {z} ⊆ V (S(Hz
e )).

Proof. Let e1, e2, . . . , em be an (e, z)-ordering of the set of edges of H such that e =
xyz = ei and let u ∈ V (S(H)) − {z}. Then there are edges eℓ and ej in H such that
eℓ ∩ ej = uv, ℓ < j, for some vertex v in H .
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Suppose first that v 6= z. Then e′ℓ ∩ e′j ⊇ (eℓ − {z}) ∩ (ej − {z}) = (eℓ ∩ ej) − {z} =
eℓ ∩ ej = uv, so uv is an edge in S(Hz

e ) and, consequently, u ∈ V (S(Hz
e )).

It remains to consider the case when v = z. If ℓ < i, then, by Lemma 10, j 6 i.
For ℓ < i and j < i, e′ℓ ∩ e′j = eℓ ∩ ej = uv, so we are done. If ℓ < i and j = i, then
u = x or u = y. In both cases u ∈ V (S(Hz

e )) because xy = e − {z} is an edge in S(Hz
e ),

by the condition (i) in the definition of an (e, z)-ordering. Finally, let i 6 ℓ < j. Then
e′ℓ ∩ e′j = ((eℓ − {z}) ∪ {z′}) ∩ ((ej − {z}) ∪ {z′}) = ((eℓ ∩ ej) − {z}) ∪ {z′} = uz′, so uz′

is an edge in S(Hz
e ) and, consequently, u ∈ V (S(Hz

e )). �

Lemma 14 If Hz
e is the hypergraph defined for some nonterminal (e, z)-ordering of the

set of edges of a strongly connected 3-uniform hypergraph H, then

(V (S(H)) − {z}) ∪ {z′} ⊆ V (S(Hz
e )).

Proof. Let e1, e2, . . . , em be a nonterminal (e, z)-ordering of the set of edges of H and let
e = xyz = ei, where i < m. By Lemma 13, it suffices to show that z′ ∈ V (S(Hz

e )). We
observe that the edge ei+1 contains xz or yz. Otherwise, by the definition of a tree-like
ordering of the set of edges and the condition (i) in the definition of an (e, z)-ordering,
ei+1 has 2 vertices in common with some edge ej , j < i, which contradicts Lemma 10.
Thus, xz or yz is a subset of both ei and ei+1. Consequently, xz′ or yz′ is a subset of both
e′i and e′i+1, which proves that z′ ∈ V (S(Hz

e )). �

In the next lemma a hypergraph that we call a wheel occurs. The definition of a wheel
has been given in the Introduction. The wheel W6 is depicted in Figure 7.

Lemma 15 If a strongly connected 3-uniform hypergraph H has a substantial edge and

all (e, z)-orderings of edges of H are terminal, then there exists an (e, z)-ordering of the

set of edges of H such that for the hypergraph Hz
e defined for this ordering

V (S(H)) ⊆ V (S(Hz
e ))

unless H is a wheel.
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Proof. Let us observe that if H has less than 3 edges, then no edge is substantial.
Therefore, we shall assume that m = |E(H)| > 2.

If there is an (e, z)-ordering of the set of edges of H such that z 6∈ V (S(H)), then, by
Lemma 13, V (S(H)) ⊆ V (S(Hz

e )), for the hypergraph Hz
e defined for this (e, z)-ordering.

Therefore, we shall assume in the rest of the proof that z ∈ V (S(H)), for every (e, z)-
ordering of the set of edges of H . By Lemma 13, it suffices to show that z ∈ V (S(Hz

e )),
for some (e, z)-ordering of the set of edges of H , if H is not a wheel.

We consider an arbitrary (e, z)-ordering e1, e2, . . . , em of the set of edges of H . By
our assumptions it is terminal. Let e = em = xyz. By Lemma 1, the hypergraph
H ′ = H − e is strongly connected. We can assume that z 6∈ V (S(H ′)) because otherwise
z ∈ V (S(H ′)) ⊆ V (S(Hz

e )), so we are done. As z ∈ V (S(H)), xz or yz are edges of
S(H). Assume first that both xz and yz are edges of S(H). Since z 6∈ V (S(H ′)), there
is a unique edge xzu (resp. yzv) in H ′ that contains the pair xz (resp. yz). By the
strong connectivity of H ′ and the fact that |E(H ′)| > 1, xu is an edge in S(H ′) (as
z 6∈ V (S(H ′)) and neither zx nor zu is an edge in S(H ′)). We are done in this case by
Lemma 13 because e1, e2, . . . , em is also an (e, x)-ordering of the set of edges of H and
x ∈ V (S(H ′)) ⊆ V (S(Hx

e )).
Thus, we can assume that exactly one of the pairs xz or yz, say xz, is an edge in

S(H). Consequently, as z 6∈ V (S(H ′)), dS(H)(z) = 1 and there is a unique edge in H ′ that
contains the pair xz.

We observe now that, as xz is contained in an edge of H ′, e1, e2, . . . , em is also an (e, y)-
ordering of the set of edges of H . Using the same argument for this (e, y)-ordering as for
the (e, z)-ordering considered above, we show that we can assume that y 6∈ V (S(H ′)) and
dS(H)(y) = 1 because otherwise we are done. For the same reason we can assume that
exactly one of the pairs yx or yz is an edge in S(H). However, yz can not be an edge
in S(H) because dS(H)(z) = 1 and xz is an edge in S(H). Hence yx is the only edge in
S(H) that contains y. Moreover, since y 6∈ V (S(H ′)), there is a unique edge in H ′ that
contains the pair yx.

Summarizing, it remains to prove our Lemma for 3-uniform strongly connected hyper-
graphs H satisfying the assumptions of this Lemma such that for every substantial edge
e in H

(i) e contains exactly two edges of S(H),

(ii) exactly one of the vertices of e has the degree larger than 1 in S(H), and

(iii) e has exactly two neighbors in the strong connectivity graph G(H).

As the hypergraph H ′ is strongly connected, the strong connectivity graph G(H ′)
obtained from G(H) by removing the vertex e is connected. Therefore, by (iii), the vertex
e belongs to some cycle C in G(H). Moreover, both neighbors of e, say f and h, in G(H)
belong to the cycle C too. Clearly, by (i) and (iii), f ∩ e 6= h ∩ e. As f is on a cycle
in G(H), the hypergraph H ′′ = H − f is strongly connected. Let f1, f2, . . . , fm−1 be a
tree-like ordering of the set of edges of H ′′. Let g be a neighbor of f in G(H) different from
e (it exists because f belongs to a cycle in G(H)). We observe that f ⊆ e ∪ g. Indeed,
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otherwise f ∩ e = f ∩ g = g ∩ e, so g is a neighbor of e in G(H) and, consequently, g = h.
We get a contradiction with the inequality f ∩ e 6= h∩ e. The inclusion f ⊆ e∪ g implies
that f is contained in the vertex set of H ′′. Consequently, f1, f2, . . . , fm−1, fm = f is an
(f, v)-ordering of the set of edges for some vertex v ∈ f . Thus the edge f is substantial.

We have shown that if the Lemma does not hold for a 3-uniform strongly connected
hypergraph H , then every substantial edge in H has exactly two neighbors in the graph
G(H) which are substantial edges too. Since, by an assumption of this Lemma, there
is a substantial edge in H , this fact implies that some set of substantial edges forms a
component in the strong connectivity graph G(H) which is a cycle. Consequently, as H is
strongly connected, the graph G(H) itself must be a cycle whose all vertices are substantial
edges in H . To complete the proof we show that H is a wheel. To this end we prove that
all edges of H contain a common vertex. We shall use induction. Let e1, e2, . . . , em be
the edges of H in the order they occur in the cycle G(H). We denote by x the vertex
of e1 which belongs to more than one edge in S(H). Its existence is guaranteed by the
condition (ii). Suppose that x belongs to each of the edges e1, e2, . . . , ei, i < m. We shall
prove that x ∈ ei+1. Let ei = xuw. By conditions (i), (ii), and the definition of x, xu and
xw are edges in S(H) and the pair uw is not an edge in S(H). Since ei+1 is a neighbor
of ei in G(H), ei+1 and ei have two vertices in common. If x 6∈ ei+1, then ei+1 ∩ ei = uw.
Then, however, uw is an edge in S(H), a contradiction. Thus, x ∈ ei+1. By induction, x
belongs to every edge in H . Consequently, H is a wheel which completes our proof. �

Lemma 16 Let H ∈ H. The vertex set of the skeleton of H is equal to the set of vertices

of degree greater than 1 in H.

Proof. We apply induction on the size of H . If H has one edge only, then we are trivially
done.

Let us assume now that |E(H)| > 1. The hypergraph H is of the form H ′ + e, where
H ′ ∈ H and e ∈ E(H). Moreover, there is an edge f ∈ E(H ′) such that f and e have two
vertices, say u and v, in common. By the definition of the class H, the set of vertices of
the skeleton of H is a union of the set vertices of the skeleton of H ′ and {u, v}. Similarly,
the set of vertices of degree greater than 1 in H is the union of the set of vertices of degree
greater than 1 in H ′ and {u, v}. We are now done by the induction hypothesis. �

Due to Lemma 16, we can now extend the definition of a good walk, which has so far
been defined for 3-uniform hypergraphs in H only, to arbitrary 3-uniform hypergraphs.
We shall call an Euler walk in a 3-uniform hypergraph H good if it passes through every
vertex of the skeleton of H . By Lemma 16, this definition is consistent with the definition
of a good walk for hypergraphs in H.

The following lemma (perhaps interesting by itself) gives a simple characterization of
strongly connected 3-unifrom hypergraphs that have a good tour.

Lemma 17 A strongly connected 3-uniform hypergraph H has a good tour if and only if

H is neither a member of H having all vertices of odd degree nor a wheel.
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Proof. Suppose a wheel Wℓ, ℓ > 3, has a good tour. Since the skeleton of the wheel
Wℓ has ℓ + 1 vertices, a good tour in Wℓ must contain at least ℓ + 1 edges. We get a
contradiction because the wheel Wℓ has only ℓ edges. Thus wheels do not have good
tours. By Corollary 1, hypergraphs in H with all vertices of odd degree do not have good
tours either. This completes the proof of necessity.

To prove sufficiency, we apply induction on the number s = |E(H)| − |V (H)| + 2. By
Lemma 2, for every strongly connected 3-uniform hypergraph H , s = |E(H)| − |V (H)|+
2 > 0. For s = 0 our Lemma follows from Lemma 3 and Corollary 1.

Let H be a strongly connected 3-uniform hypergraph such that s = |E(H)|−|V (H)|+
2 > 0 which is neither a member of H having all vertices of odd degree nor a wheel. By
Lemma 9, there is an (e, z)-ordering of the set of edges of H , for some e ∈ E(H) and
z ∈ e, so H contains a substantial edge.

Let us consider the hypergraph Hz
e defined for some (e, z)-ordering e1, e2, . . . , em of the

set of edges of H which is additionally nonterminal, if a nonterminal (e, z)-ordering exits.
The hypergraph Hz

e is strongly connected, by Lemma 11. Moreover, |E(Hz
e )|− |V (Hz

e )|+
2 = |E(H)| − (|V (H)| + 1) + 2 < s. By the induction hypothesis, Hz

e has a good tour C ′

unless it is a member of H having all vertices of odd degree or a wheel. Suppose first Hz
e

is none of these two kinds of hypergraphs. Let C be the tour in H derived from C ′. If
Hz

e is defined for a nonterminal (e, z)-ordering of the set of edges of H , then, by Lemmas
12 and 14, C is a tour in H passing through every vertex of S(H), so it is a good tour in
H . If all (e, z)-orderings of the set of edges in H are terminal, then, by Lemma 15, there
exists an (e, z)-ordering of the set of edges of H such that, for the hypergraph Hz

e defined
for this ordering, V (S(H)) ⊆ V (S(Hz

e )) because H is not a wheel. In this case too the
tour C is good in H , by Lemma 12.

It remains to consider the case when Hz
e is a wheel or a member of H having no vertex

of even degree.
In the former case let C ′ be an Euler tour in the wheel Hz

e which passes through every
vertex of Hz

e except z′. (One can readily verify that for any vertex v of a wheel there
exists an Euler tour passing through all vertices of the wheel except v.) It follows from the
condition (ii) in the definition of an (e, z)-ordering and the definition of the hypergraph
Hz

e that z is a vertex of Hz
e , so z is a vertex of C ′ too. By Lemma 12, the tour C derived

from C ′ passes through all vertices of H , so it is a good tour in H .
In the latter case, by Corollary 2 and Lemma 5, there is a good zz′-walk P ′ in Hz

e . It
follows from Lemmas 12 and 13 that the walk P derived from P ′ is a good tour in H . �

Proof of Theorem 6. We shall prove a stronger result that H has a good tour.
We apply induction on the number of strong components of H . If H has one strong

component only, then we are done by Lemma 17.
Let us assume now that H has at least two strong components. Let Gs(H) be the

graph whose vertex set is the set of strong components of H and two vertices K and L of
Gs(H) are joined by an edge in Gs(H) if and only if the skeletons of the strong components
K and L have a common vertex. The skeleton S(H) of H is the union of the skeletons
of its components, so the graph Gs(H) is connected because, by our assumption, the
skeleton of H is connected. Let K be a leaf of some spanning tree in Gs(H). The graph
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Gs(H)−K, obtained from Gs(H) by removing the vertex K, is connected. Therefore, the
hypergraph F = H −E(K) has a connected skeleton because, by Lemma 8, the skeleton
of each strongly connected component of H is connected. By the induction hypothesis,
F has a good tour, say C, and K has a good tour, say D. Let v be a common vertex of
the skeletons of F and K. Then both tours C and D pass through v, so vCvDv is a good
tour in H . �

In the proof of NP-completeness of the problem of deciding if a 3-uniform hypergraph
with a connected skeleton has an Euler tour (Theorem 7) we shall use some special
hypergraphs that we introduce now.

Let F be a 3-uniform hypergraph with the vertex set V (F ) = {x, y, a, b, a1, a2, a3, b1, b2,
b3} and the edge set E(F ) = {xya, xab, yab, aa1a2, aa1a3, bb1b2, bb1b3} (see Figure 8). We
call the vertices x and y in F the connectors of F .

One can readily verify that the hypergraph F has the following property.

Proposition 6 Let the hypergraph F be a subhypergraph of a 3-uniform hypergraph H
such that no vertices of F , except possibly the connectors, belong to any edge of H which

is not an edge in F . In every Euler tour in H the edges of F occur as consecutive edges.

�

Let us denote by F ∗ the hypergraph obtained from three vertex-disjoint copies of the
hypergraphs F by identifying their connectors y and adding three new vertices y1, y2, y3
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and two edges yy1y2, yy1y3. Let x1, x2, and x3 be the other connectors of the three copies
of F (see Figure 9). We call these three vertices x1, x2, x3 the connectors of F ∗. We
shall need the following easy to prove property of the hypergraph F ∗.

Proposition 7 For every two different connectors v and w in F ∗, there is an Euler

vw-walk in F ∗. �

We call a 3-uniform hypergraph H connected if, for every pair of vertices u, v ∈ V (H),
there is a uv-walk in H . Obviously, by Theorem 1, the problem of existence of an Euler
tour in a connected 3-uniform hypergraph is NP-complete.

Proof of Theorem 7. Clearly, the problem of determining if a 3-uniform hypergraph
with a connected skeleton has an Euler tour belongs to the class NP.

We shall show a reduction from the problem of existence of an Euler tour in a connected
3-uniform hypergraph to our problem.

Let H be a connected 3-uniform hypergraph. We replace each edge e = x1x2x3 of
H by a copy F ∗

e of the hypergraph F ∗ with the connectors x1, x2, and x3. Let ye be
the vertex y in F ∗

e . We denote the 3-uniform hypergraph obtained this way by H∗. We
observe that the hypergraph H∗ has a connected skeleton. Clearly, the construction of
H∗ can be done in polynomial time with respect to the size of H .
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To complete the proof, it suffices to show that H has an Euler tour if and only if H∗

has one.
Let C be an Euler tour in H . Moreover, let e be any edge in H and let v and w be

vertices in H using which the tour C traverses e. We denote by P vw
e an Euler vw-walk in

F ∗
e whose existence is guaranteed by Proposition 7. We replace in C every subsequence

vew by vP vw
e w. Clearly, the sequence obtained this way is an Euler tour in H∗.

Conversely, assume the hypergraph H∗ has an Euler tour C∗. It follows from the
definition of the hypergraph H∗ that C∗ passes through every vertex ye, where e is an
edge in H . Consequently, by Proposition 6, for every edge e in H there is exactly one
subsequence of C∗ of the form vQeyeRew such that v and w are connectors of F ∗

e , the
sequence Qe contains all the edges of the copy of F with connectors v and ye being a part
of F ∗

e , and Re contains all the edges of the copy of F with connectors ye and w being a
part of F ∗

e (Qe or Re may or may not also contain all edges of the third copy of F in F ∗
e ).

We replace each such subsequence vQeyeRew of C∗ by the sequence vew. In the resulting
sequence, say C ′, every edge of the hypergraph H occurs exactly once. The sequence C ′

may still contain some subsequences of the form uPeu, where e is an edge in H and Pe

contains all the edges of some copy of F with connectors u and ye being a part of F ∗
e . We

replace such subsequences by the sequence u. The resulting sequence C is an Euler tour
in H . �
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